跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/17 13:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊曜陽
研究生(外文):Yao-Yang Chuang
論文名稱:絲珊瑚科珊瑚粒線體基因體與細胞色素I介入子演化探討
論文名稱(外文):Evolutionary aspects of mitochondrial genomes and cox1 introns in the scleractinian corals, Family Siderastreidae
指導教授:陳昭倫陳昭倫引用關係
口試日期:2017-06-26
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:81
中文關鍵詞:粒線體基因體絲珊瑚科細胞色素I介入子水平基因轉移淨化選汰
外文關鍵詞:mitochondrial genomeSiderastreidaecox1 intronhorizontal gene transferpurifying selection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:309
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以絲珊瑚科石珊瑚的基因體來探討:(1) 石珊瑚粒線體基因體結構在跨洋性石珊瑚科中的差異;(2) 細胞色素I介入子在石珊瑚粒線體中的演化。
絲珊瑚科共有7個物種涵蓋三大洋的分佈,本研究完成了絲珊瑚科 6物種的粒線體基因體定序與基因註解,以釐清跨洋性石珊瑚粒線體基因體的差異。絲珊瑚粒線體基因的排列順序與大部分石珊瑚粒線體基因相似,絲珊瑚有現生石珊瑚物種最大的粒線體基因體, 主要來自於其非編碼區域(non-coding region)所產生的片段重複或插入,特別是控制區 (control region) 上的結構變異。絲珊瑚粒線體基因體的控制區位在cytb及nad2之間,與同屬石珊瑚演化基部的類群–多孔珊瑚科 (Poritidae) 的粒線體基因體控制區一致。本研究也發線絲珊瑚粒線體基因體共有5個tRNA基因,而其中tRNA-Ser、tRNA-Pro及tRNA-Tyr的 DHU loop較一般tRNA基因短很多,可能是無法表現功能的偽基因 (pseudogene) 。與多孔珊瑚一樣,絲珊瑚也有兩個介入子(intron),其中位於細胞色素I (cox1)的介入子內還具有核酸內切酶基因 (endonuclease) 的插入,可能來自於水平基因轉移 (horizontal gene transfer)。
粒線體基因的排列順序在絲珊瑚科內並沒有太大差異,主要變異則來自於三大洋間的遺傳距離相對於其他科的石珊瑚大。此外,除了西太平洋的兩個擬絲珊瑚物種 (Pseudosiderastrea) ,其他絲珊瑚在另外兩個洋區內物種的遺傳距離則相對接近,此一現象表示西太平洋絲珊瑚物種的分歧時間可能遠早於其他洋區。
絲珊瑚的親緣關係分析則顯示西太平洋類群為最早出現的絲珊瑚,類群內兩個擬絲珊瑚屬物種–田山擬絲珊瑚 (P. tayamai) 及福爾摩沙擬絲珊瑚 (P. formosa) 間具有較大的遺傳距離,顯示西太平洋區相對於其他兩大洋區,有較悠久的演化歷史,得以累積較多的變異。
絲珊瑚內的細胞色素I介入子相較於其他石珊瑚來說並非特例,過去研究便發現該介入子存在於部分的石珊瑚類群,包括複雜類群 (Complexa) 及堅實類群 (Robusta)。細胞色素I介入子主要分佈在複雜類群的演化基部物種,該介入子甚至與擬珊瑚海葵 (Corallimorpharia) 的細胞色素I介入子頗為相似。在比較過細胞色素I的外顯子(exon) 與介入子之間的共演化關係後,本研究認為複雜類群的介入子應與擬珊瑚海葵的介入子同源。
然而,堅實類群的細胞色素I介入子則完全與複雜類群及擬珊瑚海葵不同。藉由介入子的序列與結構的比較,過去的研究認為堅實類群的介入子可能來自於海綿或其他微生物的水平基因轉移。本研究也重新檢驗了選汰壓力對介入子的影響,結果顯示相對於複雜類群,堅實類群的介入子承受較大的淨化選汰(purifying selection)壓力,此一結果使得堅實類群的介入子為新進入侵的可能性大為增加。而外顯子與介入子的共演化分析也顯示堅實類群的細胞色素I介入子可能是後來多次插入粒線體基因體的結果。
In this dissertation, I focused on the study of mitochondrial genomes (mitogenomes) of a scleractinian family, Siderastreidae, to address their evolutionary pattern of mitogenome changes. The genomic structure and variations of mitochondria (mt) DNA among siderastreids from different biogeographic provinces were studied. Then, the gain and loss of cox1 introns in scleractinians and its implication on the evolutionary history of scleractinians were addressed.
The mitochondrial genomes of 6 out of 7 species in Siderastreidae were first sequenced and annotated to verify the changes of mitogenomes across the three ocean provinces. The gene arrangement of siderastreids mitogenomes was similar to those of scleractinians in general, while their mitogenomes were the largest among those of scleractinians. A putative control region located between cytb and nad2 were at the same location as that in Poritidae, the family which also located on the basal of scleractinian phylogeny. Five tRNAs instead of two were prediceted in Siderastreidae based on previous studies in hexacorallians. However, tRNA-Ser, tRNA-Pro and tRNA-Tyr were thought to be false positive due to their relatively short DHU loops. Moreover, introns with novel open reading frame recognized as homing endonuclease were discovered in the cox1 of both Siderastreidae and Poritidae, suggesting possible horizontal gene transfers among lineages.
Although there was no difference in gene arrangement among Siderastreidae species, the genetic distance among species from three ocean provinces was larger than that in other families. However, the genetic distance between species from the same ocean was very small except that of the Pacific lineages, which implied that the Pacific lineage might have an earlier divergence. Besides, the differences of genome sizes among species from three ocean provinces is mainly due to the fragment insertions or deletions of inter-genic spacers, especially in putative control regions. The phylogeny of siderastreids also showed that the Pacific lineage was the ancestral group and large divergence between Pseudosiderastrea tayamai and P. formosa, implied that they might have a long evolutionary history to accumulate genetic variations in the Pacific Ocean.
Intron insertions of cox1 were not exclusive in siderastreids. Cox1 intron could be found sporadically in species of scleractinians among the complex clade (Complexa) and the robust clade (Robusta). The distribtution of cox1 intron in Complexa was concentrated on the basal lineages of phylogeny which could even be traced to that in Corallimorpharia. Co-speciation comparison of cox1 introns and exons among species in Complexa and Corallimorpharia implied that they showed homologus from their ancestors.
However, intron in Robusta have completely different origin from that in Complexa and Corallimorpharia. Previous study proposed that cox1 intron in Robusta might come from Porifera or other microbials due to the sequences and structure similarities instead of that with Complexa and Corallimorpharia. The examination of selection forces on cox1 intron of scleractinians showed that introns in Robusta afford relatively purifying selection than that in Complexa, which implied the possibility of new invasion to cox1 in Robusta. Co-speciation comparison of exons and introns in Robusta also suggested that multiple lateral insertions from similar organisms might have happened in the evolution of mitogenomes in Robusta.
Chapter 1 General Introduction 1
1.1 Biological function of mitochondrion 1
1.2 Mitochondrial genome of metazoans 2
1.3 Mitochondrial genomes in anthozoans 3
1.4 MtDNA as molecular markers and gene rearrangements 3
1.5 Siderastreidae and the status of Scleractinia evolution 4
1.6 Aim of this study 5
Chapter 2 Mitochondrial genome of Siderastreidae and phylogenetic application 7
2.1 Introduction 7
2.2 Materials and Methods 10
2.2.1 DNA extraction, PCR amplification and sample location 10
2.2.2 Mitochondrial genome analyses and gene annotation 11
2.2.3 Phylogenetic analyses of the mitochondrial genomes 12
2.3 Results 14
2.3.1 Gene content and order of siderastreid mtgenome 14
2.3.2 Intron, inter-genic spacer and putative control region 15
2.3.3 Mitochondrial genomic differences among siderastreids 16
2.3.4 Genetic variations in siderastreids 17
2.3.5 Phylogeny inference of siderastreids 18
2.4 Discussion 19
2.4.1 Genome size evolution in scleractinians 19
2.4.2 tRNA and putative control region 20
2.4.3 Intron insertions 21
2.4.4 Divergences and phylogeography in siderasreids 21
Chapter 3 Loss and Gain of Group I Introns in the Mitochondrial Cox1 Gene of the Scleractinia (Cnidaria; Anthozoa) 33
3.1 Introduction 33
3.2 Materials & Methods 36
3.2.1 Cox1 exon and group I intron sequences 36
3.2.2 Sequence analysis, open reading frame (ORF), and secondary structure prediction of cox1 group I introns 36
3.2.3 Phylogeny construction and comparisons 37
3.2.4 Molecular dating of the cox1 exon tree 39
3-3 Results 40
3.3.1 Molecular characteristics of the group I introns in the cox1 loci 40
3.3.2 Evolutionary rates of exon and HEG 42
3.3.3 Co-evolution of the cox1 exon and intron in scleractinians and corallimorpharians 42
3.3.4 Molecular clock estimates for intron loss and gain events 44
3-4 Discussion 46
3.4.1 Evolutionary history of group I introns in scleractinian corals 46
3.4.2 Hypothesis: Intron loss and gain might be corroborated with major extinction events 50
Chapter 4 General discussion and conclusion 67
4.1 Mitogenomic features of the siderastreid corals 67
4.2 Gain and loss of cox1 introns in Scleractinia 68
4.3 Summary and perspectives of mitogenome and cox1 introns evolution 69
References 71
Amend AS, Barshis DJ, Oliver TA (2012) Coral-associated marine fungi form novel lineages and heterogeneous assemblages. ISME J 6 (7): 1291-1301
Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography - the mitochondrial-DNA bridge between population-genetics and systematics. Annual Review of Ecology and Systematics 18: 489-522
Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: Diversity, ecology, and biogeography of Symbiodinium. Annual Review of Ecology Evolution and Systematics 34: 661-689
Baron-Szabo RC (2006) Corals of the K/T-boundary: Scleractinian corals of the suborders Astrocoeniina, Faviina, Rhipidogyrina and Amphiastraeina. Journal of Systematic Palaeontology 4: 1-108
Barr CM, Neiman M, Taylor DR (2005) Inheritance and recombination of mitochondrial genomes in plants, fungi and animals. New Phytologist 168: 39-50
Beagley CT, Okada NA, Wolstenholme DR (1996) Two mitochondrial group I introns in a metazoan, the sea anemone Metridium senile: One intron contains genes for subunits 1 and 3 of NADH dehydrogenase. Proceedings of the National Academy of Sciences of the United States of America 93: 5619-5623
Beagley CT, Okimoto R, Wolstenholme DR (1998) The mitochondrial genome of the sea anemone Metridium senile (Cnidaria): Introns, a paucity of tRNA genes, and a near-standard genetic code. Genetics 148: 1091-1108
Beaten MJ, Roger AJ, Cavalier-Smith T (1998) Sequence analysis of the mitochondrial genome of Sarcophyton glaucum: Conserved gene order among octocorals. Journal of Molecular Evolution 47: 697-708
Belfort M (1990) Phage-T4 introns - self-splicing and mobility. Annual Review of Genetics 24: 363-385
Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research 27: 573-580
Bentis CJ, Kaufman L, Golubic S (2000) Endolithic fungi in reef-building corals (Order : Scleractinia) are common, cosmopolitan, and potentially pathogenic. Biological Bulletin 198: 254-260
Berner RA (2001) Modeling atmospheric O2 over Phanerozoic time. Geochimica Et Cosmochimica Acta 65: 685-694
Berner RA (2009) Phanerozoic atmospheric oxygen: New results using the geocarbsulf model. American Journal of Science 309: 603-606
Berner RA, Beerling DJ, Dudley R, Robinson JM, Wildman RA (2003) Phanerozoic atmospheric oxygen. Annual Review of Earth and Planetary Sciences 31: 105-134
Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Research 27: 1767-1780
Boto L (2014) Horizontal gene transfer in the acquisition of novel traits by metazoans. Proceedings of the Royal Society B-Biological Sciences 281
Briggs JC (2000) Centrifugal speciation and centres of origin. Journal of Biogeography 27: 1183-1188
Brown WM, George M, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America 76: 1967-1971
Brugler MR, France SC (2007) The complete mitochondrial genome of the black coral Chrysopathes formosa (Cnidaria : Anthozoa : Antipatharia) supports classification of antipatharians within the subclass Hexacorallia. Molecular Phylogenetics and Evolution 42: 776-788
Budd AF (2000) Diversity and extinction in the Cenozoic history of Caribbean reefs. Coral Reefs 19: 25-35
Budd AF, Guzman HM (1994) Siderastrea Glynni, a new species of scleractinian coral (Cnidaria, Anthozoa) from the Eastern Pacific. Proceedings of The Biological Society of Washington 107: 591-599
Burger G, Gray MW, Lang BF (2003) Mitochondrial genomes: anything goes. Trends in Genetics 19: 709-716
Burger G, Yan YF, Javadi P, Lang BF (2009) Group I-intron trans-splicing and mRNA editing in the mitochondria of placozoan animals. Trends in Genetics 25: 381-386
Chen CA, Wallace CC, Wolstenholme J (2002) Analysis of the mitochondrial 12S rRNA gene supports a two-clade hypothesis of the evolutionary history of scleractinian corals. Molecular Phylogenetics and Evolution 23: 137-149
Chen JJ, Sun M, Hurst LD, Carmichael GG, Rowley JD (2005) Human antisense genes have unusually short introns: evidence for selection for rapid transcription. Trends in Genetics 21: 203-207
Crame JA, Rosen BR (2002) Cenozoic palaeogeography and the rise of modern biodiversity patterns. Geological Society, London, Special Publications 194: 153-168
da Fonseca RR, Johnson WE, SJ OB, Ramos MJ, Antunes A (2008) The adaptive evolution of the mammalian mitochondrial genome. BMC Genomics 9: 119
Dalgaard JZ, Klar AJ, Moser MJ, Holley WR, Chatterjee A, Mian IS (1997) Statistical modeling and analysis of the LAGLIDADG family of site-specific endonucleases and identification of an intein that encodes a site-specific endonuclease of the HNH family. Nucleic Acids Research 25: 4626-4638
Domart-Coulon IJ, Elbert DC, Scully EP, Calimlim PS, Ostrander GK (2001) Aragonite crystallization in primary cell cultures of multicellular isolates from a hard coral, Pocillopora damicornis. Proceedings of the National Academy of Sciences of the United States of America 98: 11885-11890
Doolittle WE (1998) You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends in Genetics 14: 307-311
Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. Bmc Evolutionary Biology 7: 214
Dujon B (1989) Group-I introns as mobile genetic elements - facts and mechanistic speculations - a review. Gene 82: 91-114
Edgell DR, Chalamcharla VR, Belfort M (2011) Learning to live together: Mutualism between self-splicing introns and their hosts. Bmc Biology 9: 22
Emblem A, Karlsen BO, Evertsen J, Johansen SD (2011) Mitogenome rearrangement in the cold-water scleractinian coral Lophelia pertusa (Cnidaria, Anthozoa) involves a long-term evolving group I intron. Molecular Phylogenetics and Evolution 61: 495-503
Emblem A, Okkenhaug S, Weiss ES, Denver DR, Karlsen BO, Moum T, Johansen SD (2014) Sea anemones possess dynamic mitogenome structures. Molecular Phylogenetics and Evolution 75: 184-193
Forsman ZH, Guzman HM, Chen CA, Fox GE, Wellington GM (2005) An ITS region phylogeny of Siderastrea (Cnidaria : Anthozoa): is S. glynni endangered or introduced? Coral Reefs 24: 343-347
Fukami H, Budd A, Paulay G, Sole-Cava A, Chen C, Iwao K, Knowlton N (2004) Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals. Nature 427: 832-835
Fukami H, Chen CA, Budd AF, Collins A, Wallace C, Chuang YY, Chen C, Dai CF, Iwao K, Sheppard C, Knowlton N (2008) Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria). PLoS ONE 3 (9): e3222
Fukami H, Chen CA, Chiou CY, Knowlton N (2007) Novel group I introns encoding a putative homing endonuclease in the mitochondrial cox1 gene of scleractinian corals. Journal of Molecular Evolution 64: 591-600
Fukami H, Knowlton N (2005) Analysis of complete mitochondrial DNA sequences of three members of the Montastraea annularis coral species complex (Cnidaria, Anthozoa, Scleractinia). Coral Reefs 24: 410-417
Gagan MK, Ayliffe LK, Beck JW, Cole JE, Druffel ERM, Dunbar RB, Schrag DP (2000) New views of tropical paleoclimates from corals. Quaternary Science Reviews 19: 45-64
Galli MT, Jadoul F, Bernasconi SM, Weissert H (2005) Anomalies in global carbon cycling and extinction at the Triassic/Jurassic boundary: evidence from a marine C-isotope record. Palaeogeography Palaeoclimatology Palaeoecology 216: 203-214
Galtier N, Nabholz B, Glemin S, Hurst GDD (2009) Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Molecular Ecology 18: 4541-4550
Gissi C, Iannelli F, Pesole G (2008) Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity 101: 301-320
Glasspool IJ, Scott AC (2010) Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nature Geoscience 3: 627-630
Goddard MR, Burt A (1999) Recurrent invasion and extinction of a selfish gene. Proceedings of the National Academy of Sciences of the United States of America 96: 13880-13885
Goddard MR, Leigh J, Roger AJ, Pemberton AJ (2006) Invasion and persistence of a selfish gene in the Cnidaria. PLoS ONE 1: 1-6
Gogarten JP, Hilario E (2006) Inteins, introns, and homing endonucleases: recent revelations about the life cycle of parasitic genetic elements. Bmc Evolutionary Biology 6: 94
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology 59: 307-321
Hall JPJ, Williams D, Paterson S, Harrison E, Brockhurst MA (2017) Positive selection inhibits gene mobilization and transfer in soil bacterial communities. Nature Ecology & Evolution
Hoelzel AR, Hancock JM, Dover GA (1993) Generation of vntrs and heteroplasmy by sequence turnover in the mitochondrial control region of 2 elephant seal species. Journal of Molecular Evolution 37: 190-197
Hoffmann RJ, Boore JL, Brown WM (1992) A Novel Mitochondrial genome organization for the blue mussel, Mytilus Edulis. Genetics 131: 397-412
Huchon D, Szitenberg A, Rot C, Ilan M (2010) Diversity of sponge mitochondrial introns revealed by cox 1 sequences of Tetillidae. Bmc Evolutionary Biology 10
JAA N (2004) MrModeltest 2.0 Program distributed by the author. Evolutionary Biology Centre, Uppsala University
Jeffares DC, Penkett CJ, Bahler J (2008) Rapidly regulated genes are intron poor. Trends in Genetics 24: 375-378
Katz LA (2012) Origin and diversification of eukaryotes. Annual Review of Microbiology 66: 411-427
Kayal E, Bentlage B, Collins AG, Kayal M, Pirro S, Lavrov DV (2012) Evolution of linear mitochondrial genomes in medusozoan cnidarians. Genome Biology and Evolution 4: 1-12
Keddie EM, Higazi T, Unnasch TR (1998) The mitochondrial genome of Onchocerca volvulus: Sequence, structure and phylogenetic analysis. Molecular and Biochemical Parasitology 95: 111-127
Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nature Reviews Genetics 9: 605-618
Kiessling W, Aberhan M, Brenneis B, Wagner PJ (2007) Extinction trajectories of benthic organisms across the Triassic-Jurassic boundary. Palaeogeography Palaeoclimatology Palaeoecology 244: 201-222
Kiessling W, Baron-Szabo RC (2004) Extinction and recovery patterns of scleractinian corals at the Cretaceous-Tertiary boundary. Palaeogeography Palaeoclimatology Palaeoecology 214: 195-223
Kitahara MV, Cairns SD, Stolarski J, Blair D, Miller DJ (2010) A Comprehensive phylogenetic analysis of the Scleractinia (Cnidaria, Anthozoa) based on mitochondrial CO1 sequence data. PLoS ONE 5: e11490
Kitahara MV, Lin MF, Foret S, Huttley G, Miller DJ, Chen CA (2014) The "naked coral'' hypothesis revisited - evidence for and against scleractinian monophyly. Plos One 9: e94774
Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution 33: 1870-1874
Laborel J (1974) West African reef corals - an hypothesis on their origin. Proc 2th International Coral Reef Symposium: 425-443
Laslett D, Canback B (2008) ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 24: 172-175
Lavrov DV, Lang BF (2005) Poriferan mtDNA and animal phylogeny based on mitochondrial gene arrangements. Systematic Biology 54: 651-659
Lawrence JG, Hendrickson H (2003) Lateral gene transfer: when will adolescence end? Molecular Microbiology 50: 739-749
Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451-1452
Lin MF, Chou WH, Kitahara MV, Chen CL, Miller DJ, Foret S (2016) Corallimorpharians are not "naked corals": insights into relationships between Scleractinia and Corallimorpharia from phylogenomic analyses. PeerJ 4: e2463
Lin MF, Kitahara MV, Luo HW, Tracey D, Geller J, Fukami H, Miller DJ, Chen CA (2014) Mitochondrial genome rearrangements in the Scleractinia/Corallimorpharia complex: Implications for coral phylogeny. Genome Biology and Evolution 6: 1086-1095
Lin MF, Kitahara MV, Tachikawa H, Fukami H, Miller DJ, Chen CA (2012) Novel organization of the mitochondrial genome in the deep-sea coral, Madrepora oculata (Hexacorallia, Scleractinia, Oculinidae) and its taxonomic implications. Molecular Phylogenetics and Evolution 65: 323-328
Lin MF, Luzon KS, Licuanan WY, Ablan-Lagman MC, Chen CA (2011) Seventy-four universal primers for characterizing the complete mitochondrial genomes of scleractinian corals (Cnidaria; Anthozoa). Zoological Studies 50: 513-524
Lirman D, Orlando B, Macia S, Manzello D, Kaufman L, Biber P, Jones T (2003) Coral communities of Biscayne Bay, Florida and adjacent offshore areas: diversity abundance, distribution, and environmental correlates. Aquatic Conservation-Marine and Freshwater Ecosystems 13: 121-135
Lisacek F, Diaz Y, Michel F (1994) Automatic identification of group-I intron cores in genomic DNA sequences. Journal of Molecular Biology 235: 1206-1217
Lynch M (2002) Intron evolution as a population genetic process. Proceedings of the National Academy of Sciences of the United States of America 99: 6118-6123
Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis. V. 2.75. http://mesquiteproject.org/
Marzoli A, Bertrand H, Knight KB, Cirilli S, Buratti N, Verati C, Nomade S, Renne PR, Youbi N, Martini R, Allenbach K, Neuwerth R, Rapaille C, Zaninetti L, Bellieni G (2004) Synchrony of the Central Atlantic magmatic province and the Triassic-Jurassic boundary climatic and biotic crisis. Geology 32: 973-976
Medina M, Collins AG, Takaoka TL, Kuehl JV, Boore JL (2006) Naked corals: skeleton loss in Scleractinia. Proceedings of the National Academy of Sciences of the United States of America 103: 9096-9100
Moritz C, Dowling TE, Brown WM (1987) Evolution of animal mitochondrial DNA relevance for population biology and systematics. Annual Review of Ecology and Systematics 18: 269-292
Obura D, Chuang YY, Olendo M, Amiyo N, Church J, Chen CA (2007) Relict Siderastrea savignyana (Scleractinia : Siderastreidae) in the Kiunga Marine National Reserve, Kenya. Zoological Studies 46: 427-427
Obura DO (2016) An Indian Ocean centre of origin revisited: Palaeogene and Neogene influences defining a biogeographic realm. Journal of Biogeography 43: 229-242
Olsen PE, Kent DV, Sues HD, Koeberl C, Huber H, Montanari A, Rainforth EC, Fowell SJ, Szajna MJ, Hartline BW (2002) Ascent of dinosaurs linked to an iridium anomaly at the Triassic-Jurassic boundary. Science 296: 1305-1307
Perlman PS, Butow RA (1989) Mobile introns and intron-encoded proteins. Science 246: 1106-1109
Pichon M, Chuang YY, Chen CA (2012) Pseudosiderastrea formosa sp nov (Cnidaria: Anthozoa: Scleractinia): A new coral species endemic to Taiwan. Zool Stud 51: 93-98
Pierron D, Wildman DE, Huttemann M, Markondapatnaikuni GC, Aras S, Grossman LI (2012) Cytochrome c oxidase: Evolution of control via nuclear subunit addition. Biochimica Et Biophysica Acta-Bioenergetics 1817: 590-597
Pontkingdon GA, Okada NA, Macfarlane JL, Beagley CT, Wolstenholme DR, Cavaliersmith T, Clarkwalker GD (1995) A coral mitochondrial Muts gene. Nature 375: 109-111
Posada D, Crandall KA (1998) MODELTEST: Testing the model of DNA substitution. Bioinformatics 14: 817-818
Raghukumar C, Raghukumar S (1991) Fungal invasion of massive corals. Marine Ecology 12: 251-260
Romano SL, Cairns SD (2000) Molecular phylogenetic hypotheses for the evolution of scleractinian corals. Bulletin of Marine Science 67: 1043-1068
Romano SL, Palumbi SR (1996) Evolution of scleractinian corals inferred from molecular systematics. Science 271: 640-642
Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574
Roy SW, Gilbert W (2005) The pattern of intron loss. Proceedings of the National Academy of Sciences of the United States of America 102: 713-718
Schonberg CHL, Wilkinson CR (2001) Induced colonization of corals by a clionid bioeroding sponge. Coral Reefs 20: 69-76
Shearer TL, Van Oppen MJH, Romano SL, Worheide G (2002) Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Molecular Ecology 11: 2475-2487
Shiflett AM, Johnson PJ (2010) Mitochondrion-related organelles in eukaryotic protists. Annual Review Microbiol 64: 409-429
Shimodaira H, Hasegawa M (2001) CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17: 1246-1247
Sinniger F, Chevaldonne P, Pawlowski J (2007) Mitochondrial genome of Savalia savaglia (Cnidaria, Hexacorallia) and early metazoan phylogeny. Journal of Molecular Evolution 64: 196-203
Soucy SM, Huang JL, Gogarten JP (2015) Horizontal gene transfer: building the web of life. Nature Reviews Genetics 16: 472-482
Stanley GD (2003) The evolution of modern corals and their early history. Earth Science Reviews 60: 195-225
Stolarski J, Kitahara MV, Miller DJ, Cairns SD, Mazur M, Meibom A (2011) The ancient evolutionary origins of Scleractinia revealed by azooxanthellate corals. Bmc Evolutionary Biology 11: 316
Szklarczyk R, Huynen MA (2010) Mosaic origin of the mitochondrial proteome. Proteomics 10: 4012-4024
Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56: 564-577
Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 1596-1599
Tekle YI, Parfrey LW, Katz LA (2009) Molecular data are transforming hypotheses on the origin and diversification of eukaryotes. Bioscience 59: 471-481
Tseng CC, Wallace CC, Chen CA (2005) Mitogenomic analysis of Montipora cactus and Anacropora matthai cnidaria; scleractinia; acroporidae) indicates an unequal rate of mitochondrial evolution among Acroporidae corals. Coral Reefs 24: 502-508
van Oppen MJH, Catmull J, McDonald BJ, Hislop NR, Hagerman PJ, Miller DJ (2002) The mitochondrial genome of Acropora tenuis (Cnidaria : Scleractinia) contains a large group I intron and a candidate control region. Journal of Molecular Evolution 55: 1-13
van Oppen MJH, Hislop NR, Hagerman PJ, Miller DJ (1999) Gene content and organization in a segment of the mitochondrial genome of the scleractinian coral Acropora tenuis: Major differences in gene order within the anthozoan subclass Zoantharia. Molecular Biology and Evolution 16: 1812-1815
Vaughan TM, Wells JW (1943) Revision of the suborders, families and genera of the Scleractinia. Geogical Society of America, Special Paper 44: 1-363
Veron JEN (1995) Corals in space and time: the biogeography and evolution of the scleractinia. University of new South Wales Press, Sydney, Australia
Veron JEN, Stafford-Smith M (2000) Corals of the world. Australian Institute of Marine Science, Townsville MC, Qld, Australia
Wells JW, Hill D (1956) Treatise on invertebrate paleontology. Geological Society of America, New York
Wolstenholme DR, Macfarlane JL, Okimoto R, Clary DO, Wahleithner JA (1987) Bizarre tRNAs inferred from DNA sequences of mitochondrial genomes of nematode worms. Proceedings of the National Academy of Sciences of the United States of America 84: 1324-1328
Yabe H, Sugiyama T (1935) A new living Coral,Pseudosiderastrea tayamaifrom Dobo in Wamar, Aru Islands: 373-375
Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 31: 3406-3415
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top