跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/16 06:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖聆均
研究生(外文):Ling-Chun Liao
論文名稱:2007-2009年台北都會區大氣汞時序變化:濃度、機制與來源
論文名稱(外文):Temporal Variation of Atmospheric Mercury in Metropolitan Taipei during 2007-2009: Concentrations, Mechanisms, Sources and Implication
指導教授:曾鈞懋曾鈞懋引用關係
指導教授(外文):Chun-Mao Tseng
口試日期:2017-06-16
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:98
中文關鍵詞:大氣汞氣態元素汞長程傳輸後推氣流軌跡人為排放
外文關鍵詞:Atmospheric mercuryGaseous elemental mercury (GEM)Long-range transportBackward trajectoryAnthropogenic emissions
相關次數:
  • 被引用被引用:1
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究量測2007~2009年台北都會區大氣元素汞(Gaseous elemental mercury, GEM)濃度,並利用大氣汙染物(NOx, HC, CO, SO2, PM2.5, PM10, O3)與氣象資料(地表氣溫、相對濕度、日照強度)進行分析探討大氣汞來源及其控制因子。大氣汞時序變化是由實驗室自製之大氣汞自動分析儀(Automated Gaseous Mercury Analyzer, AGMA)現場量測,2007~2009年大氣汞平均濃度為4.4±1.3 ng m-3 (n=1096),濃度範圍為1.1~23.7 ng m-3,其結果顯示出獨特季節變化,大氣汞濃度在夏季最高,其次為冬季,濃度最低為春季與秋季,濃度較全球背景值高2~3倍。大氣汞濃度具有明顯日夜變化,呈現日高夜低的趨勢,最高值出現在中午至下午一點,最低值出現在半夜,此現象尤其是在夏季與秋季時特別顯著。利用主成分分析(principal component analysis, PCA)、相關性分析與氣流軌跡方法一同進行分析,顯示出在夏季時大氣汞變化與氣溫、日照強度及光化學產物(O3, PM10 and PM2.5)呈現正相關,白天升高日照強度與高氣溫導致大量汞由地表逸散至大氣,此外也會受到當地人為活動影響。在冬季大氣汞濃度與大氣汙染物(NOx, HC and CO),且所量測到之GEM與CO比值為0.0059±0.0009 ng m-3ppbv-1,此結果與美國MBO測站、沖繩HSO測站所觀測到中國大陸地區之亞洲長程傳輸的結果相當接近,證實了冬季東北季風吹拂帶來了中國大陸工業源大氣汞至台灣,而春季與秋季介於季節轉換時期,大氣汞境外來源複雜。台北大氣汞濃度亦會受到特殊天氣事件影響,莫拉克及芭瑪颱風期間所帶來之瞬間強降雨、強陣風會降低GEM濃度且無日夜變化現象,沙塵暴事件將內蒙古地區揚起的沙塵隨高空西風帶向東傳送,在傳輸過程會帶來懸浮微粒及高濃度GEM至台灣地區。整體而言,台北都會區大氣中具有高濃度大氣汞,對相鄰周邊海域為大氣汞逸散之來源。
The study of characterizing the source attributions and controlling factors of atmospheric mercury (Hg) in metropolitan Taipei, Taiwan was performed by analyzing gaseous elemental mercury (GEM) with major air pollutants (e.g., NOx, HC, CO, SO2, PM2.5, PM10, O3) and meteorological data (e.g, surface air temperature (SAT), Relative humidity (RH), Wind, solar radiation (Rad)) during 2007-2009. Temporal GEM concentration, measured by a lab-made Automated Gaseous Mercury Analyzer (AGMA), ranged from 1.1 to 23.7 ng m-3 with an average of 4.4±1.3 (n=1096) during 2007-2009. Seasonal variation of GEM was observed in this study, high in summer and winter, and lows in spring and autumn, which concentrations were 2-3 times higher than global background. Diurnal GEM variation was observed with a peak in the early afternoon and a minimum in the mid-night during warm seasons, especially in summer and autumn. Principal component analysis (PCA) and correlation analysis showed GEM concentration was positively correlated to ambient SAT, Rad and photochemical products (O3, PM10 and PM2.5) in summer. High Rad and SAT in daytime caused substantial mercury emission from ground surface to atmosphere, besides emissions from the local human activities. In winter, GEM concentration was positively related to primary air pollutants (NOx, HC and CO). Back trajectory analysis and GEM/CO ratio were used for identifying long-range transport. In winter the measured GEM/CO ratio of 0.0059±0.0009 ng m-3ppbv-1 was similar to the results from Mount Bachelor observatory, USA (MBO) and Hedo Station, Okinawa (HSO). It demonstrated that the prevailed northeast monsoon in winter brought continental- and industrial-derived GEM from the mainland China to Taiwan. Hg sources in spring and autumn were variably influenced by where air masses from during alternation of monsoon. Temporal variation of GEM in Taipei was also affected by episodic weather events. During the summer typhoons of Morakot and Parma, the decline GEM with less diurnal change was observed likely due to heavy rains, clouds and strong winds. During dust storm periods, atmospheric particles were brought with high GEM levels from Mongolia and Siberia region to Taiwan via long-range monsoon transport. Overall, high GEM levels in the metropolitan Taipei could be an atmospheric Hg emission source to adjacent areas.
誌 謝 II
摘 要 III
Abstract IV
圖目錄 VIII
表目錄 X
第一章 緒論 1
1.1 汞的來源與循環 1
1.2 汞在大氣中與其他化合物的反應 4
1.3 全球大氣汞濃度分布及人為排放趨勢 6
1.4 亞洲文獻回顧 10
1.5 研究動機與目的 17
第二章 研究材料與方法 18
2.1 研究區域 18
2.2 器材與方法 19
2.2.1 實驗器材簡介 19
2.2.2 實驗器材前處理 21
2.2.3 大氣元素汞採樣與分析方法 21
2.3 空氣污染物及氣象參數資料 24
2.4 氣流軌跡分析方法 25
2.5 主成分分析方法 28
第三章 大氣汞數據資料品保 30
3.1 檢量線測定 30
3.2 回收率測試 31
3.3 兩通道(Channel #1與Channel #2)數據比較 32
3.4 大氣汞自動分析儀性能測試 32
3.5 採樣點之代表性分析 34
第四章 結果 36
4.1 大氣元素汞之資料分布 36
4.2 大氣元素汞之季變化 38
4.3 大氣元素汞之日夜變化 39
4.4 氣象因子與氣態汙染物之變化 40
第五章 討論 44
5.1 大氣元素汞與氣象因子、氣態汙染物關係 44
5.1.1 統計相關分析 44
5.1.2 亞洲長程傳輸 — GEM/CO Ratio 52
5.2 大氣元素汞與氣流軌跡關係 55
5.3 特殊天氣事件分析 60
5.3.1颱風 60
5.3.2 沙塵暴 64
5.4 台北地區大氣元素汞來源推估 68
5.4.1 自然來源逸散(植被、水體、土壤)、柏油路面逸散 68
5.4.2 人為排放 71
5.4.3 乾溼沉降 72
5.4.4 境外長程傳輸 74
5.4.5 台北地區大氣汞各來源貢獻度初步估算 75
5.5 台北地區大氣元素汞與東亞其他地區比較 78
第六章 結論 80
參考文獻 82
附錄一 環保署古亭測站之氣象參數與空氣汙染物測定方法 92
附錄二 2009年台北都會地區大氣汞及其他環境參數之時序變化 94
附錄三 空氣品質指標(AQI)對照表 98
交通部中央氣象局網站:http://www.cwb.gov.tw/。

行政院環境保護署網站:http://www.epa.gov.tw/。

林清山(1988),多變項分析統計法。臺北市:臺灣東華。

林達偉(2014),鹿林山大氣汞分布與乾濕沉降特徵及來源推估。國立中央大學大氣物理研究所碩士論文。

陳安芃(2006),大台北地區大氣汞溼沉降之時序變化。國立臺灣大學海洋研究所碩士論文。

臺北市政府都市發展局(2016),臺北市都市計畫面積分配。

歐陽長風(2010),台灣氣態污染物背景值變化特徵與大氣傳輸機制之關係。國立中央大學化學研究所博士論文。

環保署(2009),98~99年度空氣品質監測儀器品保查核專案工作計畫:EPA-98-FA11-03-A145。

環保署(2013),固定污染源戴奧辛及重金屬排放調查及管制計畫。行政院環境保護署計畫成果:EPA-102-FA12-03-A096。

Almeida, M. D., Marins, R. V., Paraquetti, H. H., Bastos, W. R., and Lacerda, L. D. (2009). Mercury degassing from forested and open field soils in Rondônia, Western Amazon, Brazil. Chemosphere, 77(1), 60-66.

Amyot, M., Mierle, G., Lean, D., and Mc Queen, D. J. (1997). Effect of solar radiation on the formation of dissolved gaseous mercury in temperate lakes. Geochimica et Cosmochimica Acta, 61(5), 975-987.

Andersson, M. E., Gårdfeldt, K., Wängberg, I., and Strömberg, D. (2008). Determination of Henry’s law constant for elemental mercury. Chemosphere, 73(4), 587-592.

Calvert, J. G., and Lindberg, S. E. (2005). Mechanisms of mercury removal by O3 and OH in the atmosphere. Atmospheric Environment, 39(18), 3355-3367.

Canário, J., and Vale, C. (2004). Rapid release of mercury from intertidal sediments exposed to solar radiation: a field experiment. Environmental science & technology, 38(14), 3901-3907.
Cattell, R. B. (1966). The scree test for the number of factors. Multivariate behavioral research, 1(2), 245-276.

Chen, X., Balasubramanian, R., Zhu, Q., Behera, S. N., Bo, D., Huang, X., Xie H. and Cheng, J. (2016). Characteristics of atmospheric particulate mercury in size-fractionated particles during haze days in Shanghai. Atmospheric Environment, 131, 400-408.

Chou, C. C. K., Liu, S. C., Lin, C. Y., Shiu, C. J., and Chang, K. H. (2006). The trend of surface ozone in Taipei, Taiwan, and its causes: Implications for ozone control strategies. Atmospheric Environment, 40(21), 3898-3908.

Ci, Z. J., Zhang, X. S., Wang, Z. W., Niu, Z. C., Diao, X. Y., and Wang, S. W. (2011). Distribution and air-sea exchange of mercury (Hg) in the Yellow Sea. Atmospheric Chemistry and Physics, 11(6), 2881-2892.

Ci, Z., Wang, C., Wang, Z., and Zhang, X. (2015). Elemental mercury (Hg (0)) in air and surface waters of the Yellow Sea during late spring and late fall 2012: Concentration, spatial-temporal distribution and air/sea flux. Chemosphere, 119, 199-208.

Ci, Z., Peng, F., Xue, X., and Zhang, X. (2016). Air–surface exchange of gaseous mercury over permafrost soil: an investigation at a high-altitude (4700 m asl) and remote site in the central Qinghai–Tibet Plateau. Atmospheric Chemistry and Physics, 16(22), 14741-14754.

Conaway, C. H., Mason, R. P., Steding, D. J., & Flegal, A. R. (2005). Estimate of mercury emission from gasoline and diesel fuel consumption, San Francisco Bay area, California. Atmospheric Environment, 39(1), 101-105.

Draxler, R. R., and Hess, G. D. (1998). An overview of the HYSPLIT_4 modelling system for trajectories. Australian meteorological magazine, 47(4), 295-308.
Ebinghaus, R., Jennings, S. G., Schroeder, W. H., Berg, T., Donaghy, T., Guentzel, J., Kenny, C., Kock, H.H., Kvietkus, K., Landing, W., Mühleck, T., Munthe, J., Prestbo, E.M., Schneeberger, D., Slemr, F., Sommar, J., Urba, A., Wallschlager, D. and Xiao, Z. (1999). International field intercomparison measurements of atmospheric mercury species at Mace Head, Ireland. Atmospheric Environment, 33(18), 3063-3073.

Ebinghaus, R., Kock, H. H., Temme, C., Einax, J. W., Löwe, A. G., Richter, A., Burrows, J. P. and Schroeder, W. H. (2002). Antarctic springtime depletion of atmospheric mercury. Environmental Science & Technology, 36(6), 1238-1244.

Feng, X., Wang, S., Qiu, G., He, T., Li, G., Li, Z., and Shang, L. (2008). Total gaseous mercury exchange between water and air during cloudy weather conditions over Hongfeng Reservoir, Guizhou, China. Journal of Geophysical Research: Atmospheres, 113(D15).

Fishman, J., and Seiler, W. (1983). Correlative nature of ozone and carbon monoxide in the troposphere: Implications for the tropospheric ozone budget. Journal of Geophysical Research: Oceans, 88(C6), 3662-3670.

Fitzgerald, W. F., and Gill, G. A. (1979). Subnanogram determination of mercury by two-stage gold amalgamation and gas phase detection applied to atmospheric analysis. Analytical Chemistry, 51(11), 1714-1720.

Friedli, H. R., Radke, L. F., Prescott, R., Li, P., Woo, J. H., and Carmichael, G. R. (2004). Mercury in the atmosphere around Japan, Korea, and China as observed during the 2001 ACE‐Asia field campaign: Measurements, distributions, sources, and implications. Journal of Geophysical Research: Atmospheres, 109(D19).

Fu, X., Feng, X., Zhang, G., Xu, W., Li, X., Yao, H., Liang, P., Li, J., Sommar, J., Yin, R. and Liu, N. (2010). Mercury in the marine boundary layer and seawater of the South China Sea: Concentrations, sea/air flux, and implication for land outflow. Journal of Geophysical Research: Atmospheres, 115(D6).

Fu, X., Feng, X., Guo, Y., Meng, B., Yin, R., and Yao, H. (2013). Distribution and production of reactive mercury and dissolved gaseous mercury in surface waters and water/air mercury flux in reservoirs on Wujiang River, Southwest China. Journal of Geophysical Research: Atmospheres, 118(9), 3905-3917.

Fu, X. W., Zhang, H., Lin, C. J., Feng, X. B., Zhou, L. X., and Fang, S. X. (2015). Correlation slopes of GEM/CO, GEM/CO2, and GEM/CH4 and estimated mercury emissions in China, South Asia, the Indochinese Peninsula, and Central Asia derived from observations in northwestern and southwestern China. Atmospheric Chemistry and Physics, 15(2), 1013-1028.

Gårdfeldt, K., Sommar, J., Ferrara, R., Ceccarini, C., Lanzillotta, E., Munthe, J., Wangberg, I., Lindqvist, O., Pirrone, N., Sprovieri, F., Pesenti, E. and Stromberg, D. (2003). Evasion of mercury from coastal and open waters of the Atlantic Ocean and the Mediterranean Sea. Atmospheric Environment, 37, 73-84.
Gabriel, M. C., Williamson, D. G., Zhang, H., Brooks, S., and Lindberg, S. (2006). Diurnal and seasonal trends in total gaseous mercury flux from three urban ground surfaces. Atmospheric Environment, 40(23), 4269-4284.

Grigal, D. F. (2002). Inputs and outputs of mercury from terrestrial watersheds: a review. Environmental Reviews, 10(1), 1-39.

Gustin, M. S., Biester, H., and Kim, C. S. (2002). Investigation of the light-enhanced emission of mercury from naturally enriched substrates. Atmospheric Environment, 36(20), 3241-3254.

Han, Y. J., Kim, J. E., Kim, P. R., Kim, W. J., Yi, S. M., Seo, Y. S., and Kim, S. H. (2014). General trends of atmospheric mercury concentrations in urban and rural areas in Korea and characteristics of high-concentration events. Atmospheric Environment, 94, 754-764.

Holmes, C. D., Jacob, D. J., Corbitt, E. S., Mao, J., Yang, X., Talbot, R., and Slemr, F. (2010). Global atmospheric model for mercury including oxidation by bromine atoms. Atmospheric Chemistry and Physics, 10(24), 12037-12057.

Huber, M. L., Laesecke, A., and Friend, D. G. (2006). Correlation for the vapor pressure of mercury. Industrial & engineering chemistry research, 45(21), 7351-7361.

Jaffe, D., Prestbo, E., Swartzendruber, P., Weiss-Penzias, P., Kato, S., Takami, A., Hatakeyama, S. and Kajii, Y. (2005). Export of atmospheric mercury from Asia. Atmospheric Environment, 39(17), 3029-3038.

Jahnke, J. A. (2000). Continuous emission monitoring. John Wiley & Sons.
Jen, Y. H., Chen, W. H., Hung, C. H., Yuan, C. S., and Ie, I. R. (2014). Field measurement of total gaseous mercury and its correlation with meteorological parameters and criteria air pollutants at a coastal site of the Penghu Islands. Aerosol Air Qual. Res, 14, 364-375.

Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and psychological measurement, 20(1), 141-151.

Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31-36.

Kikuchi, T., Ikemoto, H., Takahashi, K., Hasome, H., and Ueda, H. (2013). Parameterizing soil emission and atmospheric oxidation-reduction in a model of the global biogeochemical cycle of mercury. Environmental science & technology, 47(21), 12266-12274.

Kim, J. P., and Fitzgerald, W. F. (1986). Sea-air partitioning of mercury in the equatorial Pacific Ocean. Science, 231, 1131-1134.

Kim, K. H., and Kim, M. Y. (2000). The effects of anthropogenic sources on temporal distribution characteristics of total gaseous mercury in Korea. Atmospheric Environment, 34(20), 3337-3347.

Lamborg, C. H., Fitzgerald, W. F., O’Donnell, J., and Torgersen, T. (2002). A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients. Geochimica et Cosmochimica Acta, 66(7), 1105-1118.

Liang, L., Horvat, M., & Danilchik, P. (1996). A novel analytical method for determination of picogram levels of total mercury in gasoline and other petroleum based products. Science of the total environment, 187(1), 57-64.

Lin, C. J., and Pehkonen, S. O. (1999). The chemistry of atmospheric mercury: a review. Atmospheric Environment, 33(13), 2067-2079.

Lindqvist, O., Johansson, K., Bringmark, L., Timm, B., Aastrup, M., Andersson, A., Hovsenius, G., Håkanson, L., Iverfeldt, Å. and Meili, M. (1991). Mercury in the Swedish environment—recent research on causes, consequences and corrective methods. Water, Air, and Soil Pollution, 55(1-2), xi-261.
Lindqvist, O., and Rodhe, H. (1985). Atmospheric mercury—a review. Tellus B, 37(3), 136-159.

Liss, P. S., and Slater, P. G. (1974). Flux of gases across the air-sea interface.
Liu, S., Nadim, F., Perkins, C., Carley, R. J., Hoag, G. E., Lin, Y., and Chen, L. (2002). Atmospheric mercury monitoring survey in Beijing, China. Chemosphere, 48(1), 97-107.

Mason, R. P., Choi, A. L., Fitzgerald, W. F., Hammerschmidt, C. R., Lamborg, C. H., Soerensen, A. L., and Sunderland, E. M. (2012). Mercury biogeochemical cycling in the ocean and policy implications. Environmental research, 119, 101-117.

Miller, G., and Spoolman, S. (2011). Living in the environment: principles, connections, and solutions. Nelson Education.

Morse, J. W., and Luther, G. W. (1999). Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochimica et Cosmochimica Acta, 63(19), 3373-3378.

Mukherjee, A. B., Melanen, M., Ekqvist, M., and Verta, M. (2000). Assessment of atmospheric mercury emissions in Finland. Science of the Total Environment, 259(1), 73-83.

Novelli, P. C., Masarie, K. A., and Lang, P. M. (1998). Distributions and recent changes of carbon monoxide in the lower troposphere. Journal of Geophysical Research: Atmospheres, 103(D15), 19015-19033.

Nriagu, J. O. (1989). A global assessment of natural sources of atmospheric trace metals. Nature, 338(6210), 47-49.

Nriagu, J. O., and Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333(6169), 134-139.

O’Driscoll, N. J., Poissant, L., Canario, J., and Lean, D. R. S. (2008). Dissolved gaseous mercury concentrations and mercury volatilization in a frozen freshwater fluvial lake. Environmental science & technology, 42(14), 5125-5130.


Obrist, D., Hallar, A. G., McCubbin, I., Stephens, B. B., and Rahn, T. (2008). Atmospheric mercury concentrations at Storm Peak Laboratory in the Rocky Mountains: Evidence for long-range transport from Asia, boundary layer contributions, and plant mercury uptake. Atmospheric Environment, 42(33), 7579-7589.

Pacyna, J. M., Pacyna, E. G., Steenhuisen, F., and Wilson, S. (2003). Mapping 1995 global anthropogenic emissions of mercury. Atmospheric Environment, 37, 109-117.

Pacyna, J. M., Travnikov, O., De Simone, F., Hedgecock, I. M., Sundseth, K., Pacyna, E. G., Steenhuisen, F., Pirrone, N., Munthe, J. and Kindbom, K. (2016). Current and future levels of mercury atmospheric pollution on a global scale. Atmospheric Chemistry and Physics, 16(19), 12495.
Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., Mason, R., Mukherjee, A. B., Stracher, G. B., Streets, D.G. and Telmer, K. (2010). Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics, 10(13), 5951-5964.

Poissant, L., Amyot, M., Pilote, M., and Lean, D. (2000). Mercury water− air exchange over the upper St. Lawrence River and Lake Ontario. Environmental Science & Technology, 34(15), 3069-3078.

Poissant, L., and Casimir, A. (1998). Water-air and soil-air exchange rate of total gaseous mercury measured at background sites. Atmospheric Environment, 32(5), 883-893.

Pundt, I., Pommereau, J. P., Chipperfield, M. P., Van Roozendael, M., and Goutail, F. (2002). Climatology of the stratospheric BrO vertical distribution by balloon‐borne UV–visible spectrometry. Journal of Geophysical Research: Atmospheres, 107(D24).

Qureshi, A., O’Driscoll, N. J., MacLeod, M., Neuhold, Y. M., and Hungerbühler, K. (2009). Photoreactions of mercury in surface ocean water: gross reaction kinetics and possible pathways. Environmental science & technology, 44(2), 644-649.

Rolfhus, K. R., and Fitzgerald, W. F. (2004). Mechanisms and temporal variability of dissolved gaseous mercury production in coastal seawater. Marine Chemistry, 90(1), 125-136.

Schroeder, W. H., and Munthe, J. (1998). Atmospheric mercury—an overview. Atmospheric Environment, 32(5), 809-822.

Seinfeld, J. H., Pandis, S. N., and Noone, K. (1998). Atmospheric chemistry and physics: from air pollution to climate change.

Sheu, G. R., and Mason, R. P. (2001). An examination of methods for the measurements of reactive gaseous mercury in the atmosphere. Environmental science & technology, 35(6), 1209-1216.

Simpson, W. R., Glasow, R. V., Riedel, K., Anderson, P., Ariya, P., Bottenheim, J., Burrows, J., Carpenter, L. J., Frie, U., Goodsite, M. E., Heard, D., Hutterli, M., Jacobi, H. W., Kaleschke, L., Neff, B., Plane, J., Platt, U., Richter, A., Roscoe, H., Sander, R., Shepson, P., Sodeau, J., Steffen, A., Wagner, T. and Wolff, E. (2007). Halogens and their role in polar boundary-layer ozone depletion. Atmospheric Chemistry and Physics, 7(16), 4375-4418.

Slemr, F., Schuster, G., and Seiler, W. (1985). Distribution, speciation, and budget of atmospheric mercury. Journal of atmospheric chemistry, 3(4), 407-434.

Steffen, A., Douglas, T., Amyot, M., Ariya, P., Aspmo, K., Berg, T., Bottenheim, J., Brooks, S., Cobbett, F., Dastoor, A., Dommergue, A., Ebinghaus, R., Ferrari, C., Gardfeldt, K., Goodsite, M. E., Lean, D., Poulain, A. J., Scherz, C., Skov, H., Sommar, J., and Temme, C. (2008). A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow. Atmospheric Chemistry and Physics, 8(6), 1445-1482.

Swartzendruber, P. C., Jaffe, D. A., Prestbo, E. M., Weiss‐Penzias, P., Selin, N. E., Park, R., Jacob, D. J., Strode, S., and Jaegle, L. (2006). Observations of reactive gaseous mercury in the free troposphere at the Mount Bachelor Observatory. Journal of Geophysical Research: Atmospheres, 111(D24).

Tan, H., He, J. L., Liang, L., Lazoff, S., Sommer, J., Xiao, Z. F., and Lindqvist, O. (2000). Atmospheric mercury deposition in Guizhou, China. Science of the Total Environment, 259(1), 223-230.

Thibodeaux, L. J. (1996). Environmental chemodynamics: Movement of chemicals in air, water, and soil (Vol. 110). John Wiley & Sons.
Tseng, C. M., Lamborg, C. H., and Fitzgerald, W. F. (2010). Development of a novel on-line flow injection mercury analyzer to determine gaseous elemental mercury over the northern South China Sea. Journal of Analytical Atomic Spectrometry, 25(4), 526-533.

Tseng, C. M., Liu, C. S., and Lamborg, C. (2012). Seasonal changes in gaseous elemental mercury in relation to monsoon cycling over the northern South China Sea. Atmospheric Chemistry and Physics, 12(16), 7341-7350.

Tseng, C. M., Lamborg, C. H., and Hsu, S. C. (2013). A unique seasonal pattern in dissolved elemental mercury in the South China Sea, a tropical and monsoon‐dominated marginal sea. Geophysical Research Letters, 40(1), 167-172.

UNEP (2013). Sources, Emissions, Releases and Environmental Transport. UNEP Chemicals Branch, Geneva, Switzerland, 42.

Valente, R. J., Shea, C., Humes, K. L., and Tanner, R. L. (2007). Atmospheric mercury in the Great Smoky Mountains compared to regional and global levels. Atmospheric Environment, 41(9), 1861-1873.

Vingarzan, R. (2004). A review of surface ozone background levels and trends. Atmospheric Environment, 38(21), 3431-3442.

Wängberg, I., Schmolke, S., Schager, P., Munthe, J., Ebinghaus, R., and Iverfeldt, Å. (2001). Estimates of air-sea exchange of mercury in the Baltic Sea. Atmospheric Environment, 35(32), 5477-5484.

Wang, S. X., Zhang, L., Li, G. H., Wu, Y., Hao, J. M., Pirrone, N., Sprovieri, F. and Ancora, M. P. (2010). Mercury emission and speciation of coal-fired power plants in China. Atmospheric Chemistry and Physics, 10(3), 1183-1192.

Wang, Z. W., Chen, Z. S., Ning, D., and Zhang, X. S. (2007). Gaseous elemental mercury concentration in atmosphere at urban and remote sites in China. Journal of Environmental Sciences, 19(2), 176-180.

Wanninkhof, R. (1992). Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research: Oceans, 97(C5), 7373-7382.

Weiss-Penzias, P., Jaffe, D., Swartzendruber, P., Hafner, W., Chand, D., and Prestbo, E. (2007). Quantifying Asian and biomass burning sources of mercury using the Hg/CO ratio in pollution plumes observed at the Mount Bachelor Observatory. Atmospheric Environment, 41(21), 4366-4379.

Zhang, Y., Jacob, D. J., Horowitz, H. M., Chen, L., Amos, H. M., Krabbenhoft, D. P., Slerm, F., Louis, V. L. S. and Sunderland, E. M. (2016). Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions. Proceedings of the National Academy of Sciences, 113(3), 526-531.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊