(3.220.231.235) 您好!臺灣時間:2021/03/07 10:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:洪精樺
研究生(外文):Jing-Hua Hung
論文名稱:探討PD-L1對腫瘤進展之影響
論文名稱(外文):Study of The Functional Roles of PD-L1 in Tumor Progression
指導教授:吳漢忠
指導教授(外文):Han-Chung Wu
口試日期:2017-07-10
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:病理學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:75
中文關鍵詞:免疫檢查點PD-L1血管新生轉移
外文關鍵詞:immune checkpointPD-L1angiogenesismetastasis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:319
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
免疫檢查點(immune checkpoint)所造成的免疫抑制(immunosuppression)以迴避免疫系統的攻擊是癌症的特徵之一。癌細胞能夠表現許多種免疫抑制的訊號造成免疫細胞失去功能甚至凋亡。這些傳遞抑制訊號的分子之中,PD-L1能夠與T細胞、B細胞、樹突狀細胞以及自然殺手細胞等免疫細胞所表現的PD-1結合,進而削弱免疫系統對抗癌症的功能。然而,PD-L1對癌細胞所造成的生物性功能之影響仍有待進一步釐清。在本研究中,我們透過西方點墨法以及即時聚合酶連鎖反應挑選出高度及低度表達PD-L1的人類肺癌細胞株(H441)和胰臟癌細胞株(BxPC3),建立PD-L1靜默或過度表達之細胞株,進而觀察細胞功能性。我們發現隨著PD-L1含量增加,細胞的增生、遷移、侵襲以及集落形成的能力將會顯著地提升。同時,在人類肺癌細胞異種移植的免疫缺陷型小鼠中也觀察到腫瘤生長能力符合活體外的實驗結果。基於人類PD-L1與老鼠PD-1能跨物種結合,我們以慢病毒感染小鼠腸癌細胞株(CT26),建立過度表達人類PD-L1的小鼠癌細胞,並且在免疫健全小鼠中建立同種移植以及肺轉移模型,得知PD-L1可促使癌細胞轉移,並發現PD-L1與腫瘤血管新生(angiogenesis)具有關聯性。綜合以上結果,PD-L1對於癌症本身即具有促進腫瘤進展之能力,而這些特性將有希望成為重要的癌症治療對策。
Immunosuppression is one of the hallmarks of cancer, which allows cancer cells to escape immune checkpoint-initiated attacks. Cancer cells can express many molecules that inhibit immune signaling, causing loss of function or even apoptosis in immune cells. One of these inhibitory molecules, programmed cell death ligand-1 (PD-L1), suppresses the anti-cancer function of several immune cell types by binding to programmed cell death protein-1 (PD-1), which is present on the surface of T cells, B cells, dendritic cells, and natural killer cells. Whether PD-L1 plays additional roles in the biological functioning of cancer cells is still unknown. In this study, we measured PD-L1 expression in cancer cell lines derived from human lung cancer (H441) or pancreatic cancer (BxPC3) by Western blotting and qPCR. Then, we established stable cell lines, in which PD-L1 was knocked down or overexpressed, and investigated the tumorigenic function. We found that proliferation, migration, invasion, and colony formation ability were elevated in cells that had high PD-L1 expression. Consistent with these in vitro results, tumor growth in a lung cancer xenograft immunodeficient mouse model was also increased by high PD-L1 expression. Because human PD-L1 has high binding affinity for mouse PD-1, we used lentivirus to overexpress human PD-L1 in a mouse colon cancer cell line (CT26). These cells were then used in a syngeneic tumor model and lung metastasis model in immunocompetent mice. We found that PD-L1 can enhance cancer cell metastasis, and is also associated with tumor angiogenesis. Taken together, the data show that PD-L1 exhibits innate oncogenic functions in tumor cells, and blocking these effects could prove to be an important therapeutic strategy in multiple cancer types.
致謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Content of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Introduction
1.1 Epidemiology, pathogenesis and hallmark of cancer . . . . . . . . . . 1
1.2 Cancer therapy and the obstacles . . . . . . . . . . . . . . . . . . 2
1.3 Immune escape in tumor microenvironment . . . . . . . . . . . . . 3
1.4 Immune checkpoints and immunotherapy . . . . . . . . . . . . . . 6
1.5 PD-1 and PD-L1 . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Anti-PD-L1 drugs in clinical . . . . . . . . . . . . . . . . . . . 14
1.7 The function of PD-L1 in cancer cells . . . . . . . . . . . . . . . 15
Specific aims . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Materials and methods
2.1 Cell lines and culture condition . . . . . . . . . . . . . . . . . . 17
2.2 RNA extraction, cDNA synthesis, polymerase chain reaction (PCR), and quantitative reverse transcription polymerase chain reaction (qPCR) . . . 17
2.3 Establishment of stable cell lines . . . . . . . . . . . . . . . . . . 19
2.4 Lentivirus-mediated short hairpin RNA (shRNA) knockdown (KD) . . . 19
2.5 Protein extraction and Western blotting . . . . . . . . . . . . . . . 20
2.6 Cell proliferation assay . . . . . . . . . . . . . . . . . . . . . 22
2.7 Cell invasion assay . . . . . . . . . . . . . . . . . . . . . . . 23
2.8 Scratch wound healing assay . . . . . . . . . . . . . . . . . . . 24
2.9 Colony formation assay . . . . . . . . . . . . . . . . . . . . . 24
2.10 Lung metastasis model . . . . . . . . . . . . . . . . . . . . . 24
2.11 Flow cytometry analysis . . . . . . . . . . . . . . . . . . . . . 25
2.12 Immunohistochemistry (IHC), immunofluorescence (IF) assay, and Hematoxylin and Eosin (HE) staining . . . . . . . . . . . . . . . 26
2.13 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . 27
Results
3.1 Elevation of PD-L1 expression in human cancer cell lines . . . . . . . 29
3.2 Construction and identification of pEF1x-PD-L1 plasmid . . . . . . . . 30
3.3 Generation and selection of cancer cell lines in different PD-L1 expression levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 PD-L1 expression enhances cancer cells proliferation . . . . . . . . . 32
3.5 PD-L1 expression enhances cancer cells migration and invasion . . . . . 32
3.6 PD-L1 knockdown inhibits tumor growth in an immunosuppressed xenograft model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7 Establishment of a human PD-L1-overexpressing syngeneic tumor model in immunocompetent mice reveals PD-L1 can enhance tumor growth . . . . 34
3.8 PD-L1 induces angiogenesis in the tumor microenvironment . . . . . . 35
3.9 PD-L1 enhances the metastasis of CT26 cells in lung metastasis model . . 36
3.10 PD-1 does not significantly influence proliferation or migration of cancer cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.11 PD-L1 increased the production of cytokines which involve in cancer progression and angiogenesis . . . . . . . . . . . . . . . . . . . 38
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Aldinucci, D., and Colombatti, A. (2014). The inflammatory chemokine CCL5 and cancer progression. Mediators Inflamm 2014, 292376.
Audrito, V., Serra, S., Stingi, A., Orso, F., Gaudino, F., Bologna, C., Neri, F., Garaffo, G., Nassini, R., Baroni, G., et al. (2017). PD-L1 up-regulation in melanoma increases disease aggressiveness and is mediated through miR-17-5p. Oncotarget 8, 15894-15911.
Barber, D.L., Wherry, E.J., Masopust, D., Zhu, B., Allison, J.P., Sharpe, A.H., Freeman, G.J., and Ahmed, R. (2006). Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682-687.
Bertrand, A., Kostine, M., Barnetche, T., Truchetet, M.E., and Schaeverbeke, T. (2015). Immune related adverse events associated with anti-CTLA-4 antibodies: systematic review and meta-analysis. BMC Med 13, 211.
Bosslet, K., Straub, R., Blumrich, M., Czech, J., Gerken, M., Sperker, B., Kroemer, H.K., Gesson, J.P., Koch, M., and Monneret, C. (1998). Elucidation of the mechanism enabling tumor selective prodrug monotherapy. Cancer Res 58, 1195-1201.
Butler, N.S., Moebius, J., Pewe, L.L., Traore, B., Doumbo, O.K., Tygrett, L.T., Waldschmidt, T.J., Crompton, P.D., and Harty, J.T. (2011). Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection. Nat Immunol 13, 188-195.
Butte, M.J., Keir, M.E., Phamduy, T.B., Sharpe, A.H., and Freeman, G.J. (2007). Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 27, 111-122.
Capietto, A.H., Jhunjhunwala, S., and Delamarre, L. (2017). Characterizing neoantigens for personalized cancer immunotherapy. Curr Opin Immunol 46, 58-65.
Casi, G., and Neri, D. (2015). Antibody-Drug Conjugates and Small Molecule-Drug Conjugates: Opportunities and Challenges for the Development of Selective Anticancer Cytotoxic Agents. J Med Chem 58, 8751-8761.
Chemnitz, J.M., Parry, R.V., Nichols, K.E., June, C.H., and Riley, J.L. (2004). SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol 173, 945-954.
Chen, D.S., Irving, B.A., and Hodi, F.S. (2012). Molecular pathways: next-generation immunotherapy--inhibiting programmed death-ligand 1 and programmed death-1. Clin Cancer Res 18, 6580-6587.
Chen, J., Jiang, C.C., Jin, L., and Zhang, X.D. (2016a). Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Ann Oncol 27, 409-416.
Chen, L., Gibbons, D.L., Goswami, S., Cortez, M.A., Ahn, Y.H., Byers, L.A., Zhang, X., Yi, X., Dwyer, D., Lin, W., et al. (2014). Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat Commun 5, 5241.
Chen, L., and Han, X. (2015). Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest 125, 3384-3391.
Chen, L., Yi, X., Goswami, S., Ahn, Y.H., Roybal, J.D., Yang, Y., Diao, L., Peng, D., Peng, D., Fradette, J.J., et al. (2016b). Growth and metastasis of lung adenocarcinoma is potentiated by BMP4-mediated immunosuppression. Oncoimmunology 5, e1234570.
Chen, N., Fang, W., Zhan, J., Hong, S., Tang, Y., Kang, S., Zhang, Y., He, X., Zhou, T., Qin, T., et al. (2015). Upregulation of PD-L1 by EGFR Activation Mediates the Immune Escape in EGFR-Driven NSCLC: Implication for Optional Immune Targeted Therapy for NSCLC Patients with EGFR Mutation. J Thorac Oncol 10, 910-923.
Chu, Y., Wang, L.X., Yang, G., Ross, H.J., Urba, W.J., Prell, R., Jooss, K., Xiong, S., and Hu, H.M. (2006). Efficacy of GM-CSF-producing tumor vaccine after docetaxel chemotherapy in mice bearing established Lewis lung carcinoma. J Immunother 29, 367-380.
Concha-Benavente, F., Srivastava, R.M., Trivedi, S., Lei, Y., Chandran, U., Seethala, R.R., Freeman, G.J., and Ferris, R.L. (2016). Identification of the Cell-Intrinsic and -Extrinsic Pathways Downstream of EGFR and IFNgamma That Induce PD-L1 Expression in Head and Neck Cancer. Cancer Res 76, 1031-1043.
Corsello, S.M., Barnabei, A., Marchetti, P., De Vecchis, L., Salvatori, R., and Torino, F. (2013). Endocrine side effects induced by immune checkpoint inhibitors. J Clin Endocrinol Metab 98, 1361-1375.
Cortez, M.A., Ivan, C., Valdecanas, D., Wang, X., Peltier, H.J., Ye, Y., Araujo, L., Carbone, D.P., Shilo, K., Giri, D.K., et al. (2016). PDL1 Regulation by p53 via miR-34. J Natl Cancer Inst 108.
Coussens, L.M., and Werb, Z. (2002). Inflammation and cancer. Nature 420, 860-867.
Deer, E.L., Gonzalez-Hernandez, J., Coursen, J.D., Shea, J.E., Ngatia, J., Scaife, C.L., Firpo, M.A., and Mulvihill, S.J. (2010). Phenotype and genotype of pancreatic cancer cell lines. Pancreas 39, 425-435.
Dong, H., Strome, S.E., Salomao, D.R., Tamura, H., Hirano, F., Flies, D.B., Roche, P.C., Lu, J., Zhu, G., Tamada, K., et al. (2002). Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8, 793-800.
Dong, H., Zhu, G., Tamada, K., Flies, D.B., van Deursen, J.M., and Chen, L. (2004). B7-H1 determines accumulation and deletion of intrahepatic CD8(+) T lymphocytes. Immunity 20, 327-336.
Duffy, M.J., McGowan, P.M., Harbeck, N., Thomssen, C., and Schmitt, M. (2014). uPA and PAI-1 as biomarkers in breast cancer: validated for clinical use in level-of-evidence-1 studies. Breast Cancer Res 16, 428.
Dunn, G.P., Old, L.J., and Schreiber, R.D. (2004). The three Es of cancer immunoediting. Annu Rev Immunol 22, 329-360.
Freeman, G.J., Long, A.J., Iwai, Y., Bourque, K., Chernova, T., Nishimura, H., Fitz, L.J., Malenkovich, N., Okazaki, T., Byrne, M.C., et al. (2000). Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192, 1027-1034.
Ghebeh, H., Tulbah, A., Mohammed, S., Elkum, N., Bin Amer, S.M., Al-Tweigeri, T., and Dermime, S. (2007). Expression of B7-H1 in breast cancer patients is strongly associated with high proliferative Ki-67-expressing tumor cells. Int J Cancer 121, 751-758.
Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646-674.
Heldin, C.H., Rubin, K., Pietras, K., and Ostman, A. (2004). High interstitial fluid pressure - an obstacle in cancer therapy. Nat Rev Cancer 4, 806-813.
Hirano, F., Kaneko, K., Tamura, H., Dong, H., Wang, S., Ichikawa, M., Rietz, C., Flies, D.B., Lau, J.S., Zhu, G., et al. (2005). Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res 65, 1089-1096.
Hodi, F.S., O''Day, S.J., McDermott, D.F., Weber, R.W., Sosman, J.A., Haanen, J.B., Gonzalez, R., Robert, C., Schadendorf, D., Hassel, J.C., et al. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363, 711-723.
Hong, I.S. (2016). Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types. Exp Mol Med 48, e242.
Hurwitz, J.M., and Batzer, F.R. (2004). Posthumous sperm procurement: demand and concerns. Obstet Gynecol Surv 59, 806-808.
Ishida, Y., Agata, Y., Shibahara, K., and Honjo, T. (1992). Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11, 3887-3895.
Jain, R.K. (1987). Transport of molecules in the tumor interstitium: a review. Cancer Res 47, 3039-3051.
Jain, R.K. (1996). 1995 Whitaker Lecture: delivery of molecules, particles, and cells to solid tumors. Ann Biomed Eng 24, 457-473.
Keir, M.E., Butte, M.J., Freeman, G.J., and Sharpe, A.H. (2008). PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26, 677-704.
Khalid, A., Wolfram, J., Ferrari, I., Mu, C., Mai, J., Yang, Z., Zhao, Y., Ferrari, M., Ma, X., and Shen, H. (2015). Recent Advances in Discovering the Role of CCL5 in Metastatic Breast Cancer. Mini Rev Med Chem 15, 1063-1072.
Kim, P.S., and Ahmed, R. (2010). Features of responding T cells in cancer and chronic infection. Curr Opin Immunol 22, 223-230.
Kim, R., Emi, M., and Tanabe, K. (2007). Cancer immunoediting from immune surveillance to immune escape. Immunology 121, 1-14.
Krall, N., Scheuermann, J., and Neri, D. (2013). Small targeted cytotoxics: current state and promises from DNA-encoded chemical libraries. Angew Chem Int Ed Engl 52, 1384-1402.
Krock, B.L., Skuli, N., and Simon, M.C. (2011). Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2, 1117-1133.
Krummel, M.F., and Allison, J.P. (1995). CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 182, 459-465.
Lai, W.Y., Huang, B.T., Wang, J.W., Lin, P.Y., and Yang, P.C. (2016). A Novel PD-L1-targeting Antagonistic DNA Aptamer With Antitumor Effects. Mol Ther Nucleic Acids 5, e397.
Latchman, Y., Wood, C.R., Chernova, T., Chaudhary, D., Borde, M., Chernova, I., Iwai, Y., Long, A.J., Brown, J.A., Nunes, R., et al. (2001). PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2, 261-268.
Li, C.W., Lim, S.O., Xia, W., Lee, H.H., Chan, L.C., Kuo, C.W., Khoo, K.H., Chang, S.S., Cha, J.H., Kim, T., et al. (2016). Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun 7, 12632.
Lin, D.Y., Tanaka, Y., Iwasaki, M., Gittis, A.G., Su, H.P., Mikami, B., Okazaki, T., Honjo, T., Minato, N., and Garboczi, D.N. (2008). The PD-1/PD-L1 complex resembles the antigen-binding Fv domains of antibodies and T cell receptors. Proc Natl Acad Sci U S A 105, 3011-3016.
Linsley, P.S., Brady, W., Urnes, M., Grosmaire, L.S., Damle, N.K., and Ledbetter, J.A. (1991). CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med 174, 561-569.
Linsley, P.S., Clark, E.A., and Ledbetter, J.A. (1990). T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1. Proc Natl Acad Sci U S A 87, 5031-5035.
Linsley, P.S., Greene, J.L., Brady, W., Bajorath, J., Ledbetter, J.A., and Peach, R. (1994). Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1, 793-801.
Lv, D., Zhang, Y., Kim, H.J., Zhang, L., and Ma, X. (2013). CCL5 as a potential immunotherapeutic target in triple-negative breast cancer. Cell Mol Immunol 10, 303-310.
Ma, W., Gilligan, B.M., Yuan, J., and Li, T. (2016). Current status and perspectives in translational biomarker research for PD-1/PD-L1 immune checkpoint blockade therapy. J Hematol Oncol 9, 47.
Maker, A.V., Attia, P., and Rosenberg, S.A. (2005). Analysis of the cellular mechanism of antitumor responses and autoimmunity in patients treated with CTLA-4 blockade. J Immunol 175, 7746-7754.
Marzec, M., Zhang, Q., Goradia, A., Raghunath, P.N., Liu, X., Paessler, M., Wang, H.Y., Wysocka, M., Cheng, M., Ruggeri, B.A., et al. (2008). Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proc Natl Acad Sci U S A 105, 20852-20857.
Massi, D., Brusa, D., Merelli, B., Ciano, M., Audrito, V., Serra, S., Buonincontri, R., Baroni, G., Nassini, R., Minocci, D., et al. (2014). PD-L1 marks a subset of melanomas with a shorter overall survival and distinct genetic and morphological characteristics. Ann Oncol 25, 2433-2442.
Melero, I., Rouzaut, A., Motz, G.T., and Coukos, G. (2014). T-cell and NK-cell infiltration into solid tumors: a key limiting factor for efficacious cancer immunotherapy. Cancer Discov 4, 522-526.
Mittendorf, E.A., Philips, A.V., Meric-Bernstam, F., Qiao, N., Wu, Y., Harrington, S., Su, X., Wang, Y., Gonzalez-Angulo, A.M., Akcakanat, A., et al. (2014). PD-L1 expression in triple-negative breast cancer. Cancer Immunol Res 2, 361-370.
Mroczko, B., and Szmitkowski, M. (2004). Hematopoietic cytokines as tumor markers. Clin Chem Lab Med 42, 1347-1354.
Naidoo, J., Page, D.B., Li, B.T., Connell, L.C., Schindler, K., Lacouture, M.E., Postow, M.A., and Wolchok, J.D. (2016). Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol 27, 1362.
Nishimura, H., Nose, M., Hiai, H., Minato, N., and Honjo, T. (1999). Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11, 141-151.
Nishimura, H., Okazaki, T., Tanaka, Y., Nakatani, K., Hara, M., Matsumori, A., Sasayama, S., Mizoguchi, A., Hiai, H., Minato, N., et al. (2001). Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291, 319-322.
Pardoll, D.M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12, 252-264.
Park, J.J., Omiya, R., Matsumura, Y., Sakoda, Y., Kuramasu, A., Augustine, M.M., Yao, S., Tsushima, F., Narazaki, H., Anand, S., et al. (2010). B7-H1/CD80 interaction is required for the induction and maintenance of peripheral T-cell tolerance. Blood 116, 1291-1298.
Parsa, A.T., Waldron, J.S., Panner, A., Crane, C.A., Parney, I.F., Barry, J.J., Cachola, K.E., Murray, J.C., Tihan, T., Jensen, M.C., et al. (2007). Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 13, 84-88.
Pavet, V., Portal, M.M., Moulin, J.C., Herbrecht, R., and Gronemeyer, H. (2011). Towards novel paradigms for cancer therapy. Oncogene 30, 1-20.
Peng, D., Kryczek, I., Nagarsheth, N., Zhao, L., Wei, S., Wang, W., Sun, Y., Zhao, E., Vatan, L., Szeliga, W., et al. (2015). Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527, 249-253.
Petroff, M.G., Chen, L., Phillips, T.A., Azzola, D., Sedlmayr, P., and Hunt, J.S. (2003). B7 family molecules are favorably positioned at the human maternal-fetal interface. Biol Reprod 68, 1496-1504.
Petroff, M.G., Chen, L., Phillips, T.A., and Hunt, J.S. (2002). B7 family molecules: novel immunomodulators at the maternal-fetal interface. Placenta 23 Suppl A, S95-101.
Pico de Coana, Y., Choudhury, A., and Kiessling, R. (2015). Checkpoint blockade for cancer therapy: revitalizing a suppressed immune system. Trends Mol Med 21, 482-491.
Postow, M.A. (2015). Managing immune checkpoint-blocking antibody side effects. Am Soc Clin Oncol Educ Book, 76-83.
Robert, C., Long, G.V., Brady, B., Dutriaux, C., Maio, M., Mortier, L., Hassel, J.C., Rutkowski, P., McNeil, C., Kalinka-Warzocha, E., et al. (2015a). Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372, 320-330.
Robert, C., Schachter, J., Long, G.V., Arance, A., Grob, J.J., Mortier, L., Daud, A., Carlino, M.S., McNeil, C., Lotem, M., et al. (2015b). Pembrolizumab versus Ipilimumab in Advanced Melanoma. N Engl J Med 372, 2521-2532.
Robert, C., Thomas, L., Bondarenko, I., O''Day, S., Weber, J., Garbe, C., Lebbe, C., Baurain, J.F., Testori, A., Grob, J.J., et al. (2011). Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364, 2517-2526.
Sagiv-Barfi, I., Kohrt, H.E., Czerwinski, D.K., Ng, P.P., Chang, B.Y., and Levy, R. (2015). Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibrutinib, an inhibitor of both BTK and ITK. Proc Natl Acad Sci U S A 112, E966-972.
Sakuishi, K., Apetoh, L., Sullivan, J.M., Blazar, B.R., Kuchroo, V.K., and Anderson, A.C. (2010). Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 207, 2187-2194.
Schadendorf, D., Hodi, F.S., Robert, C., Weber, J.S., Margolin, K., Hamid, O., Patt, D., Chen, T.T., Berman, D.M., and Wolchok, J.D. (2015). Pooled Analysis of Long-Term Survival Data From Phase II and Phase III Trials of Ipilimumab in Unresectable or Metastatic Melanoma. J Clin Oncol 33, 1889-1894.
Seliger, B., and Quandt, D. (2012). The expression, function, and clinical relevance of B7 family members in cancer. Cancer Immunol Immunother 61, 1327-1341.
Sharpe, A.H., Wherry, E.J., Ahmed, R., and Freeman, G.J. (2007). The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol 8, 239-245.
Shipley, J.L., and Butera, J.N. (2009). Acute myelogenous leukemia. Exp Hematol 37, 649-658.
Stefansson, S., and Lawrence, D.A. (1996). The serpin PAI-1 inhibits cell migration by blocking integrin alpha V beta 3 binding to vitronectin. Nature 383, 441-443.
Stewart, B.W., and Wild, C. (2014). World cancer report 2014 (Lyon, France : International Agency for Research on Cancer, 2014.).
Stewart, T.J., and Abrams, S.I. (2008). How tumours escape mass destruction. Oncogene 27, 5894-5903.
Tarhini, A. (2013). Immune-mediated adverse events associated with ipilimumab ctla-4 blockade therapy: the underlying mechanisms and clinical management. Scientifica (Cairo) 2013, 857519.
Terme, M., Pernot, S., Marcheteau, E., Sandoval, F., Benhamouda, N., Colussi, O., Dubreuil, O., Carpentier, A.F., Tartour, E., and Taieb, J. (2013). VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Cancer Res 73, 539-549.
Tivol, E.A., Borriello, F., Schweitzer, A.N., Lynch, W.P., Bluestone, J.A., and Sharpe, A.H. (1995). Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541-547.
Topalian, S.L., Drake, C.G., and Pardoll, D.M. (2015). Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27, 450-461.
Topalian, S.L., Weiner, G.J., and Pardoll, D.M. (2011). Cancer immunotherapy comes of age. J Clin Oncol 29, 4828-4836.
Torisu, H., Ono, M., Kiryu, H., Furue, M., Ohmoto, Y., Nakayama, J., Nishioka, Y., Sone, S., and Kuwano, M. (2000). Macrophage infiltration correlates with tumor stage and angiogenesis in human malignant melanoma: possible involvement of TNFalpha and IL-1alpha. Int J Cancer 85, 182-188.
Ulyanova, T., Blasioli, J., and Thomas, M.L. (1997). Regulation of cell signaling by the protein tyrosine phosphatases, CD45 and SHP-1. Immunol Res 16, 101-113.
Walunas, T.L., Lenschow, D.J., Bakker, C.Y., Linsley, P.S., Freeman, G.J., Green, J.M., Thompson, C.B., and Bluestone, J.A. (1994). CTLA-4 can function as a negative regulator of T cell activation. Immunity 1, 405-413.
Wang, H.B., Shi, F.D., Li, H., Chambers, B.J., Link, H., and Ljunggren, H.G. (2001). Anti-CTLA-4 antibody treatment triggers determinant spreading and enhances murine myasthenia gravis. J Immunol 166, 6430-6436.
Waterhouse, P., Penninger, J.M., Timms, E., Wakeham, A., Shahinian, A., Lee, K.P., Thompson, C.B., Griesser, H., and Mak, T.W. (1995). Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270, 985-988.
Weber, J.S., Kahler, K.C., and Hauschild, A. (2012). Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol 30, 2691-2697.
Wolchok, J.D., Kluger, H., Callahan, M.K., Postow, M.A., Rizvi, N.A., Lesokhin, A.M., Segal, N.H., Ariyan, C.E., Gordon, R.A., Reed, K., et al. (2013). Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369, 122-133.
Woo, S.R., Turnis, M.E., Goldberg, M.V., Bankoti, J., Selby, M., Nirschl, C.J., Bettini, M.L., Gravano, D.M., Vogel, P., Liu, C.L., et al. (2012). Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res 72, 917-927.
Xiao, Y., Yu, S., Zhu, B., Bedoret, D., Bu, X., Francisco, L.M., Hua, P., Duke-Cohan, J.S., Umetsu, D.T., Sharpe, A.H., et al. (2014). RGMb is a novel binding partner for PD-L2 and its engagement with PD-L2 promotes respiratory tolerance. J Exp Med 211, 943-959.
Yokosuka, T., Takamatsu, M., Kobayashi-Imanishi, W., Hashimoto-Tane, A., Azuma, M., and Saito, T. (2012). Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med 209, 1201-1217.
Zhang, X., Schwartz, J.C., Guo, X., Bhatia, S., Cao, E., Lorenz, M., Cammer, M., Chen, L., Zhang, Z.Y., Edidin, M.A., et al. (2004). Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity 20, 337-347.
Zhenchuk, A., Lotfi, K., Juliusson, G., and Albertioni, F. (2009). Mechanisms of anti-cancer action and pharmacology of clofarabine. Biochem Pharmacol 78, 1351-1359.
Zou, W., and Chen, L. (2008). Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol 8, 467-477.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔