跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/19 21:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張栢然
研究生(外文):Pak-Yin Cheung
論文名稱:棲息地複雜性對珊瑚礁恢復力的影響;觀察與生態模式
論文名稱(外文):Effects of habitat complexity on coral reef resilience;empirical and modelling approaches
指導教授:三木健三木健引用關係野澤洋耕
指導教授(外文):Takeshi MikiYoko Nozawa
口試日期:2017-06-16
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:86
中文關鍵詞:珊瑚礁恢復力棲息地複雜性生態模式
外文關鍵詞:coral reef resiliencerecoverieshabitat complexitymathematical modelling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:294
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
了解什麼要素有助於珊瑚礁恢復力,能提供基礎認知以應對珊瑚礁的全球性消退。而珊瑚礁內的棲息地複雜性能通過連接珊瑚和草食性動物之間的相互反饋來幫助珊瑚礁系統的恢復。珊瑚骨骼生長能增強棲息地的複雜性,草食性動物的微棲地也順應增加,繼而能控制底棲藻類的擴張,進一步釋放空間予珊瑚生長。通過實際觀察和生態模式,本論文研究這種反饋在不同狀況下對珊瑚礁恢復力的影響:1)珊瑚、草食性動物和棲息地複雜性哪個對支持恢復力較重要,2)珊瑚和草食性動物之間的反饋是發生在什麼尺度上的棲息地複雜性,以及3)這種相互反饋會在何時重要地支持珊瑚礁恢復力。第二章探討了珊瑚礁恢復力、草食性動物和三種棲息地複雜性(尺度:大、中、小)之間的實際關係,採樣點為台灣南部的兩個珊瑚礁。珊瑚礁恢復力主要與草食性動物(海膽)數量有關。而珊瑚礁恢復力或海膽數量,跟棲息地複雜性的關聯都較弱。海膽數量隨中尺度的棲息地複雜性而增加(<1米),但隨著大尺度複雜性的增加而減少(>1米),顯示海膽可能只依賴特定尺度的棲息地複雜性。第三章利用了生態模式,探討了珊瑚、草食性動物魚類和棲息地複雜性之間反饋作用。與第二章相反,棲息地複雜性對支持珊瑚礁恢復力至為重要。這是由於棲息地複雜性為生態系統中的結構遺產,較能在干擾中持續存留、為草食性動物提供微棲地,帶來珊瑚/珊瑚礁系統的恢複。在人類干擾下(富營養化和過度捕撈) ,棲息地複雜性對恢復力的正面影響更為重要,因為在此情況下珊瑚面臨與底棲藻類更激烈的競爭,草食性動物的增長也較為受限。總體而言,本文提出棲息地複雜性可以成為珊瑚礁恢復力的重要支撐,特別是當它增加草食性動物的微棲地和在被人類干擾的珊瑚礁系統中。
To reverse the global degradation of coral reefs, understanding what contributes to their capacity to recover from disturbance, defined as resilience, is fundamental. Habitat complexity contributes to recoveries by linking the reciprocal feedback between corals and herbivores. Coral skeletons enhance habitat complexity and create micro-habitats for herbivores, which in turn remove benthic algae and release space for further coral growth. With both empirical and modelling approaches, this thesis examines how this feedback matters for coral reef resilience under different circumstances: i) which of corals, herbivores and habitat complexity matter most for supporting resilience, ii) what size scale of habitat complexity can link the feedback between corals and herbivores, and iii) when does this linkage matter. In chapter 2, the empirical relationship among resilience, herbivores and habitat complexity at three size scales was examined in two major coral reefs in Taiwan. Resilience was mostly related to herbivore abundance, which consisted mainly of sea urchins and was weakly associated with habitat complexity. Abundance of sea urchins increased with habitat complexity at centimetre scale (i.e., < 1m) but decreased with that at meter scale, suggesting sea urchins prefer habitat complexity of specific size ranges. In chapter 3, a mathematical model capturing feedback between corals and herbivore fishes was constructed. In contrast to chapter 2, coral reef resilience showed distinct dependency on habitat complexity. This arose as habitat complexity represents structural legacy and persists to support herbivores and corals amid disturbances. This role of habitat complexity was more important under eutrophication and fishing conditions, but not so in pristine condition where both corals and herbivores are in better conditions. Overall, this thesis suggests that habitat complexity can be the key support for coral reef resilience, when it is a strong determinant for herbivore abundance, especially under anthropogenic disturbances.
Acknowledgement (i)
Chinese abstract (ii)
Abstract (iii)
List of figures (v)
List of tables (vi)
Chapter 1: General introduction (1)
Chapter 2: How is coral resilience related to sea urchin abundance and habitat complexity at three different size scales (5)
2.1. Introduction (6)
2.2. Material and method (10)
2.3. Result (14)
2.4. Discussion (15)
Chapter 3: Role of habitat complexity on coral reef resilience and during phase shift (26)
3.1. Introduction (27)
3.2. Material and method (30)
3.3. Result (37)
3.4. Discussion (40)
Chapter 4: General discussion (53)
References (56)
Appendix A(1-8) (73)
Appendix B(1-4) (82)
1. Alvarez-Filip, L., Dulvy, N. K., Gill, J. A., Cote, I. M., & Watkinson, A. R. (2009). Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proceedings of the Royal Society B: Biological Sciences, 276(1669), 3019-3025.
2. Alvarez-Filip, L., Dulvy, N. K., Côté, I. M., Watkinson, A. R., & Gill, J. A. (2011). Coral identity underpins architectural complexity on Caribbean reefs. Ecological Applications, 21(6), 2223-2231.
3. Alvarez-Filip, L., Gill, J. A., & Dulvy, N. K. (2011). Complex reef architecture supports more small-bodied fishes and longer food chains on Caribbean reefs. Ecosphere, 2(10).
4. Alvarez-Filip, L., Carricart-Ganivet, J. P., Horta-Puga, G., & Iglesias-Prieto, R. (2013). Shifts in coral-assemblage composition do not ensure persistence of reef functionality. Scientific Reports, 3(1).
5. Bak, R.P.M., & Nieuwland, G. (1995). Long-Term Change in Coral Communities Along Depth Gradients Over Leeward Reefs in the Netherlands Antilles. Bulletin of Marine Science, 56(2), 609-619.
6. Bellwood, D. R., Hughes, T. P., Folke, C., & Nyström, M. (2004). Confronting the coral reef crisis. Nature, 429(6994), 827-833.
7. Bellwood, D. R., Hughes, T. P., & Hoey, A. S. (2006). Sleeping Functional Group Drives Coral-Reef Recovery. Current Biology, 16(24), 2434-2439.
8. Berryman, A. A., Arce, M. L., & Hawkins, B. A. (2002). Population regulation, emergent properties, and a requiem for density dependence. Oikos, 99(3), 600-606.
9. Best, R. J., Stone, M. N., & Stachowicz, J. J. (2015). Predicting consequences of climate change for ecosystem functioning: variation across trophic levels, species and individuals. Diversity and Distributions, 21(12), 1364-1374.
10. Birkeland, C. (1989). The influence of echinoderms on coral reef communities. In M. Jangoux & J.M. Lawrence (Eds.), Echinoderm studies (pp. 1-79). Amsterdam: Balkema.
11. Blackwood, J. C., Hastings, A., & Mumby, P. J. (2011). A model-based approach to determine the long-term effects of multiple interacting stressors on coral reefs. Ecological Applications, 21(7), 2722-2733.
12. Bonin, M. C., Srinivasan, M., Almany, G. R., & Jones, G. P. (2008). Interactive effects of interspecific competition and microhabitat on early post-settlement survival in a coral reef fish. Coral Reefs, 28(1), 265-274.
13. Bozec, Y., Yakob, L., Bejarano, S., & Mumby, P. J. (2012). Reciprocal facilitation and non-linearity maintain habitat engineering on coral reefs. Oikos, 122(3), 428-440.
14. Bozec, Y., & Mumby, P. J. (2014). Synergistic impacts of global warming on the resilience of coral reefs. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1659), 20130267-20130267.
15. Brown, B. E., & S. (1990). Damage and recovery of coral reefs affected by El Niñ o related seawater warming in the Thousand Islands, Indonesia. Coral Reefs, 8(4), 163-170.
16. Bruno, J. F., & Selig, E. R. (2007). Regional Decline of Coral Cover in the Indo-Pacific: Timing, Extent, and Subregional Comparisons. PLoS ONE,2(8), e711.
17. Burnham, K. P., & Anderson, D. R. (2010). Model selection and multimodel inference: a practical information-theoretic approach. New York: Springer.
18. Byers, J. E., Cuddington, K., Jones, C. G., Talley, T. S., Hastings, A., Lambrinos, J. G., Jeffrey, A.C., & Wilson, W. G. (2006). Using ecosystem engineers to restore ecological systems. Trends in Ecology & Evolution, 21(9), 493-500.
19. Bythell, J., Hillis-Starr, Z., & Rogers, C. (2000). Local variability but landscape stability in coral reef communities following repeated hurricane impacts. Marine Ecology Progress Series, 204, 93-100.
20. Carleton, J.H., & Sammarco, P.W. (1987). Effects of substratum irregularity on success of coral settlement: quantification by comparative geomorphological techniques. Bulletin of Marine Science, 40(1), 85-98.
21. Carpenter, R. C. (1984). Predator and population density control of homing behavior in the Caribbean echinoid Diadema antillarum. Marine Biology, 82(1), 101-108.
22. Carpenter, R. C. (1986). Partitioning Herbivory and Its Effects on Coral Reef Algal Communities. Ecological Monographs, 56(4), 345-364.
23. Chabanet, P., Ralambondrainy, H., Amanieu, M., Faure, G., & Galzin, R. (1997). Relationships between coral reef substrata and fish. Coral Reefs,16(2), 93-102.
24. Cheal, A. J., Macneil, M. A., Cripps, E., Emslie, M. J., Jonker, M., Schaffelke, B., & Sweatman, H. (2010). Coral–macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef. Coral Reefs, 29(4), 1005-1015.
25. Chong-Seng, K. M., Graham, N. A., & Pratchett, M. S. (2014). Bottlenecks to coral recovery in the Seychelles. Coral Reefs, 33(2), 449-461.
26. Clemente, S., & Hernandez, J.C. (2007). Influence of wave exposure and habitat complexity in determining spatial variation of the sea urchin Diadema aff. Antillarum (Echinoidea: Diadematidae) populations and macroalgal cover (Canary Islands - Eastern Atlantic Ocean). Revista de Biología Tropical, 56(3), 229-254.
27. Colgan, M. W. (1987). Coral Reef Recovery on Guam (Micronesia) After Catastrophic Predation by Acanthaster Planci. Ecology, 68(6), 1592-1605.
28. Connell, J. H., Hughes, T. P., & Wallace, C. C. (1997). A 30-Year Study of Coral Abundance, Recruitment, and Disturbance at Several Scales in Space and Time. Ecological Monographs, 67(4), 461.
29. Dai, C. (1991). Reef environment and coral fauna of Southern Taiwan. Atoll Research Bulletin, 354, 1-24.
30. Darling, E. S., Alvarez-Filip, L., Oliver, T. A., Mcclanahan, T. R., & Côté, I. M. (2012). Evaluating life-history strategies of reef corals from species traits. Ecology Letters, 15(12), 1378-1386. doi:10.1111/j.1461-
31. Darling, E. S., Graham, N. A., Januchowski-Hartley, F. A., Nash, K. L., Pratchett, M. S., & Wilson, S. K. (2017). Relationships between structural complexity, coral traits, and reef fish assemblages. Coral Reefs, 36(2), 561-575.
32. DeAngelis, D. L., Post, W. M., & Travis, C. C. (1986). Positive feedback in natural systems. Berlin: Springer.
33. Death, G., Fabricius, K. E., Sweatman, H., & Puotinen, M. (2012). The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proceedings of the National Academy of Sciences, 109(44), 17995-17999.
34. Done, T. J. (1992). Phase shifts in coral reef communities and their ecological significance. Hydrobiologia, 247(1-3), 121-132.
35. Done, T.J., Ogden, J.C., Weibe, W.J., & Rosen, B.R. (1996). Biodiversity and ecosystem function of coral reefs. In: H.A. Mooney, J.H. Cushman, E. Medina, O.E. Sala & E.D. Schulze (Eds.), Functional roles of biodiversity: a global perspective (pp. 393–429). New York: John Wiley & Sons Ltd.
36. Dustan, P., Doherty, O., & Pardede, S. (2013). Digital Reef Rugosity Estimates Coral Reef Habitat Complexity. PLoS ONE, 8(2), e57386.
37. Ebert, T.A. (1983). Recruitment in echinoderms. In J.M. Lawrence & M. Jangoux (Eds.), Echinoderm Studies (pp. 169–203). Rotterdam: Balkema.
38. Edmunds, P. J., & Elahi, R. (2007). The Demographics Of A 15-Year Decline In Cover Of The Caribbean Reef Coralmontastraea Annularis. Ecological Monographs, 77(1), 3-18.
39. Edmunds, P. J., Nozawa, Y., & Villanueva, R. D. (2014). Refuges modulate coral recruitment in the Caribbean and the Pacific. Journal of Experimental Marine Biology and Ecology, 454, 78-84.
40. Emslie, M., Cheal, A., Sweatman, H., & Delean, S. (2008). Recovery from disturbance of coral and reef fish communities on the Great Barrier Reef, Australia. Marine Ecology Progress Series, 371, 177-190.
41. Emslie, M. J., Cheal, A. J., & Johns, K. A. (2014). Retention of Habitat Complexity Minimizes Disassembly of Reef Fish Communities following Disturbance: A Large-Scale Natural Experiment. PLoS ONE, 9(8), e105384.
42. Fabricius, K. E. (2005). Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Marine Pollution Bulletin, 50(2), 125-146.
43. Franklin, J.F., Lindenmayer, D., MacMahon, J.M., McKee, A., Magnuson, J., Perry, D.A., Waide, R. & Foster, D. (2000). Threads of continuity. Conservation Biology in Practice, 1, 9–16.
45. Fung, T., Seymour, R. M., & Johnson, C. R. (2011). Alternative stable states and phase shifts in coral reefs under anthropogenic stress. Ecology,92(4), 967-982.
Gallagher, C., & Doropoulos, C. (2016). Spatial refugia mediate juvenile coral survival during coral–predator interactions. Coral Reefs, 36(1), 51-61.
46. Gardner, T. A. (2003). Long-Term Region-Wide Declines in Caribbean Corals. Science, 301(5635), 958-960.
47. Glynn, P.W., & Manzello, D.P. (2015). Bioerosion and Coral Reef Growth: A Dynamic Balance. In C. Birkeland (Eds.), Coral Reefs in the Anthropocene (PP.67-97). Dordrecht: Springer.
48. Goreau, T., Mcclanahan, T., Hayes, R., & Strong, A. (2000). Conservation of Coral Reefs after the 1998 Global Bleaching Event. Conservation Biology,14(1), 5-15.
49. Graham, N. A., Nash, K. L., & Kool, J. T. (2011). Coral reef recovery dynamics in a changing world. Coral Reefs, 30(2), 283-294.
50.Graham, N. A., & Nash, K. L. (2013). The importance of structural complexity in coral reef ecosystems. Coral Reefs, 32(2), 315-326.
51. Graham, N. A., Jennings, S., Macneil, M. A., Mouillot, D., & Wilson, S. K. (2015). Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature, 518(7537), 94-97.
52. Green, A.L., & Bellwood, D.R. (2009). Monitoring functional groups of herbivorous fishes as indicators of coral reef resilience – A practical guide for coral reef managers in the Asia Pacific region. Gland, Switzerland: IUCN working group on climate change and coral reefs. IUCN.
53. Green, D., Edmunds, P., & Carpenter, R. (2008). Increasing relative abundance of Porites astreoides on Caribbean reefs mediated by an overall decline in coral cover. Marine Ecology Progress Series, 359, 1-10.
54. Grigg, R. (1994). Effects of sewage discharge, fishing pressure and habitat complexity on coral ecosystems and reef fishes in Hawaii. Marine Ecology Progress Series, 103, 25-34.
55. Gunderson, L. H. (2000). Ecological Resilience—In Theory and Application. Annual Review of Ecology and Systematics, 31(1), 425-439.
56. Guzman, H. M., & Cortés, J. (2006). Reef recovery 20 years after the 1982–1983 El Niño massive mortality. Marine Biology, 151(2), 401-411.
57. Halford, A., Cheal, A. J., Ryan, D., & Williams, D. M. (2004). Resilience To Large-Scale Disturbance In Coral And Fish Assemblages On The Great Barrier Reef. Ecology, 85(7), 1892-1905.
58. Harmelin-Vivien, M.L. (1994). The effects of storms and cyclones on coral reefs : a reivew. Journal of Coastal Research, 12, 211-231.
59. Hasting, A., Byers, J.E., Crooks, J.A., Cuddington, K., Jones, C.G., Lambrinos, J.G., Talley, T.S., & Wilson, W.G. (2007). Ecosystem engineering in space and time. Ecology letters, 10(2), 153-164.
60. Hay, M. E. (1991). Fish—Seaweed Interactions on Coral Reefs: Effects of Herbivorous Fishes and Adaptations of Their Prey. The Ecology of Fishes on Coral Reefs, 96-119.
61. Hereu, B., Zabala, M., Linares, C., & Sala, E. (2004). Temporal and spatial variability in settlement of the sea urchin Paracentrotus lividus in the NW Mediterranean. Marine Biology, 144(5), 1011-1018.
62. Hereu, B. (2005). Movement patterns of the sea urchin Paracentrotus lividus in a marine reserve and an unprotected area in the NW Mediterranean. Marine Ecology, 26(1), 54-62.
63. Hernández, J. C., Clemente, S., Sangil, C., & Brito, A. (2008). The key role of the sea urchin Diadema aff. antillarum in controlling macroalgae assemblages throughout the Canary Islands (eastern subtropical Atlantic): An spatio-temporal approach. Marine Environmental Research,66(2), 259-270.
64. Highsmith, R. C. (1981). Lime-boring algae in hermatypic coral skeletons. Journal of Experimental Marine Biology and Ecology, 55(2-3), 267-281.
65. Hixon, M. A., & Beets, J. P. (1993). Predation, Prey Refuges, and the Structure of Coral-Reef Fish Assemblages. Ecological Monographs, 63(1), 77-101.
66. Hoey, A. S., & Bellwood, D. R. (2011). Suppression of herbivory by macroalgal density: a critical feedback on coral reefs? Ecology Letters,14(3), 267-273.
67. Holling, C. S. (1973). Resilience and Stability of Ecological Systems. Annual Review of Ecology and Systematics, 4(1), 1-23.
68. Holling, C. S. (1994). Cross-Scale Morphology, Geometry, and Dynamics of Ecosystems. Ecosystem Management, 351-423.
69. Hughes, T. P., & Jackson, J. B. (1985). Population Dynamics and Life Histories of Foliaceous Corals. Ecological Monographs, 55(2), 141-166.
70. Hughes, T. P. (1994). Catastrophes, Phase Shifts, and Large-Scale Degradation of a Caribbean Coral Reef. Science, 265(5178), 1547-1551.
71. Hughes, T. P., & Tanner, J. E. (2000). Recruitment Failure, Life Histories, and Long-Term Decline of Caribbean Corals. Ecology, 81(8), 2250.
72. Hughes, T. P., Rodrigues, M. J., Bellwood, D. R., Ceccarelli, D., Hoegh-Guldberg, O., Mccook, L., . . . Willis, B. (2007). Phase Shifts, Herbivory, and the Resilience of Coral Reefs to Climate Change. Current Biology, 17(4), 360-365.
73. Hughes, T. P., Graham, N. A., Jackson, J. B., Mumby, P. J., & Steneck, R. S. (2010). Rising to the challenge of sustaining coral reef resilience. Trends in Ecology & Evolution, 25(11), 633-642.
74. Hughes, T. P., Linares, C., Dakos, V., Leemput, I. A., & Nes, E. H. (2013). Living dangerously on borrowed time during slow, unrecognized regime shifts. Trends in Ecology & Evolution, 28(3), 149-155.
75. Hughes, T.P., Barnes, M.L., Bellwood, D.R., Cinner, J.E., Cumming, G.S., Jackson, J.B.C., Kleypas, J., van de Leemput, I.A., Lough, J.M., Morrison, T.H., Palumbi, S.R., van Nes, E.H., & Scheffer, M. (2017). Coral reefs in the Anthropocene. Nature, in press
76. Idjadi, J. A., Lee, S. C., Bruno, J. F., Precht, W. F., Allen-Requa, L., & Edmunds, P. J. (2006). Rapid phase-shift reversal on a Jamaican coral reef. Coral Reefs, 25(2), 209-211.
77. Jones, C. G., Lawton, J. H., & Shachak, M. (1997). Positive and Negative Effects of Organisms as Physical Ecosystem Engineers. Ecology, 78(7), 1946.
78. Jones, G., McCormick, M., Srinivasan, M., & Eagle J. 2004. Coral decline threatens fish biodiversity in marine reserves. Proceedings of the National Academy of Sciences, 101, 8251–53.
79. Kéfi, S., Holmgren, M., & Scheffer, M. (2016). When can positive interactions cause alternative stable states in ecosystems? Functional Ecology, 30(1), 88-97.
80. Kerry, J. T., & Bellwood, D. R. (2011). The effect of coral morphology on shelter selection by coral reef fishes. Coral Reefs, 31(2), 415-424.
81. Kovalenko, K. E., Thomaz, S. M., & Warfe, D. M. (2011). Habitat complexity: approaches and future directions. Hydrobiologia, 685(1), 1-17.
82. Kidwell, S. M. (1986). Taphonomic Feedback in Miocene Assemblages: Testing the Role of Dead Hardparts in Benthic Communities. Palaios, 1(3), 239.
83. Larned, S. T. (1998). Nitrogen- versus phosphorus-limited growth and sources of nutrients for coral reef macroalgae. Marine Biology, 132(3), 409-421.
84. Lawrence, J. M. (2007). Edible Sea Urchins Biology and Ecology. Amsterdam: Academic Press.
85. Lawson, G.L., Kramer, D.L., & Hunte, W. (1999). Size-related habitat use and schooling behavior in two species of surgeonfish (Acanthurus bahianus and A. coeruleus) on a fringing reef in Barbados. Environmental Biology of Fishes, 54(1), 19-33.
86. Ledlie, M. H., Graham, N. A., Bythell, J. C., Wilson, S. K., Jennings, S., Polunin, N. V., & Hardcastle, J. (2007). Phase shifts and the role of herbivory in the resilience of coral reefs. Coral Reefs, 26(3), 641-653.
87. Lee, S. C. (2006). Habitat complexity and consumer-mediated positive feedbacks on a Caribbean coral reef. Oikos, 112(2), 442-447.
88. Leemput, I. A., Hughes, T. P., Nes, E. H., & Scheffer, M. (2016). Multiple feedbacks and the prevalence of alternate stable states on coral reefs. Coral Reefs, 35(3), 857-865.
89. Levitan, D. R., & Genovese, S. J. (1989). Substratum-dependent predator-prey dynamics: patch reefs as refuges from gastropod predation. Journal of Experimental Marine Biology and Ecology, 130(2), 111-118.
90. Loya, Y. (2004). The Coral Reefs of Eilat — Past, Present and Future: Three Decades of Coral Community Structure Studies. Coral Health and Disease, 1-34.
91. Lirman, D. (2003). A simulation model of the population dynamics of the branching coral Acropora palmata Effects of storm intensity and frequency. Ecological Modelling, 161(3), 169-182.
92. Macneil, M. A., Graham, N. A., Cinner, J. E., Wilson, S. K., Williams, I. D., Maina, J., Wilson, S.K., Williams, I.D., Maina, J., Newman, S., Friedlander, A.M., Jupiter, S., Polunin, N.V.C., & Mcclanahan, T. R. (2015). Recovery potential of the worlds coral reef fishes. Nature, 520(7547), 341-344.
93. Marubini, F., & Davies, P. S. (1996). Nitrate increases zooxanthellae population density and reduces skeletogenesis in corals. Marine Biology, 127(2), 319-328.
94. Marubini, F., & Atkinson, M. (1999). Effects of lowered pH and elevated nitrate on coral calcification. Marine Ecology Progress Series, 188, 117-121.
95. Mcclanahan, T. R., & Shafir, S. H. (1990). Causes and consequences of sea urchin abundance and diversity in Kenyan coral reef lagoons. Oecologia,83(3), 362-370.
96. Mcclanahan, T. R., Graham, N. A., Calnan, J. M., & Macneil, M. A. (2007). Toward Pristine Biomass: Reef Fish Recovery In Coral Reef Marine Protected Areas In Kenya. Ecological Applications, 17(4), 1055-1067.
97. Mcclanahan, T. R., Donner, S. D., Maynard, J. A., Macneil, M. A., Graham, N. A., Maina, J., . . . Woesik, R. V. (2012). Prioritizing Key Resilience Indicators to Support Coral Reef Management in a Changing Climate. PLoS ONE, 7(8), e42884.
98. Mcclanahan, T., & Graham, N. (2005). Recovery trajectories of coral reef fish assemblages within Kenyan marine protected areas. Marine Ecology Progress Series, 294, 241-248.
99. Mccook, L. J. (1999). Macroalgae, nutrients and phase shifts on coral reefs: scientific issues and management consequences for the Great Barrier Reef. Coral Reefs, 18(4), 357-367.
100. Miller, J., Muller, E., Rogers, C., Waara, R., Atkinson, A., Whelan, K. R., . . . Witcher, B. (2009). Coral disease following massive bleaching in 2005 causes 60% decline in coral cover on reefs in the US Virgin Islands. Coral Reefs, 28(4), 925-937.
101. Mouillot, D., Bellwood, D. R., Baraloto, C., Chave, J., Galzin, R., Harmelin-Vivien, M., Kulbicki, M., Lavergne, S., Lavorel, S., Mouquet, N., Paine, C.E.T., Renaud, J., & Thuiller, W. (2013). Rare Species Support Vulnerable Functions in High-Diversity Ecosystems. PLoS Biology, 11(5), 1001569.
102. Mumby, P. J. (2006). The Impact Of Exploiting Grazers (Scaridae) On The Dynamics Of Caribbean Coral Reefs. Ecological Applications, 16(2), 747-769.
103. Mumby, P. J., & Hastings, A. (2007). The impact of ecosystem connectivity on coral reef resilience. Journal of Applied Ecology, 45(3), 854-862.
104. Mumby, P., & Steneck, R. (2008). Coral reef management and conservation in light of rapidly evolving ecological paradigms. Trends in Ecology & Evolution, 23(10), 555-563.
105. Mumby, P. J., Steneck, R. S., & Hastings, A. (2012). Evidence for and against the existence of alternate attractors on coral reefs. Oikos, 122(4), 481-491.
106. Nash, K. L., Graham, N. A., Wilson, S. K., & Bellwood, D. R. (2012). Cross-scale Habitat Structure Drives Fish Body Size Distributions on Coral Reefs. Ecosystems, 16(3), 478-490.
107. Nash, K. L., Graham, N. A., Jennings, S., Wilson, S. K., & Bellwood, D. R. (2015). Herbivore cross-scale redundancy supports response diversity and promotes coral reef resilience. Journal of Applied Ecology, 53(3), 646-655.
108. Newman, M. J., Paredes, G. A., Sala, E., & Jackson, J. B. (2006). Structure of Caribbean coral reef communities across a large gradient of fish biomass. Ecology Letters, 9(11), 1216-1227.
109. Nozawa, Y. (2008). Micro-crevice structure enhances coral spat survivorship. Journal of Experimental Marine Biology and Ecology, 367(2), 127-130.
110. Nyström, M., Graham, N. A., Lokrantz, J., & Norström, A. V. (2008). Capturing the cornerstones of coral reef resilience: linking theory to practice. Coral Reefs, 27(4), 795-809.
111. Nyström, A.V, Nyström, M., Lokrantz, J., & Folke, C. (2009). Alternative states on coral reefs: beyond coral–macroalgal phase shifts. Marine Ecology Progress Series, 376, 295-306.
112. Odum, E. P. (1983). Basic ecology: fundamentals of ecology. Philadelphia, PA: Holt-Saunders International.
113. Ostrander, G. K., Armstrong, K. M., Knobbe, E. T., Gerace, D., & Scully, E. P. (2000). Rapid transition in the structure of a coral reef community: The effects of coral bleaching and physical disturbance. Proceedings of the National Academy of Sciences, 97(10), 5297-5302.
114. Pagès, J. F., Gera, A., Romero, J., Farina, S., Garcia-Rubies, A., Hereu, B., & Alcoverro, T. (2013). The Mediterranean Benthic Herbivores Show Diverse Responses to Extreme Storm Disturbances. PLoS ONE, 8(5). e62719
115. Pandolfi, J. M. (2010). The Paleoecology of Coral Reefs. Coral Reefs: An Ecosystem in Transition, 13-24.
116. Penin, L., Michonneau, F., Baird, A., Connolly, S., Pratchett, M., Kayal, M., & Adjeroud, M. (2010). Early post-settlement mortality and the structure of coral assemblages. Marine Ecology Progress Series, 408, 55-64.
117. Perry, C. T., Murphy, G. N., Kench, P. S., Edinger, E. N., Smithers, S. G., Steneck, R. S., & Mumby, P. J. (2014). Changing dynamics of Caribbean reef carbonate budgets: emergence of reef bioeroders as critical controls on present and future reef growth potential. Proceedings of the Royal Society B: Biological Sciences, 281(1796), 20142018-20142018.
118. Pratchett, M., Munday, P., Wilson, S., Graham, N., Cinner, J., Bellwood, D., . . . Mcclanahan, T. (2008). Effects Of Climate-Induced Coral Bleaching On Coral-Reef Fishes — Ecological And Economic Consequences. Oceanography and Marine Biology Oceanography and Marine Biology - An Annual Review, 251-296.
119. Purcell, S., & Bellwood, D. (2001). Spatial patterns of epilithic algal and detrital resources on a windward coral reef. Coral Reefs, 20(2), 117-125.
120. Rogers, A., Blanchard, J., & Mumby, P. (2014). Vulnerability of Coral Reef Fisheries to a Loss of Structural Complexity. Current Biology, 24(9), 1000-1005.
121. Rogers, C., & Miller, J. (2006). Permanent ‘phase shifts’ or reversible declines in coral cover? Lack of recovery of two coral reefs inSt. John, US Virgin Islands. Marine Ecology Progress Series, 306, 103-114.
122. Ruppert, E. E., & Barnes, R. D. (1991). Invertebrate zoology. Fort Worth: Saunders College Publ.
123. Sammarco, P. W. (1980). Diadema and its relationship to coral spat mortality: Grazing, competition, and biological disturbance. Journal of Experimental Marine Biology and Ecology, 45(2), 245-272.
124. Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., & Walker, B. (2001). Catastrophic shifts in ecosystems. Nature, 413(6856), 591-596.
125. Scheibling, R., & Hennigar, A. (1997). Recurrent outbreaks of disease in sea urchins Strongylocentrotus droebachiensis in Nova Scotia:evidence for a link with large-scale meteorologic and oceanographic events. Marine Ecology Progress Series, 152, 155-165.
126. Sheppard, C., Dixon, D. J., Gourlay, M., Sheppard, A., & Payet, R. (2005). Coral mortality increases wave energy reaching shores protected by reef flats: Examples from the Seychelles. Estuarine, Coastal and Shelf Science,64(2-3), 223-234.
127. Scoffin, T. P. (1993). The geological effects of hurricanes on coral reefs and the interpretation of storm deposits. Coral Reefs, 12(3-4), 203-221.
128. Shlesinger, T., & Loya, Y. (2016). Recruitment, mortality, and resilience potential of scleractinian corals at Eilat, Red Sea. Coral Reefs, 35(4), 1357-1368.
129. Steele, M.A. (1999). Effects of shelter and predation on reef fishes. Journal of Experimental Marine Biology and Ecology, 233(1), 65-79.
130. Steneck, R., Arnold, S., & Mumby, P. (2014). Experiment mimics fishing on parrotfish: insights on coral reef recovery and alternative attractors. Marine Ecology Progress Series, 506, 115-127.
131. Stewart, B. D., & Jones, G. P. (2001). Associations between the abundance of piscivorous fishes and their prey on coral reefs: implications for prey-fish mortality. Marine Biology, 138(2), 383-397.
132. Streit, R. P., Hoey, A. S., & Bellwood, D. R. (2015). Feeding characteristics reveal functional distinctions among browsing herbivorous fishes on coral reefs. Coral Reefs, 34(4), 1037-1047.
133. Suding, K. N., Gross, K. L., & Houseman, G. R. (2004). Alternative states and positive feedbacks in restoration ecology. Trends in Ecology & Evolution, 19(1), 46-53.
134. Szmant, A. M. (2002). Nutrient enrichment on coral reefs: Is it a major cause of coral reef decline? Estuaries, 25(4), 743-766.
135. Tokeshi, M., & Arakaki, S. (2011). Habitat complexity in aquatic systems: fractals and beyond. Hydrobiologia, 685(1), 27-47.
136. Tribollet, A., & Golubic, S. (2005). Cross-shelf differences in the pattern and pace of bioerosion of experimental carbonate substrates exposed for 3 years on the northern Great Barrier Reef, Australia. Coral Reefs,24(3), 422-434.
137. Tuya, F., Cisneros-Aguirre, J., Ortega-Borges, L., & Haroun, R. (2007). Bathymetric segregation of sea urchins on reefs of the Canarian Archipelago: Role of flow-induced forces. Estuarine, Coastal and Shelf Science, 73(3-4), 481-488.
138. Vergés, A., Vanderklift, M. A., Doropoulos, C., & Hyndes, G. A. (2011). Spatial Patterns in Herbivory on a Coral Reef Are Influenced by Structural Complexity but Not by Algal Traits. PLoS ONE, 6(2), e17115.
139. Vermeij, M. J., & Sandin, S. A. (2008). Density-Dependent Settlement And Mortality Structure The Earliest Life Phases Of A Coral Population. Ecology, 89(7), 1994-2004.
140. Walker, B., Holling, C. S., Carpenter, S. R., & Kinzig, A. P. (2004). Resilience, Adaptability and Transformability in Social-ecological Systems. Ecology and Society, 9(2).
141. Weil, E., Torres, J.L. & Ashton, M. (2005). Population characteristics of the sea urchin Diadema antillarum in La Parguera, Puerto Rico,17 years after the mass mortality event. Revista de Biología Tropical, 53,219–231.
142. Wilson, S. K., Graham, N. A., Pratchett, M. S., Jones, G. P., & Polunin, N. V. (2006). Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Global Change Biology, 12(11), 2220-2234.
143. Wilson, S. K., Graham, N. A., & Polunin, N. V. (2007). Appraisal of visual assessments of habitat complexity and benthic composition on coral reefs. Marine Biology, 151(3), 1069-1076.
144. Zuur, A. F. (2011). Mixed Effects Models and Extensions in Ecology with R. Springer.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top