跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8e11:74e4:2207:41a8) 您好!臺灣時間:2025/01/15 18:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳沛祺
研究生(外文):Pei-Chi Chen
論文名稱:Kisspeptin-10 於輔助生殖技術中取代PMSG與hCG之可行性
論文名稱(外文):The feasibility of replacing PMSG/hCG with kisspeptin-10 in assisted reproduction technology
指導教授:邱智賢鍾德憲
口試日期:2017-06-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:動物科學技術學研究所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:69
中文關鍵詞:kisspeptin-10輔助生殖技術孕馬血清激性腺素/人類絨毛膜激性腺素
外文關鍵詞:kisspeptin-10ARTPMSG/hCG
相關次數:
  • 被引用被引用:0
  • 點閱點閱:601
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由下視丘、腦垂腺、性腺構成的HPG軸是控制動物的生殖系統的重要中樞,下視丘會藉由分泌促性腺激素釋放激素(GnRH)刺激腦垂腺分泌促黃體生成素(LH)與促濾泡成熟激素(FSH),腦垂腺分泌的激素會進一步影響下游性腺的發育與成熟,調控包括雌性與雄性的性內泌素生合成與配子的形成等生理功能。而輔助生殖技術(ART)就是透過調控HPG軸操作動物的胚或是配子的一項技術。畜牧業經常使用外源性激性腺素使動物發情同期化或是誘導排卵是ART的範疇之一。業界經常使用的外源性激性腺素除了HPG軸上的內泌素GnRH、LH、FSH與它們的類似物之外,孕馬血清激性腺素(PMSG/eCG)與人類絨毛膜激性腺素(hCG)也是經常使用的激素。PMSG與hCG被廣泛用於取代FSH與LH的使用,除了前者具有後者類似的生物活性之外,也有更長的體內半衰期,使用上更加方便與經濟,而因此受到業界的喜愛。然而,多次接受PMSG或hCG處理的動物會因為體內受到外源性內泌的素刺激而產生抗體,繼而對處理不敏感或無反應。此現象在豬、牛、羊中都有紀錄,顯示利用PMSG與hCG調控動物生殖週期的方法雖然有效但是並不永續。因此,發展出一套有別於傳統內泌素刺激法又能夠延長動物使用年限的生殖週期調控技術是目前重要的研究方向。
另外一方面,負責調控動物HPG軸上游的一群胜肽kisspeptin近年來受到注意,其中最小的生物活性片段kisspeptin-10是由十個氨基酸組成,研究發現kisspeptin能夠影響GnRH與LH/FSH的分泌,對於動物生殖系統的功能與發育具有重要的角色。此外,kisspeptin在物種之間的相似度非常高,顯示kisspeptin在跨物種間的應用有不容易產生抗體的優點。
為了探究kisspeptin-10能否於動物輔助生殖技術中取代PMSG與hCG的使用,我們以小鼠的超級排卵為試驗模型。利用9至12週齡的ICR母鼠進行取代PMSG或是hCG的試驗。在取代PMSG的試驗中,以迷你幫浦作為緩釋媒介,給予動物三種不同濃度的kisspeptin-10 (1, 10, 100 μg/100 μl) ;而取代hCG的試驗中則是透過單劑腹腔注射給予不同濃度之kisspeptin-10。紀錄不同處理之間的動物排卵率與排卵數,卵巢組織取下後透過石蠟包埋切片觀察不同處理組之間的差異。在取代PMSG的試驗中,經過kisspeptin-10處理的小鼠排卵率達到83%;而控制組與正控制組的排卵率分別是50%與100%。傳統的超級排卵方法得到最多的排卵數,而kisspeptin-10與控制組得到的平均排卵數相似。在取代hCG的試驗中,控制組的排卵率為20%,而低劑量的kisspeptin-10 (1 μg/100 μl) 排卵率為25%,中高劑量的kisspeptin-10 (10, 100 μg/100 μl) 沒有任何一隻動物排卵。為了更加確認單劑kisspeptin對於排卵的影響,我們延長了收卵的時間,從本來打完hCG之後13~14小時收卵改成18~20小時收卵。結果顯示控制組與kisspeptin-10高劑量組的小鼠排卵率相同,而排卵個數雖然kisspeptn-10的組別較少,但是於統計上與控制組沒有顯著差異。
綜合以上,此研究證明了經由皮下長時間給予kisspeptin-10能夠刺激小鼠的卵巢濾泡發育,發情同期化,而誘發排卵的數量又與一般正常週期的小鼠相似。單劑腹腔注射的kisspeptin-10相較於hCG則有延長排卵的效果,此部分的詳細機制仍需更多試驗得知。而透過皮下給予kisspeptin-10長時間刺激動物能有效地影響濾泡發育,將來可應用於動物的生殖週期調控以及生產管理。
Animal reproductive system is controlled by the hypothalamic-pituitary-gonadal axis (HPG axis). The hypothalamus secretes gonadotropin-releasing hormone (GnRH) and regulates the anterior pituitary gland to produce luteinizing hormone (LH) and follicle-stimulating hormone (FSH). The gonads produce estrogen and testosterone in response to FSH/LH. Assisted Reproductive Technologies (ART), which refers to the various procedures and techniques involving the handling of animals’ sperm, oocytes and embryos. ART in livestock widely use exogenous gonadotropins to alter the activity of HPG axis, include GnRH, LH, FSH, pregnant mare serum gonadotropin (PMSG/eCG), human chorionic gonadotropin (hCG) and their artificial analogs. Among these hormones, PMSG and hCG are the preferred alternatives than FSH and LH with longer half-lives and lower cost. However, animals received multiple PMSG/hCG treatment would become insensitive in response. The development of antibodies against PMSG/hCG was reported in heifers, gilts, sheep and goats, which implies that the PMSG/hCG treatment in animal industry may be useful in time but not sustainable. Therefore, to develop alternatives to replace conventional protocol that could prolong the use of animal while sustaining their reproductive ability is relatively important.
On the other hand, kisspeptin-10, which is the smallest functional kisspeptin peptides made up of ten amino acids, is a potential candidate to replace the conventional hormones with its role in reproductive physiology - the gatekeeper of gonadotropins. Kisspeptin stimulates the secretion of LH/FSH by regulating the activity of GnRH neurons. Moreover, kisspeptin is highly conserved among species, which reduce the chance of antibody development.
To investigate the feasibility of using kisspeptin-10 in replacing PMSG/hCG, we modified the conventional superovulation protocol on ICR mice. Female ICR mice between 9~12 weeks of age were used, and given different doses (1, 10, 100 μg/100 μl) of kisspeptin-10 through time-released Alzet® micro-osmotic pump (1 μl/hr) to substitute for PMSG; and a single injection of kisspeptin-10 at different level (1, 10, 100 μg/100 μl) to displace hCG. The percentage of ovulated mice and the number of ovulated oocytes were counted, and the ovaries were collected for further tissue examination. In the trial of replacing PMSG, the ovulation rate of kisspeptin-10 administrated mice was 83% (n=6) while the untreated group and the conventional protocol group were 50% and 100% (n=6). The conventional protocol group had highest average retrieved oocyte numbers, while the others were similar to the untreated control group. The trial of replacing hCG, the ovulation rate was 20% (n=10) in saline control group, and the low dose of kisspeptin-10 (1 μg/100 μl) was 25% (n=4), while the medium dose and high dose (10, 100 μg/100 μl) groups were 0% (n=4) and 0% (n=8). The conventional protocol group was 100% (n=8). In another trial, to confirm the effect of single dose kisspeptin-10 to ovulation, the oocyte retrieval time was prolonged from 13-14 hour to 18-20 hour. The ovulation rate and ovulated oocyte was similar between saline control group versus kisspeptin-10 (100 μg/100 μl) group (33%, n=6).
In conclusion, our study demonstrated the effect of long-term peripheral kisspeptin-10 administration on mice reproduction, which has a follicular stimulated potential and synchronizes the estrous cycle with normally ovulated oocyte number, while a single dose of kisspeptin-10 at higher levels seems to prolong the ovulation. The results indicate that the long-term stimulation of kisspeptin-10 could affect the follicular development, which could be a new strategy in livestock reproduction management after some further investigation.
Table of Contents
中文摘要 iv
Abstract vi
Table of Contents ix
List of Figures and Tables xi
1. Introduction 1
2. Literature Review 3
2.1 Assisted Reproductive Technology 3
2.1.1 Exogenous gonadotropins 3
2.1.2 ART using PMSG/hCG 5
2.1.3 Drawback of the use of PMSG/hCG 7
2.2 Kisspeptin in reproduction 9
2.2.1 Kisspeptin regulates HPG-axis 11
2.2.2 Kisspeptin triggers puberty and maintain fertility 14
2.2.3 The feedback loop of steroid hormones 17
2.2.4 The local effects of Kisspeptin in gonads 19
2.2.5 Kisspeptin’s prospect in ART 22
2.3 Sustained release techniques 25
2.4 Histology of mouse ovary and follicle development 27
3. Materials and Methods 32
3.1 Animals 32
3.2 Chemicals 32
3.3 Time-Release of kisspeptin-10 33
3.4 Experimental Design 33
3.4.1 PMSG replacement trial 33
3.4.2 hCG replacement trial 34
3.5 Tissue collection and histology assessment 36
3.6 Statistical analyses 36
4. Results 37
4.1 The Effect of Long-term Subcutaneously Release of Kisspeptin-10 in Substituting for PMSG. 38
4.2 The Effect of Using Single Intraperitoneal Injection of Kisspeptin-10 to replace hCG. 40
5. Discussion 43
5.1 The Effect of Long-term Subcutaneously Release of Kisspeptin-10 in Substituting for PMSG. 43
5.2 The Effect of Using Single Intraperitoneal Injection of Kisspeptin-10 to replace hCG. 46
6. Conclusion 50
7. Figures and Tables 51
8. Reference 59
Adachi S, Yamada S, Takatsu Y, Matsui H, Kinoshita M, Takase K, Sugiura H, Ohtaki T, Matsumoto H, Uenoyama Y, Tsukamura H, Inoue K, Maeda K. (2007). Involvement of an- teroventral periventricular metastin/kisspeptin neurons in estrogen positive feedback action on luteinizing hormone release in female rats. J Reprod Dev, 53:367-78.
Aparicio, S. A. (2005). Kisspeptins and GPR54—The new biology of the mammalian GnRH axis. Cell Metabolism,1(5), 293-296.
Bakker J, Pierman S, Gonzalez-Martinez D. (2010). Effects of aromatase mutation (ArKO) on the sexual differentiation of kisspeptin neuronal numbers and their activation by same versus opposite sex urinary pheromones. Horm Behav, 57:390-5.
Bevers, M. M., Dieleman, S. J., van Tol, H. T., Blankenstein, D. M., & van den Broek, J. (1989). Changes in pulsatile secretion patterns of LH, FSH, progesterone, androstenedione and oestradiol in cows after superovulation with PMSG. J Reprod Fertil, 87(2), 745-754.
Bodin, L., Drion, P. V., Remy, B., Brice, G., Cognie, Y., & Beckers, J. F. (1997). Anti-PMSG antibody levels in sheep subjected annually to oestrus synchronisation. Reprod Nutr Dev, 37(6), 651-660.
Bond JAPD and Smith JT. (2014). Kisspeptin and energy balance in reproduction. Reproduction, 147, r53-r63.
Caraty, A., Franceschini, I., & Hoffman, G. (2010). Kisspeptin and the preovulatory GnRH/LH surge in the ewe: basic aspects and potential applications in the control of ovulation. Journal of Neuroendocrinology.
Caraty, A., Lomet, D., Sébert, M. E., Guillaume, D., Beltramo, M., & Evans, N. P. (2013). Gonadotrophin-Releasing Hormone Release into the Hypophyseal Portal Blood of the Ewe Mirrors Both Pulsatile and Continuous Intravenous Infusion of Kisspeptin: An Insight into Kisspeptin''s Mechanism of Action. Journal of Neuroendocrinology,25(6), 537-546. doi:10.1111/jne.12030
Caraty, A., Smith, J. T., Lomet, D., Saïd, S. B., Morrissey, A., Cognie, J., Clarke, I. J. (2007). Kisspeptin Synchronizes Preovulatory Surges in Cyclical Ewes and Causes Ovulation in Seasonally Acyclic Ewes. Endocrinology,148(11), 5258-5267.
Castellano JM, Gaytan M, Roa J, Vigo E, Navarro VM, Bellido C, Dieguez C, Aguilar E, Sanchez-Criado JE, Pel- licer A, Pinilla L, Gaytan F, Tena-Sempere M. (2006). Expression of KiSS-1 in rat ovary: putative local regulator of ovulation? Endocrinology, 147:4852-62.
Cejudo Roman A, Pinto FM, Dorta I, Almeida TA, Hernandez M, Illanes M, Tena-Sempere M, Candenas L. (2012). Analysis of the expression of neurokinin B, kisspeptin, and their cognate receptors NK3R and KISS1R in the hu- man female genital tract. Fertil Steril, 97:1213-9.
Chan YM, Broder-Fingert S, Paraschos S, Lapatto R, Au M, Hughes V, Bianco SD, Min L, Plummer L, Cerrato F, De Guillebon A, Wu IH, Wahab F, Dwyer A, Kirsch S, Quinton R, Cheetham T, Ozata M, Ten S, Chanoine JP, Pitteloud N, Martin KA, Schiffmann R, Van der Kamp HJ, Nader S, Hall JE, Kaiser UB, Seminara SB. (2011). GnRH- deficient phenotypes in humans and mice with heterozygous variants in KISS1/Kiss1. J Clin Endocrinol Metab, 96:E1771-81.
Cheryl L. Scudamore. (2014). A Pratical Guide to the Histology of the Mouse. 1st edition, John Wiley & Sons, Ltd.
Clarke IJ, Smith JT, Caraty A, Goodman RL, Lehman MN. (2009). Kisspeptin and seasonality in sheep. Peptides, 30:154-63.
Clarkson J, Boon WC, Simpson ER, Herbison AE. (2009). Postnatal development of an estradiol-kisspeptin positive feedback mechanism implicated in puberty onset. Endocrinology, 150:3214-20.
Clarkson J, d’Anglemont de Tassigny X, Colledge WH, Caraty A, Herbison AE. (2009). Distribution of kisspeptin neurones in the adult female mouse brain. J Neuroendocrinol, 21: 673– 682.
Clarkson J, d’Anglemont de Tassigny X, Moreno AS, Col- ledge WH, Herbison AE. (2008). Kisspeptin-GPR54 signaling is essential for preovulatory gonadotropin-releasing hormone neuron activation and the luteinizing hormone surge. J Neu- rosci 28: 8691–8697.
Clarkson J, Herbison AE. (2006). Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology, 147: 5817–5825.
Cole HH, Hart GH. (1930). The potency of blood serum of mares in progressive stages of pregnancy in effecting the sexual maturity of the immature rat. American Journal of Physiology 93, 57–68.
Colledge WH. (2009). Kisspeptins and GnRH neuronal signalling. Trends Endocrinol Metab, 20: 115–121.
Couse JF, Yates MM, Walker VR, Korach KS. (2003). Characterization of the hypothalamic-pituitary-gonadal axis in estrogen receptor (ER) Null mice reveals hypergonadism and endocrine sex reversal in females lacking ER alpha but not ER beta. Mol Endocrinol, 17:1039-53.
Couse JF, Yates MM, Sanford R, Nyska A, Nilson JH, Korach KS. (2004). Formation of Cystic Ovarian Follicles Associated with Elevated Luteinizing Hormone Requires Estrogen Receptor-β. Endocrinology. 145 (10): 4693-4702.
d’Anglemont de Tassigny X, Fagg LA, Carlton MB, Colledge WH. (2008). Kisspeptin can stimulate gonadotropin-releasing hormone (GnRH) release by a direct action at GnRH nerve terminals. Endocrinology, 149:3926-32
de Roux, N., Genin, E., Carel, J.C., Matsuda, F., Chaussain, J.L., and Milgrom, E. (2003). Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A, 100, 10972-10976.
Decourt, C., Robert, V., Anger, K., Galibert, M., Madinier, J., Liu, X., Beltramo, M. (2016). A synthetic kisspeptin analog that triggers ovulation and advances puberty. Scientific Reports,6, 26908.
Dhillo, W. S., Chaudhri, O. B., Patterson, M., Thompson, E. L., Murphy, K. G., Badman, M. K.,Bloom, S. R. (2005). Kisspeptin-54 stimulates the hypothalamic-pituitary gonadal axis in human males. J Clin Endocrinol Metab, 90(12), 6609-6615.
Dong, G., Guo, Y., Cao, H., Zhou, T., Zhou, Z., Sha, J., Guo, X., and Zhu, H. (2014). Long-term effects of repeated superovulation on ovarian structure and function in rhesus monkeys. Fertil Steril, 102, 1452-1457 e1451.
Dorfman MD, Garcia-Rudaz C, Alderman Z, Kerr B, Lomniczi A, Dissen GA, Castellano JM, Garcia-Galiano D, Gaytan F, Xu B, Tena-Sempere M, Ojeda SR. (2014). Loss of Ntrk2/Kiss1r signaling in oocytes causes premature ovarian failure. Endocrinology, 155:3098-111.
Dungan HM, Gottsch ML, Zeng H, Gragerov A, Berg- mann JE, Vassilatis DK, Clifton DK, Steiner RA. (2007). The role of kisspeptin-GPR54 signaling in the tonic regulation and surge release of gonadotropin-releasing hormone/luteinizing hormone. J Neurosci, 27:12088-95.
El-Mestrah, M., Castle, P.E., Borosa, A. and Kan, F.W.K. (2002) Subcellular distribution of ZP1, ZP2, and ZP3 glycoproteins during folliculogenesis and demonstration of their topographical disposition within the zona matrix of mouse ovarian oocytes. Biology of Reproduction 66, 866–876.
Fernandois, E Na, F Cuevas, G Cruz, H E Lara, and A H Paredes. (2016). Kisspeptin is involved in ovarian follicular development during aging in rats. J Endocrinol. 228 (3) 161-170
Fowler RE, Edwards RG. (1957). Induction of superovulation and pregnancy in mature mice by gonadotrophins. J Endocrinol, 15:374– 384.
Franceschini I, Lomet D, Cateau M, Delsol G,
Tillet Y, Caraty A. (2006). Kisspeptin immune-reactive
cells of the ovine preoptic area and arcuate nucleus co-express estrogen receptor alpha. Neurosci Lett, 401: 225–230. 

Funes, S., Hedrick, J. A., Vassileva, G., Markowitz, L., Abbondanzo, S., Golovko, A., Gustafson, E. L. (2003). The KiSS-1 receptor GPR54 is essential for the development of the murine reproductive system. Biochemical and Biophysical Research Communications,312(4), 1357-1363.
Gaytan F, Gaytan M, Castellano JM, Romero M, Roa J, Aparicio B, Garrido N, Sanchez-Criado JE, Millar RP, Pellicer A, Fraser HM, Tena-Sempere M. (2009). KiSS-1 in the mammalian ovary: distribution of kisspeptin in human and marmoset and alterations in KiSS-1 mRNA levels in a rat model of ovulatory dysfunction. Am J Physiol Endocrinol Metab, 296:E520-31.
Gaytan F, Garcia-Galiano D, Dorfman MD, Manfredi-Lozano M, Castellano JM, Dissen GA, Ojeda SR, Tena Sempere M. (2014). Kisspeptin receptor haplo-insufficiency causes premature ovarian failure despite preserved gonadotropin secretion. Endocrinology, 155:3088-97.
Giordano, J. O., Wiltbank, M. C., & Fricke, P. M. (2012). Humoral immune response in lactating dairy cows after repeated exposure to human chorionic gonadotropin. Theriogenology, 78(1), 218-224.
Gonzalez, A., Wang, H., Carruthers, T. D., Murphy, B. D., & Mapletoft, R. J. (1994). Superovulation in the cow with pregnant mare serum gonadotrophin: effects of dose and antipregnant mare serum gonadotrophin serum. Can Vet J, 35(3), 158-162.
Goto, Y., Endo, N., Nagai, K., Ohkura, S., Wakabayashi, Y., Tanaka, A., Tanaka, T. (2014). Ovarian and Hormonal Responses to Follicular Phase Administration of Investigational Metastin/Kisspeptin Analog, TAK-683, in Goats. Reproduction in Domestic Animals, 49(2), 338-342.
Gottsch, M. L., Cunningham, M. J., Smith, J. T., Popa, S. M., Acohido, B. V., Crowley, W. F., Steiner, R. A. (2004). A Role for Kisspeptins in the Regulation of Gonadotropin Secretion in the Mouse. Endocrinology,145(9), 4073-4077.
Gottsch ML, Clifton DK, Steiner RA. (2009). From KISS1 to kisspeptins: an historical perspective and suggested nomenclature. Peptides, 30:49.
Greenwald, G.S. and Rothchild, I. (1968) Formation and maintenance of Corpus lutea in laboratory animals. Journal of Animal Science 27, 139–161.
Guerriero KA, Keen KL, Millar RP, Terasawa E. (2012). Developmental changes in GnRH release in response to kisspeptin agonist and antagonist in female rhesus monkeys (Macaca mulatta): implication for the mechanism of puberty. Endocrinology, 153:825-36.
Hale G, Rebello P, Brettman LR, Fegan C, Kennedy B, Kimby E, et al. (2004). Blood concentrations of alemtuzumab and antiglobulin responses in patients with chronic lymphocytic leukemia following intravenous or subcutaneous routes of administration. Blood., 104(4):948–55. 

Hashizume, T., Saito, H., Sawada, T., Yaegashi, T., Ezzat, A. A., Sawai, K., & Yamashita, T. (2010). Characteristics of stimulation of gonadotropin secretion by kisspeptin-10 in female goats. Animal Reproduction Science,118(1), 37-41.
Herbison AE, de Tassigny X, Doran J, Colledge WH. (2010). Distribution and postnatal development of Gpr54 gene expression in mouse brain and gonadotropin-releasing hormone neurons. Endocrinology, 151:312-21.
Herbison AE, Theodosis DT. (1992). Immunocytochemical identification of oestrogen receptors in preoptic neurones containing calcitonin gene-related peptide in the male and female rat. Neuroendocrinology, 56:761-4.
Hrabovszky E, Ciofi P, Vida B, Horvath MC, Keller E, Caraty A, Bloom SR, Ghatei MA, Dhillo WS, Liposits Z, Kallo I. (2010). The kisspeptin system of the human hypothalamus: sexual dimorphism and relationship with gonadotropin-releasing hormone and neurokinin B neurons. Eur J Neurosci, 31:1984-98.
Hrabovszky E, Molnar CS, Sipos MT, Vida B, Ciofi P, Borsay BA, Sarkadi L, Herczeg L, Bloom SR, Ghatei MA, Dhillo WS, Kallo I, Liposits Z. (2011). Sexual dimorphism of kisspeptin and neurokinin B immunoreactive neurons in the infundibular nucleus of aged men and women. Front Endocrinol (Lausanne), 2:80.
Hsu MC, Wang JY, Lee YJ, Jong DS, Tsui KH, Chiu CH. (2014). Kisspeptin modulates fertilization capacity of mouse spermatozoa. Reproduction, 147:835-45.
Irfan S, Ehmcke J, Wahab F, Shahab M, Schlatt S. (2014). Intra-testicular action of kisspeptin in rhesus monkey (Macaca mulatta). Andrologia, 46:610-7.
Irwig MS, Fraley GS, Smith JT, Acohido BV, Popa SM, Cunningham MJ, Gottsch ML, Clifton DK, Steiner RA. (2004). Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat. Neuroendocrinology, 80:264-72. 

Jainudeen, M.R., H. Wahid and E.S.E. Hafez. (2000). Sheep and goats in reproduction in farm animals. Lippincott Williams and Wilkins, Philadephia, USA, ISBN: 0683305778 pp:172-181.
Jayasena CN, Abbara A, Comninos AN, Nijher GM, Christopoulos G, Narayanaswamy S, Izzi-Engbeaya C, Sridharan M, Mason AJ, Warwick J, Ashby D, Ghatei MA, Bloom SR, Carby A, Trew GH, Dhillo WS. (2014). Kisspeptin-54 triggers egg maturation in women undergoing in vitro fertilization. J Clin Invest, 124:3667-77.
Kauffman AS, Gottsch ML, Roa J, Byquist AC, Crown A, Clifton DK, Hoffman GE, Steiner RA, Tena-Sempere M. (2007). Sexual differentiation of Kiss1 gene expression in the brain of the rat. Endocrinology, 148:1774-83.
Kent, H.A. (1960) Polyovular follicles and multinucleate ova in the ovaries of young mice. Anatomical Record 137, 521–524.

Kinoshita M, Tsukamura H, Adachi S, Matsui H, Uenoyama Y, Iwata K, Yamada S, Inoue K, Ohtaki T, Matsumoto H, Maeda K. (2005). Involvement of central metastin in the regulation of preovulatory luteinizing hormone surge and estrous cyclicity in female rats. Endocrinology, 146:4431-6.
Kotani, M., Detheux, M., Vandenbogaerde, A., Communi, D., Vanderwinden, J., Poul, E. L., Parmentier, M. (2001). The Metastasis Suppressor Gene KiSS-1 Encodes Kisspeptins, the Natural Ligands of the Orphan G Protein-coupled Receptor GPR54. Journal of Biological Chemistry,276(37), 34631-34636.
Kusina, N. T., Tarwirei, Hamudikuwanda, H., Agumba, G., & Mukwena, J. (2000). A comparison of the effects of progesterone sponges and ear implants, PGF2alpha, and their combination on efficacy of estrus synchronization and fertility of Mashona goat does. Theriogenology, 53(8), 1567-1580.
Lee JH, Miele ME, Hicks DJ, Phillips KK, Trent JM, Weissman BE, Welch DR. (1996). KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst, 88:1731-7
Lee, S., Kang, D.-W., Hudgins-Spivey, S., Krust, A., Lee, E.-Y., Koo, Y. Ko, C. (2009). Theca-Specific Estrogen Receptor-α Knockout Mice Lose Fertility Prematurely. Endocrinology, 150(8), 3855–3862.
Li, Q., Roa, A., Clarke, I. J., & Smith, J. T. (2012). Seasonal Variation in the Gonadotropin-Releasing Hormone Response to Kisspeptin in Sheep: Possible Kisspeptin Regulation of the Kisspeptin Receptor. Neuroendocrinology,96(3), 212-221.
Liu X, Lee K, Herbison AE. (2008). Kisspeptin excites gonadotropin-releasing hormone neurons through a phospholipase C/calcium-dependent pathway regulating multiple ion channels. Endocrinology, 149:4605-14 

Ludwig, M., Felberbaum, R. E., Diedrich, K., & Lunenfeld, B. (2011). Ovarian stimulation: from basic science to clinical application. Reprod Biomed Online, 22 Suppl 1, S3-16.
Macklon NS, Stouffer RL, Giudice LC, Fauser BC. (2006). The science behind 25 years of ovarian stimulation for in vitro fertilization. Endocr Rev, 27:170-207.
Mapletoft, R. J., Bennett-Steward, K., and Adams, G. P. (2002). Recent advances in the superovulation of cattle. Reprod. Nutr. Dev. 42, 601–611.
Mara, H. R., Atis M, and Rochelle L. G. (2012). Comparative Anatomy and Histology. Elsevier Inc.
Martemucci, G., D''Alessandro, A., Toteda, F., Facciolongo, A. M., & Gambacorta, M. (1995). Embryo production and endocrine response in ewes superovulated with PMSG, with or without monoclonal anti-PMSG administered at different times. Theriogenology, 44(5), 691-703.
Matsui, H., Takatsu, Y., Kumano, S., Matsumoto, H., and Ohtaki, T. (2004). Peripheral administration of metastin induces marked gonadotropin release and ovulation in the rat. Biochem Biophys Res Commun, 320, 383-388.
Mazer C. (1946). Diagnosis and Treatment of Menstrual Disorders and Sterility. Paul B. Hoeber, New York.
Messager, S., Chatzidaki, E.E., Ma, D., Hendrick, A.G., Zahn, D., Dixon, J., Thresher, R.R., Malinge, I., Lomet, D., Carlton, M.B., et al. (2005). Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci U S A, 102, 1761-1766.
Muir, A.I., Chamberlain, L., Elshourbagy, N.A., Michalovich, D., Moore, D.J., Calamari, A., Szekeres, P.G., Sarau, H.M., Chambers, J.K., Murdock, P., et al. (2001). AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J Biol Chem, 276, 28969-28975.
Myers, M., Britt, K.L., Wreford, N.G.M. et al. (2004) Methods for quantifying follicles within the mouse ovary. Reproduction Research 127, 569–580.
Navarro VM, Castellano JM, Fernandez-Fernandez R, Barreiro ML, Roa J, Sanchez-Criado JE, Aguilar E, Dieguez C, Pinilla L, Tena-Sempere M. (2004). Developmental and hormonally regulated messenger ribonucleic acid expression of KiSS-1 and its putative receptor, GPR54, in rat hypothalamus and potent luteinizing hormone-releasing activity of KiSS-1 peptide. Endocrinology, 145: 4565– 4574.
Navarro VM, Castellano JM, Fernandez-Fernandez R, Tovar S, Roa J, Mayen A, Nogueiras R, Vazquez MJ, Barreiro ML, Magni P, Aguilar E, Dieguez C, Pinilla L, Tena-Sempere M. (2005). Characterization of the potent luteinizing hormone-releasing activity of KiSS-1 peptide, the natural ligand of GPR54. Endocrinology, 146:156-63.
Novaira HJ, Ng Y, Wolfe A, Radovick S. (2009). Kisspeptin increases GnRH mRNA expression and secretion in GnRH secreting neuronal cell lines. Mol Cell Endocrinol, 311:126- 34.
Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, Terao Y, Kumano S, Takatsu Y, Masuda Y, Ishibashi Y, Watanabe T, Asada M, Yamada T, Suenaga M, Kitada C, Usuki S, Kurokawa T, Onda H, Nishimura O, Fujino M. (2001). Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature, 411:613-7. 

Okamura, H., Yamamura, T., & Wakabayashi, Y. (2013). Kisspeptin as a master player in the central control of reproduction in mammals: An overview of kisspeptin research in domestic animals. Animal Science Journal, 84, 369-381.
Ostergaard E. (1942). Antigonadotrophic Substances. Munksgaard, Copenhagen, Denmark.
Park, S. J., Kim, T. S., Kim, J. M., Chang, K. T., Lee, H. S., & Lee, D. S. (2015). Repeated Superovulation via PMSG/hCG Administration Induces 2-Cys Peroxiredoxins Expression and Overoxidation in the Reproductive Tracts of Female Mice. Mol Cells, 38(12), 1071-1078.
Pintado, B., Gutierrez-Adan, A., & Perez Llano, B. (1998). Superovulatory response of Murciana goats to treatments based on PMSG/Anti-PMSG or combined FSH/PMSG administration. Theriogenology, 50(3), 357-364.
Pinto FM, Cejudo-Roman A, Ravina CG, Fernandez-San-chez M, Martin-Lozano D, Illanes M, Tena-Sempere M, Candenas ML. (2012). Characterization of the kisspeptin system in human spermatozoa. Int J Androl, 35:63-73.
Rahman ANMA, Abdullah RB and Wan-Khadijah WE. (2008). Estrus synchronization and superovulation in goats: a review. J. Biol. Sci., 8 (7):1129-1137.
Revel FG, Saboureau M, Masson-Pevet M, Pevet P, Mikkelsen JD, Simonneaux V. (2006). Kisspeptin mediates the photo- periodic control of reproduction in hamsters. Curr Biol, 16:1730-5.
Revel FG, Ansel L, Klosen P, Saboureau M, Pevet P, Mikkelsen JD, Simonneaux V. (2007). Kisspeptin: a key link to seasonal breeding. Rev Endocr Metab Disord, 8:57-65.
Restuccia, D. F., Hynx, D., & Hemmings, B. A. (2012). Loss of PKBβ/Akt2 predisposes mice to ovarian cyst formation and increases the severity of polycystic ovary formation in vivo. Disease Models & Mechanisms, 5(3), 403–411.
Richter, W. F., Bhansali, S. G., & Morris, M. E. (2012). Mechanistic Determinants of Biotherapeutics Absorption Following SC Administration. The AAPS Journal, 14(3), 559–570. http://doi.org/10.1208/s12248-012-9367-0
Rometo AM, Krajewski SJ, Voytko ML, Rance NE. (2007). Hypertrophy and increased kisspeptin gene expression in the hypothalamic infundibular nucleus of postmenopausal women and ovariectomized monkeys. J Clin Endocrinol Metab 92: 2744–2750.
Sébert, M., Lomet, D., Saïd, S. B., Monget, P., Briant, C., Scaramuzzi, R., & Caraty, A. (2010). Insights into the mechanism by which kisspeptin stimulates a preovulatory LH surge and ovulation in seasonally acyclic ewes: Potential role of estradiol. Domestic Animal Endocrinology,38(4), 289-298.
Seminara, S.B., Messager, S., Chatzidaki, E.E., Thresher, R.R., Acierno, J.S., Jr., Shagoury, J.K., Bo-Abbas, Y., Kuohung, W., Schwinof, K.M., Hendrick, A.G., et al. (2003). The GPR54 gene as a regulator of puberty. N Engl J Med 349, 1614-1627.
Shahab M, Mastronardi C, Seminara SB, Crowley WF,
Ojeda SR, Plant TM. (2005). Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proc Natl Acad Sci U S A, 102:2129-34.
Smith JT, Popa SM, Clifton DK, Hoffman GE, Steiner RA. (2006). Kiss1 neurons in the forebrain as central processors for generating the preovulatory luteinizing hormone surge. J Neurosci, 26:6687-94.
Smith JT, Clay CM, Caraty A, Clarke IJ. (2007). KiSS-1 messenger ribonucleic acid expression in the hypothalamus of the ewe is regulated by sex steroids and season. Endocrinology, 148: 1150 –1157.
Supersaxo A, Hein WR, Steffen H. Effect of molecular weight on the lymphatic absorption of water-soluble com- pounds following subcutaneous administration. Pharm Res. 1990;7(2):167–9. 

Szendro, Z., Szendro, K., Zotte, A. D. (2012). Management of reproduction on small, medium and large rabbit farms: a review. Asian-Australas J Anim Sci, 25(5), 738-748.
Takase K, Uenoyama Y, Inoue N, Matsui H, Yamada S, Shimizu M, Homma T, Tomikawa J, Kanda S, Matsumoto H, Oka Y, Tsukamura H, Maeda KI. (2009). Possible role of oestrogen in pubertal increase of Kiss1/kisspeptin expression in discrete hypothalamic areas of female rats. J Neuroendocrinol, 21: 527–537.
Tanaka, T., Ohkura, S., Wakabayashi, Y., Kuroiwa, T., Nagai, K., Endo, N., Okamura, H. (2013). Differential Effects of Continuous Exposure to the Investigational Metastin/Kisspeptin Analog TAK-683 on Pulsatile and Surge Mode Secretion of Luteinizing Hormone in Ovariectomized Goats. Journal of Reproduction and Development,59(6), 563-568.
Tang L, Persky AM, Hochhaus G, Meibohm B. (2004). Pharmacokinetic aspects of biotechnology products. J Pharm Sci., 93(9):2184– 204. 

Teles MG, Bianco SD, Brito VN, Trarbach EB, Kuohung W, Xu S, Seminara SB, Mendonca BB, Kaiser UB, Latronico AC. (2008). A GPR54-activating mutation in a patient with central precocious puberty. N Engl J Med, 358:709- 15.
Terao Y, Kumano S, Takatsu Y, Hattori M, Nishimura A, Ohtaki T, Shintani Y. (2004). Expression of KiSS-1, a metastasis suppressor gene, in trophoblast giant cells of the rat placenta. Biochim Biophys Acta, 1678:102-10.
Tomikawa J, Uenoyama Y, Ozawa M, Fukanuma T, Takase K, Goto T, Abe H, Ieda N, Minabe S, Deura C, Inoue N, Sanbo M, Tomita K, Hirabayashi M, Tanaka S, Imamura T, Okamura H, Maeda K, Tsukamura H. (2012). Epigenetic regulation of Kiss1 gene expression mediating estrogen-positive feedback action in the mouse brain. Proc Natl Acad Sci U S A, 109:E1294-301.
Topaloglu AK, Tello JA, Kotan LD, Ozbek MN, Yilmaz MB, Erdogan S, Gurbuz F, Temiz F, Millar RP, Yuksel B. (2012). Inactivating KISS1 mutation and hypogonadotropic hypogonadism. N Engl J Med, 366:629-35.
Uenoyama Y, Inoue N, Pheng V, Homma T, Takase K, Yamada S, Ajiki K, Ichikawa M, Okamura H, Maeda KI, Tsukamura H. (2011). Ultrastructural evidence of kisspeptin-gonadotrophin-releasing hormone (GnRH) interaction in the median eminence of female rats: implication of axo-axonal regulation of GnRH release. J Neuroendocrinol, 23:863- 70.
Wahab F, Atika B and Shahab M. (2013). Kisspeptin as a link between metabolism and reproduction: evidences from rodent and primate studies. Meta. Clini. Experi., 62, 898-910.
Westwood, F.R. (2008) The female rat reproductive cycle: a practical histological guide to staging. Toxicologic Pathology 36, 375–384.
Wintermantel TM, Campbell RE, Porteous R, Bock D, Grone HJ, Todman MG, Korach KS, Greiner E, Perez CA, Schutz G, Herbison AE. (2006). Definition of estrogen receptor pathway critical for estrogen positive feedback to gonadotropin-releasing hormone neurons and fertility. Neuron, 52:271-80.
Yassein M. Hafez. (2015). Assisted Reproductive Technologies in Farm Animals. 2nd International Conference on the Modern Approaches in Livestock''s Production Systems.
Young, J.M. and McNeilly, A.S. (2010) Theca; the forgotten cell of the ovarian follicle. Reproduction 140, 489–504.
Zondek B, Aschheim S. (1927). Das Hormon des Hypophysenvorderlappens: Testobjekt zum Nachweis des Hormons. Klinische Wochenschrift 6, 248–254.
Zondek B, Sulman F. (1942). The Antigonadotropic Factor. Williams Wilkinsm Baltimore.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top