(3.235.11.178) 您好!臺灣時間:2021/03/05 14:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾庭箴
研究生(外文):Ting-Chen Tseng
論文名稱:幾丁聚醣於神經修復與再生之應用:細胞來源與材料篩選
論文名稱(外文):Application of chitosan in nerve repair and regeneration: Cell source and material selection
指導教授:徐善慧徐善慧引用關係
指導教授(外文):Shan-hui Hsu
口試日期:2017-08-23
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:170
中文關鍵詞:神經系統疾病幾丁聚醣細胞球基材傳遞/轉染自癒性水膠
外文關鍵詞:Neurological disorderschitosanspheroidssubstrate-mediated delivery/reprogrammingself-healing hydrogel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
神經系統疾病或損傷可能會導致部分運動或感覺功能喪失。目前臨床的治療方式有很多種,例如幹細胞治療、神經導管移植等。而不同部位的神經損傷,其治療模式也不盡相同。雖然上述的治療模式都已被應用於神經修復上,然而每種治療方法都有其限制。因此本論文著重探討不同細胞來源與幾丁聚醣材料對中樞及周邊神經的修復,論文將分為四個部分。第一部分探討由幾丁聚醣基材培養所獲得之幹細胞球體對氧化鐵奈米粒子攝入的影響,並利用此技術建立體內細胞追蹤之平台。研究中發現幹細胞培養於幾丁聚醣基材上能增加氧化鐵奈米粒子之攝入量,細胞對奈米粒子之耐受性也較一般培養基材(TCPS)高。推測原因為幹細胞於幾丁聚醣基材上可促進自噬反應進而避免幹細胞在環境壓力下走向死亡。接著將氧化鐵標定之幹細胞植入斑馬魚體內,相較於TCPS培養之幹細胞,幾丁聚醣所獲得之幹細胞球體有較高的存活率且可長時間追蹤。此結果顯示出幹細胞培養於幾丁聚醣基材上能使奈米粒子有效率的被攝入,且所獲得之幹細胞球體於動物實驗應用上帶來高移植率並可長時間追蹤之優勢。第二部分為探討幾丁聚醣所獲得之間葉幹細胞球對周邊神經修復的影響。基於第一部分之結果,為追蹤間葉幹細胞於神經修復上所扮演的角色,我們將氧化鐵奈米粒子標定之間葉幹細胞球與神經導管共同植入到大鼠受損的坐骨神經,利用核磁共振造影(MRI)於體外追蹤移植的細胞,觀察神經再生的情形。結果發現神經幹細胞球(藉由幾丁聚醣基材所得)可有效修復受損的周邊神經;氧化鐵標定之間葉幹細胞球體可以被MRI所追蹤,可觀察周邊神經再生的過程。此研究顯示幹細胞球體對周邊神經的修復較一般分散的幹細胞好,故利用幾丁聚醣基材轉染質體或是傳遞奈米粒子至間葉幹細胞可為細胞治療帶來新的附加價值。第三部分則進一步的利用幹細胞球體應用於中樞神經損傷之治療。在此部分,我們將自修復且可注射的幾丁聚醣水膠包覆神經幹細胞球體,發現幹細胞球體於水膠內有良好的生長與神經分化的能力。接著將其注射至中樞神經受損之斑馬魚體內,結果發現此一方式,不僅可以增加細胞於生物體內之植入率,更可以提升修復受損的中樞神經。第四部份則是解決神經細胞來源不足的問題。利用幾丁聚醣基材將FOXD3質體轉染至纖維母細胞,使細胞重新編程為類神經脊幹細胞,並應用於中樞神經損傷之修復實驗。結果發現轉染FOXD3之纖維母細胞其神經脊相關表現、幹性、神經相關表現都較未轉染的細胞高。進一步將轉染FOXD3的細胞移植至中樞神經受損之斑馬魚,發現轉染FOXD3的細胞能增加受損神經回復的能力。此研究顯示出利用幾丁聚醣基材可將體細胞重新編程,取代神經相關細胞來源不足之困境,進而應用在治療神經疾病。透過本論文四個部分探討細胞來源與材料之選擇對於周邊與中樞神經修復的影響。利用幾丁聚醣傳遞基因與奈米粒子至細胞或用幾丁聚醣水膠包覆細胞是安全且有效的方式,且證實幾丁聚醣在神經修復極有應用性。
Neurological disorders or nerve injuries may result in a partial or complete loss of motor and sensory functions. Current clinical treatments for nerve repair include stem cell-based therapy, artificial nerve guides, and etc. Different types of nerve injury will determine the type of treatments. Although various approaches have been used to repair nerve injuries, there remain some drawbacks. Herein, this study tried to investigate different cell sources and biomaterial selection in nerve repair. In the first section, the mechanism for having the higher cellular uptake as well as better cell survival on the chitosan substrates was studied. We found that cells cultured on the chitosan substrate may be more tolerant to NP cytotoxicity by the increased autophagy response. In animal studies, cells grown on chitosan had better survival after transplantation than those grown on TCPS. The increased survival of labeled cells may facilitate long-term cell tracking. This part of study suggested that chitosan as a culture substrate can induce cell autophagy to increase cell survival in particular for NP-labeled cells. This will be valuable for the biomedical application of NPs in cell therapy. In the second section, the effect of the substrate-derived MSC spheroids vs. single cells on the regeneration of transected rat sciatic nerve was evaluated. Results showed that MSC spheroids were superior to single cells in regeneration of transected peripheral nerve, especially for the BDNF-transfected MSC spheroids. Besides, Fe3O4 NPs-labeled MSC spheroids in the conduits were successfully tracked by MRI. The above findings indicated that the substrate-mediated Fe3O4 NP labeling for MSCs may be generally used as a bioimaging tool in animal studies. The substrate-mediated gene/NP delivery may equip MSC spheroids with extra values in carrying the therapeutic/diagnostic agents for cell-based therapy. In the third section, we sought to determine if cells combined with a chitosan-based self-healing hydrogel may offer therapeutic potentials for treating neurological disorders. Results showed that NSC spheroids grew twice faster in self-healing hydrogel compared to conventional alginate gel and had a greater tendency to differentiate into neuron-like cells. In the zebrafish embryo neural injury model, injection of the chitosan-based self-healing hydrogel with NSC spheroids produced a remarkable healing effect on neural development. These promising data suggest the potential of the novel injectable, biodegradable, self-healing hydrogel in repairing the central nervous system. In the last section, we sought to determine if FOXD3 delivered by the substrate-mediated method could reprogram human fibroblasts into neural crest-associated cells for potential treatment of neurological disorders. Results showed that cells could be reprogrammed into multipotent neural crest stem-like cells with self-renewal and differentiation capacity by a simple, safe, chitosan substrate-mediated FOXD3 transfection. The reprogrammed cells demonstrated functional rescue for impaired CNS in zebrafish models. The reprogrammed fibroblasts with neural crest stem-like behavior may be used as an easily accessible cellular source for treating neural diseases in the future. Through the above findings, cell spheroids combined with chitosan substrate-mediated NP/gene delivery, or encapsulated in chitosan hydrogel had a great therapeutic potential in nerve repair.
中文摘要………………………………………………………………………………I
英文摘要……………………………………………………………….……………III
目錄…………………………………………………………………….……………VI
圖目錄…………………………………………………………………………..….. IX
表目錄………………………………………………………………………………XII
第一章 緒論…………………………………………………………………………...1
1. 研究背景與動機……………………………………………………………..1
2. 參考文獻……………………………………………………………………..5
第二章 透過基材誘導細胞自噬反應以提高細胞存活率於氧化鐵奈米粒子之環境…………………………………....………………………………………...7
1. 前言………………………………………………………………………..…8
2. 材料與方法…………………………………………………………………10
2.1. 細胞培養…………………………………………………………..…10
2.2. 氧化鐵奈米粒子與幾丁聚醣薄膜之製備方法……………………..10
2.3. 細胞在培養在不同基材上接觸氧化鐵奈米粒子之細胞存活率…..11
2.4. 細胞培養在不同基材之氧化鐵攝入量……………………………..11
2.5. 細胞培養在不同基材之自噬作用相關基因表現…………………..12
2.6. 細胞培養在不同基材之自噬作用相關蛋白表現..…………………13
2.7. 細胞培養在不同基材之代謝活性分析……………………………..13
2.8. 動物實驗……………………………………………………………..14
2.9. 統計學分析…………………………………………………………..14
3. 結果與討論…………………………………………………………………15
4. 結論…………………………………………………………………………20
5. 參考文獻……………………………………………………………………21
第三章 以基材誘導奈米粒子/基因傳遞至間葉幹細胞球體對周邊神經再生的影響………………………………………………………………………….…36
1. 前言…………………………………………………………………………37
2. 材料與方法…………………………………………………………………39
2.1. 氧化鐵奈米粒子與腦源神經滋養因子質體之製備方法…………..39
2.2. 神經導管之製備……………………………………………………..39
2.3. 間葉幹細胞之分離與培養…………………………………………..40
2.4. 三維間葉幹細胞球體形成之方法…………………………………..40
2.5. 神經相關基因和趨化因子/受體基因於體外分析………………….41
2.6. 細胞標定方法………………………………………………………..43
2.7. 動物實驗……………………………………………………………..43
2.8. 核磁共振照影………………………………………………………..44
2.9. 電生理試驗…………………………………………………………..44
2.10. 組織學分析…………………………………………………………..45
2.11. 統計學分析…………………………………………………….…….45
3. 結果與討論…………………………………………………………………47
4. 結論…………………………………………………………………………54
5. 參考文獻……………………………………………………………………55
第四章 可注射自癒性水膠應用於中樞神經損傷之修復………………………….71
1. 前言…………………………………………………………………………72
2. 材料與方法…………………………………………………………………74
2.1. 水膠的製備與分析…………………………………………………..74
2.2. 神經幹細胞之培養…………………………………………………..75
2.3. 神經幹細胞在水膠中的增生情形…………………………………..75
2.4. 神經幹細胞於水膠中其神經分化相關基因表現…………………..76
2.5. 神經幹細胞於水膠中其神經分化相關蛋白表現…………………..77
2.6. 中樞神經修復實驗…………………………………………………..78
2.7. 神經功能回復之評估………………………………………………..78
2.8. 統計學分析…………………………………………………………..78
3. 結果與討論…………………………………………………………………80
4. 結論…………………………………………………………………………89
5. 參考文獻……………………………………………………………………90
第五章 利用基材將人類纖維母細胞重新編程為類神經脊幹細胞並應用於中樞神經損傷之修復……………………………………………………………...102
1. 前言………………………………………………………………………..103
2. 材料與方法………………………………………………………………..106
2.1. 幾丁聚醣基材之製備與FOXD3質體構築……………………….106
2.2. 細胞培養……………………………………………………………106
2.3. FOXD3質體轉染…………………………………………………..107
2.4. 轉染效率、細胞存活率與細胞增生速率之分析…………………107
2.5. 轉染FOXD3細胞之神經脊、幹性相關基因表現……………….109
2.6. 轉染FOXD3細胞之神經相關蛋白表現………………………….111
2.7. 轉染FOXD3細胞之多重分化能力………………………………..112
2.7.1. 誘導軟骨分化…………………………………………………112
2.7.2. 誘導硬骨分化…………………………………………………113
2.7.3. 誘導脂肪分化…………………………………………………113
2.7.4. 誘導黑色素分化………………………………………………114
2.8. 中樞神經修復實驗…………………………………………………115
2.9. 統計學分析…………………………………………………………116
3. 結果與討論………………………………………………………………..117
4. 結論………………………………………………………………………..126
5. 參考文獻…………………………………………………………………..127
第六章 總結論…………………………………………………………...…………151
第一章
[1] Schmidt CE, Leach JB. Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng. 2003;5:293-347.
[2]Feigin I, Geller EH, Wolf A. Absence of regeneration in the spinal cord of the young rat. J. Neuropathol. Exp. Neurol. 1951;10:420-25.
[3]Faroni A, Mobasseri SA, Kingham PJ, Reid AJ. Peripheral nerve regeneration: experimental strategies and future perspectives. Adv Drug Deliv Rev. 2015 Mar;82-83:160-7.
[4]Horner PJ, Gage FH. Regenerating the damaged central nervous system. Nature. 2000 Oct 26;407(6807):963-70.
[5]Elliott Donaghue I, Tam R, Sefton MV, Shoichet MS. Cell and biomolecule delivery for tissue repair and regeneration in the central nervous system. J Control Release. 2014 Sep 28;190:219-27.
[6]Hsu SH, Ni HC. Fabrication of the microgrooved/microporous polylactide substrates as peripheral nerve conduits and in vivo evaluation. Tissue Eng Part A. 2009 Jun;15(6):1381-90.
[7]Georgiou M, Golding JP, Loughlin AJ, Kingham PJ, Phillips JB. Engineered neural tissue with aligned, differentiated adipose-derived stem cells promotes peripheral nerve regeneration across a critical sized defect in rat sciatic nerve. Biomaterials. 2015 Jan;37:242-51.
[8]Hsueh YY, Chang YJ, Huang TC, Fan SC, Wang DH, Chen JJ, Wu CC, Lin SC. Functional recoveries of sciatic nerve regeneration by combining chitosan-coated conduit and neurosphere cells induced from adipose-derived stem cells. Biomaterials. 2014 Feb;35(7):2234-44.
[9]Nisbet DR, Crompton KE, Horne MK, Finkelstein DI, Forsythe JS. Neural tissue engineering of the CNS using hydrogels. J Biomed Mater Res B Appl Biomater. 2008 Oct;87(1):251-63.
[10]Pakulska MM, Ballios BG, Shoichet MS. Injectable hydrogels for central nervous system therapy. Biomed Mater. 2012;7(2):024101.
[11]Korochkin LI, Revishchin AV, Okhotin VE. Neural stem cells and their role in recovery processes in the nervous system. Neurosci Behav Physiol. 2006 Jun;36(5):499-512.
[12]Gutiérrez-Fernández M, Rodríguez-Frutos B, Otero-Ortega L, Ramos-Cejudo J, Fuentes B, Díez-Tejedor E. Adipose tissue-derived stem cells in stroke treatment: from bench to bedside. Discov Med. 2013 Aug;16(86):37-43.
[13]Hu N, Wu H, Xue C, Gong Y, Wu J, Xiao Z, et al. Long-term outcome of the repair of 50 mm long median nerve defects in rhesus monkeys with marrow mesenchymal stem cells-containing, chitosan-based tissue engineered nerve grafts. Biomaterials 2013;34:100-11.
[14]Hu BY, Weick JP, Yu J, Ma LX, Zhang XQ, Thomson JA, Zhang SC. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci U S A 2010;107(9):4335-40.
[15] Bartosh TJ, Ylöstalo JH, Mohammadipoor A, Bazhanov N, Coble K, Claypool K, Lee RH, Choi H, Prockop DJ. Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13724-9.
[16]Huang GS, Dai LG, Yen BL, Hsu SH. Spheroid formation of mesenchymal stem cells on chitosan and chitosan-hyaluronan membranes. Biomaterials. 2011 Oct;32(29):6929-45.
[17]Hsu SH, Ho TT, Tseng TC. Nanoparticle uptake and gene transfer efficiency for MSCs on chitosan and chitosan-hyaluronan substrates. Biomaterials. 2012 May;33(14):3639-50.
[18]Bartosh TJ, Ylostalo JH. Preparation of anti-inflammatory mesenchymal stem/precursor cells (MSCs) through sphere formation using hanging-drop culture technique. Curr Protoc Stem Cell Biol. 2014 Feb 6;28:Unit 2B.6.
[19]Chen RS, Chen YJ, Chen MH, Young TH. Cell-surface interactions of rat tooth germ cells on various biomaterials. J Biomed Mater Res A. 2007;83(1):241-8.
[20]Huang GS, Hsieh PS, Tseng CS, Hsu SH. Substrate-dependent regeneration capacity of mesenchymal stem cell spheroids derived on various biomaterial surfaces. Biomater. Sci. 2014;2:1652-1660.
[21] Rinaudo M. Chitin and chitosan: Properties and applications. Prog Polym Sci. 2006;31:603-32.
[22]Wang Y, Zhao Y, Sun C, Hu W, Zhao J, Li G, Zhang L, et al. Chitosan degradation products promote nerve regeneration by stimulating Schwann cell proliferation via miR-27a/FOXO1 axis. Mol Neurobiol 2016;53(1):28-39.
第二章
[1] Goodman CM, McCusker CD, Yilmaz T, and Rotello VM. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug. Chem 2004;15:897–900.
[2] Mailander V and Landfester K. Interaction of nanoparticles with cells. Biomacromolecules 2009;10:2379–400.
[3] De Jong WH and Borm PJ. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine 2008;3:133–49.
[4] Wang CHK and Pun SH. Substrate-mediated nucleic acid delivery from self-assembled monolayers. Trends in Biotechnology 2011;29:119–26.
[5] Shiu JY, Kuo CW, Whang WT, and Chen PL. Observation of enhanced cell adhesion and transfection efficiency on superhydrophobic surfaces. Lab on a Chip 2010;10:556–8. [6] Hsu SH, Ho TT, and Tseng TC. Nanoparticle uptake and gene transfer efficiency for MSCs on chitosan and chitosan-hyaluronan substrates. Biomaterials 2012;33: 3639–50.
[7] Li L, Chen Y, and Gibson SB. Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation Cell. Signal 2013;25:50–65.
[8] Mazure NM and Pouyssegur J. Hypoxia-induced autophagy: cell death or cell survival? Curr. Opin. Cell Biol 2010;22:177–80.
[9] Lee J, Giordano S, and Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signaling. Biochem. J 2012;441:523–40.
[10] Nowak J S, Mehn D, Nativo P, García C P, Gioria S, Ojea-Jiménez I, and Gilliland D. Silica nanoparticle uptake induces survival mechanism in A549 cells by the activation of autophagy but not apoptosis. Toxicol. Lett 2014;224: 84–92.
[11] Zhao Y, Howe JL, Yu Z, Leong DT, Chu JJ, Loo JS, and Ng KW. Exposure to titanium dioxide nanoparticles induces autophagy in primary human keratinocytes. Small 2013;9:387–392.
[12] He C, Hu Y, Yin L, Tang C, and Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010;31:3657–66.
[13] Kloeckner J, Boeckle S, Persson D, Roedl W, Ogris M, Berg K, and Wagner E. DNA polyplexes based on degradable oligoethylenimine-derivatives: combination with EGF receptor targeting and endosomal release functions. J. Control. Release 2006;116:115–22.
22
[14] Thorek DL and Tsourkas A. Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells. Biomaterials 2008;29:3583–90.
[15] Yildirimer L, Thanh NT, Loizidou M, and Seifalian AM. Toxicology and clinical potential of nanoparticles. Nano Today 2011;6:585–607.
[16] Lewinski N, Colvin V, and Drezek R. Cytotoxicity of nanoparticles. Small 2008;4:26–49.
[17] Naqvi S, Samim M, Abdin M, Ahmed FJ, Maitra A, Prashant C, and Dinda AK. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int. J. Nanomedicine 2010;5:983–989.
[18] Lahiji A, Sohrabi A, Hungerford DS, and Frondoza CG. Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J. Biomed. Mater. Res 2000;51:586–95.
[19] Mizushima N, Yoshimori T, and Levine B. Methods in mammalian autophagy research. Cell 2010;140:313–326.
[20] Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, and Nel AE. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 2006;6:1794–1807. [21] Braydich-Stolle LK, Schaeublin NM, Murdock RC, Jiang JK., Biswas P, Schlagor JJ, and Hussain SM. Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J.Nanopart.Res 2009;11:1361–74.
[22] Guo D, Zhao Y, Zhang Y, Wang Q, Huang Z, Ding Q, Guo Z, Zhou X, Zhu L, and Gu N. The cellular uptake and cytotoxic effect of silver nanoparticles on chronic myeloid leukemia cells. J. Biomed. Nanotechnol 2014;10:669–78.
[23] Zabirnyk O, Yezhelyev M, and Seleverstov O. Nanoparticles as a novel class of autophagy activators. Autophagy 2007;3:278–281.
[24] Wu YN, Yang LX, Shi XY, Li IC, Biazik JM, Ratinac KR, Chen DH, Thordarson P, Shieh DB, and Braet F. The selective growth inhibition of oral cancer by iron core-gold shell nanoparticles through mitochondria-mediated autophagy. Biomaterials 2011;32:4565–73.
[25] Hoyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, Bianchi K, Fehrenbacher N, Elling F, Rizzuto R, Mathiasen IS, and Jäättelä M. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2 Mol. Cell 2007;225:193–205.
[26] Kondratskyi A, Yassine M, Kondratska K, Skryma R, Slomianny C, Prevarskaya N. Calcium-permeable ion channels in control of autophagy and cancer. Front Physiol. 2013;4:272.
23
[27] Yeh HY, Liu BH, and Hsu SH. The calcium-dependent regulation of spheroid formation and cardiomyogenic differentiation for MSCs on chitosan membranes. Biomaterals 2012;33:8943–54.
第三章
[1]Bell JHA, Haycock JW. Next generation nerve guides: materials, fabrication, growth factors, and cell delivery. Tissue Eng Part B Rev 2012;18:11628.
[2]Ni HC, Lin ZY, Hsu SH, Chiu IM. The use of air plasma in surface modification of peripheral nerve conduits. Acta Biomater 2010;6:2066-76.
[3]Evans GRD, Brandt K, Widmer MS, Lu L, Meszlenyi RK, Gupta PK, et al. In vivo evaluation of poly(-lactic acid) porous conduits for peripheral nerve regeneration. Biomaterials 1999;20:1109-15.
[4]Madduri S and Gander B. Schwann cell delivery of neurotrophic factors for peripheral nerve regeneration. J Peripher Nerv Syst 2010;15:93-103.
[5]Ao Q, Fung CK, Tsui AY, Cai S, Zuo HC, Chan YS, et al. The regeneration of transected sciatic nerves of adult rats using chitosan nerve conduits seeded with bone marrow stromal cell-derived Schwann cells. Biomaterials 2011;32:787-96.
[6]Sowa Y, Imura T, Numajiri T, Nishino K, Fushiki S. Adipose-derived stem cells produce factors enhancing peripheral nerve regeneration: influence of age and anatomic site of origin. Stem Cells Dev 2012;21:1852-62.
[7]Marconi S, Castiglione G, Turano E, Bissolotti G, Angiari S, Farinazzo A, et al. Human adipose-derived mesenchymal stem cells systemically injected promote peripheral nerve regeneration in the mouse model of sciatic crush. Tissue Eng Part A 2012;18:1264-72.
[8]Frattini F, Pereira Lopes FR, Almeida FM, Rodrigues RF, Boldrini LC, Tomaz MA, et al. Mesenchymal stem cells in a polycaprolactone conduit promote sciatic nerve regeneration and sensory neuron survival after nerve injury. Tissue Eng Part A 2012;18:2030-39.
[9]Hu N, Wu H, Xue C, Gong Y, Wu J, Xiao Z, et al. Long-term outcome of the repair of 50 mm long median nerve defects in rhesus monkeys with marrow mesenchymal stem cells-containing, chitosan-based tissue engineered nerve grafts. Biomaterials 2013;34:100-11.
[10]Aggarwal S and Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005;105:1815-22.
[11]Kang SK, Shin IS, Ko MS, Jo JY, Ra JC. Journey of mesenchymal stem cells for homing: strategies to enhance efficacy and safety of stem cell therapy. Stem Cells Int 2012;2012:342968.
[12]Bartosh TJ, Ylöstalo JH, Mohammadipoor A, Bazhanov N, Coble K, Claypool K, et al. Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc Natl Acad Sci U S A 2010;107:13724-9.
[13]Wang W, Itaka K, Ohba S, Nishiyama N, Chung UI, Yamasaki Y, et al. 3D spheroid culture system on micropatterned substrates for improved differentiation efficiency of multipotent mesenchymal stem cells. Biomaterials 2009;30:2705-15.
[14]Yoshii Y, Waki A, Yoshida K, Kakezuka A, Kobayashi M, Namiki H, et al. The use of nanoimprinted scaffolds as 3D culture models to facilitate spontaneous tumor cell migration and well-regulated spheroid formation. Biomaterials 2011;32:6052-58.
[15]Lee WY, Chang YH, Yeh YC, Chen CH, Lin KM, Huang CC, et al. The use of injectable spherically symmetric cell aggregates self-assembled in a thermo-responsive hydrogel for enhanced cell transplantation. Biomaterials 2009;30:5505-13.
[16]Huang GS, Dai LG, Yen BL, Hsu SH. Spheroid formation of mesenchymal stem cells on chitosan and chitosan-hyaluronan membranes. Biomaterials 2011;32:6929-45.
[17]Hsueh YY, Chiang YL, Wu CC and Lin SC. Spheroid formation and neural induction in human adipose-derived stem cells on a chitosan-coated surface. Cells Tissues Organs 2012;196:117-28.
[18]Hsu SH, Huang GS, Lin SY, Feng F, Ho TT, Liao YC. Enhanced chondrogenic differentiation potential of human gingival fibroblasts by spheroid formation on chitosan membranes. Tissue Eng Part A 2012;18:67-79.
[19]Hsu SH, Ho TT, Tseng TC. Nanoparticle uptake and gene transfer efficiency for MSCs on chitosan and chitosan-hyaluronan substrates. Biomaterials 2012;33:3639-50.
[20]Fu KY, Dai LG, Chiu IM, Chen JR, Hsu SH. Sciatic nerve regeneration by microporous nerve conduits seeded with glial cell line-derived neurotrophic factor or brain-derived neurotrophic factor gene transfected neural stem cells. Artif Organs 2011;35:363-72.
[21]Liu G, Cheng Y, Guo S, Feng Y, Li Q, Jia H, et al. Transplantation of adipose-derived stem cells for peripheral nerve repair. Int J Mol Med 2011;28:565-72.
[22]Santiago LY, Clavijo-Alvarez J, Brayfield C, Rubin JP, Marra KG. Delivery of adipose-derived precursor cells for peripheral nerve repair. Cell Transplant 2009;18:145–158.
[23]Summa PG, Kingham PJ, Raffoul W, Wiberg M, Terenghi G, Kalbermatten DF. Adipose-derived stem cells enhance peripheral nerve regeneration. J Plast Reconstr Aesthet Surg 2010;63:1544–52.
[24]Kingham PJ, Kalbermatten DF, Mahay D, Armstrong SJ, Wiberg M, Terenghi G. Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol 2007;207:267-74.
[25]Wakao S, Hayashi T, Kitada M, Kohama M, Matsue D, Teramoto N, et al. Long-term observation of auto-cell transplantation in non-human primate reveals safety and efficiency of bone marrow stromal cell-derived Schwann cells in peripheral nerve regeneration. Exp Neurol 2010;223:537-47.
[26]Keilhoff G, Stang F, Goihl A, Wolf G, Fansa H. Transdifferentiated mesenchymal stem cells as alternative therapy in supporting nerve regeneration and myelination. Cell Mol Neurobiol 2006;26:1235-52.
[27]Hong SQ, Zhang HT, You J, Zhang MY, Cai YQ, Jiang XD, et al. Comparison of transdifferentiated and untransdifferentiated human umbilical mesenchymal stem cells in rats after traumatic brain injury. Neurochem Res 2011;36:2391-400.
[28]Burns JS, Rasmussen PL, Larsen KH, Schrøder HD, Kassem M. Parameters in three-dimensional osteospheroids of telomerized human mesenchymal (stromal) stem cells grown on osteoconductive scaffolds that predict in vivo bone-forming potential. Tissue Eng Part A 2010;16:2331-42.
[29]Frith JE, Thomson B, Genever PG. Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential. Tissue Eng Part C Methods 2010;16:735-49.
[30]Miyagawa Y, Okita H, Hiroyama M, Sakamoto R, Kobayashi M, Nakajima H, et al. A microfabricated scaffold induces the spheroid formation of human bone marrow-derived mesenchymal progenitor cells and promotes efficient adipogenic differentiation. Tissue Eng Part A 2011;17:513-21.
[31]Srinivasan R, Sun G, Keles S, Jones EA, Jang SW, Krueger C, et al. Genome-wide analysis of EGR2/SOX10 binding in myelinating peripheral nerve. Nucleic Acids Res 2012;40:6449-60.
[32]Lee EJ, Xu L, Kim GH, Kang SK, Lee SW, Park SH, et al. Regeneration of peripheral nerves by transplanted sphere of human mesenchymal stem cells derived from embryonic stem cells. Biomaterials 2012;33:7039-46.
[33]Van Hove I, Lemmens K, Van de Velde S, Verslegers M, Moons L. Matrix metalloproteinase-3 in the central nervous system: a look on the bright side. J Neurochem 2012;123:203-216.
[34]Aamar E and Dawid IB. Protocadherin-18a has a role in cell adhesion, behavior and migration in zebrafish development. Dev Biol 2008;318:335-346.
[35]Chen CJ, Ou YC, Liao SL, Chen WY, Chen SY, Wu CW, et al. Transplantation of bone marrow stromal cells for peripheral nerve repair. Exp Neurol 2007;204: 443-453.
[36]Ng BK, Chen L, Mandemakers W, Cosgaya JM, Chan JR. Anterograde transport and secretion of brain-derived neurotrophic factor along sensory axons promote Schwann cell myelination. J Neurosci 2007;27:7597–603.
[37]Gold R, Archelos JJ, Hartung HP. Mechanisms of immune regulation in the peripheral nervous system. Brain Pathol 1999;9:343-60.
[38]Daly W, Yao L, Zeugolis D, Windebank A, Pandit A. A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. J R Soc Interface 2012;9:202-21.
[39]Li P, Zhang R, Sun H, Chen L, Liu F, Yao C, et al. PKH26 can transfer to host cells in vitro and vivo. Stem Cells Dev 2013;22:340-344.
[40]Belkas JS, Shoichet MS, Midha R. Peripheral nerve regeneration through guidance tubes. Neurol Res 2004;26:151-60.
[41]Lopatina T, Kalinina N, Karagyaur M, Stambolsky D, Rubina K, Revischin A, et al. Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo. PLoS One 2011;6:e17899.
[42]Liu W, Lu G, Wang B, Ma Z, Li Y. Transfection of BDNF gene promotes bone marrow mesenchymal stem cells to differentiate into neuron-like cells. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2012;37:441-6.
第四章
[1]Wu KH, Mo XM, Han ZC, Zhou B. Stem cell engraftment and survival in the ischemic heart. Ann Thorac Surg 2011;92(5):1917-25.
[2]Terrovitis JV, Smith RR, Marban E. Assessment and optimization of cell engraftment after transplantation into the heart. Circ Res 2010;106(3):479-94.
[3]Roche ET, Hastings CL, Lewin SA, Shvartsman DE, Brudno Y, Vasilyev NV, et al. Comparison of biomaterial delivery vehicles for improving acute retention of stem cells in the infarcted heart. Biomaterials 2014;35(25):6850-8.
[4]Lin YC and Marra KG. Injectable systems and implantable conduits for peripheral nerve repair. Biomed Mater 2012;7(2):024102.
[5]Li Y, Rodrigues J, Tomás H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem Soc Rev 2012;41(6):2193-221.
[6]Li ZQ and Guan JJ. Hydrogels for Cardiac Tissue Engineering. Polymers 2011;3:740-761.
[7]Gupta D, Tator CH, Shoichet MS. Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials 2006;27:2370-9.
[8]Lin S, Sangaj N, Razafiarison T, Zhang C, Varghese S. Influence of physical properties of biomaterials on cellular behavior. Pharm Res 2011;28(6):1422-30.
[9]Kothapalli CR and Kamm RD. 3D matrix microenvironment for targeted differentiation of embryonic stem cells into neural and glial lineages. Biomaterials 2013;34(25):5995-6007.
[10]Brännvall K, Bergman K, Wallenquist U, Svahn S, Bowden T, Hilborn J, et al. Enhanced neuronal differentiation in a three-dimensional collagen-hyaluronan matrix. J Neurosci Res 2007;85(10):2138-46.
[11]Seidlits SK, Khaing ZZ, Petersen RR, Nickels JD, Vanscoy JE, Shear JB, et al. The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation. Biomaterials 2010;31(14):3930-40.
[12]Zhang Y, Tao L, Li S, Wei Y. Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules. Biomacromolecules 2011;12(8):2894-901.
[13]Tan H, Marra KG. Injectable, biodegradable hydrogels for tissue engineering applications. Materials 2010;3(3):1746-1767.
[14]Lu HD, Charati MB, Kim IL, Burdick JA. Injectable shear-thinning hydrogels engineered with a self-assembling Dock-and-Lock mechanism. Biomaterials 2012;33(7):2145-53.
[15]Wang Y, Zhao Y, Sun C, Hu W, Zhao J, Li G, Zhang L, et al. Chitosan degradation products promote nerve regeneration by stimulating Schwann cell proliferation via miR-27a/FOXO1 axis. Mol Neurobiol 2014.
[16]Gnavi S, Barwig C, Freier T, Haastert-Talini K, Grothe C, Geuna S. The use of chitosan-based scaffolds to enhance regeneration in the nervous system. Int Rev Neurobiol 2013;109:1-62.
[17]O’Brien FJ, Harley BA, Waller MA, Yannas IV, Gibson LJ, et al. The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering. Technol Health Care 2007;15:3–17.
[18]Griffon DJ, Sedighi MR, Schaeffer DV, Eurell JA, Johnson AL. Chitosan scaffolds: interconnective pore size and cartilage engineering. Acta Biomater 2006;2: 313–320.
[19]Lien SM, Ko LY, Huang TJ. Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomater 2009;5: 670–679.
[20]Hassan W, Dong Y, Wang W. Encapsulation and 3D culture of human adipose-derived stem cells in an in-situ crosslinked hybrid hydrogel composed of PEG-based hyperbranched copolymer and hyaluronic acid. Stem Cell Res Ther 2013;4(2):32.
[21]Zheng H, Tian W, Yan H, Yue L, Zhang Y, Han F, Chen X, Li Y. Rotary culture promotes the proliferation of MCF-7 cells encapsulated in three-dimensional collagen-alginate hydrogels via activation of the ERK1/2-MAPK pathway. Biomed Mater 2012;7(1):015003.
[22]Wang CC, Chen CH, Hwang SM, Lin WW, Huang CH, Lee WY, Chang Y, Sung HW. Spherically symmetric mesenchymal stromal cell bodies inherent with endogenous extracellular matrices for cellular cardiomyoplasty. Stem Cells 2009;27:724–732.
[23]Zhang Q, Nguyen AL, Shi S, Hill C, Wilder-Smith P, Krasieva TB, Le AD. Three-dimensional spheroid culture of human gingiva-derived mesenchymal stem cells enhances mitigation of chemotherapy-induced oral mucositis. Stem Cell Rev 2012;21(6):937-47.
[24]Bartosh TJ, Ylöstalo JH, Mohammadipoor A, Bazhanov N, Coble K, Claypool K, Lee RH, et al. Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc Natl Acad Sci U S A 2010;107(31):13724-9.
[25]Huang GS, Tseng CS, Linju Yen B, Dai LG, Hsieh PS, Hsu SH. Solid freeform-fabricated scaffolds designed to carry multicellular mesenchymal stem cell spheroids for cartilage regeneration. Eur Cell Mater 2013;26:179-94.
[26]Tseng TC, Hsu SH. Substrate-mediated nanoparticle/gene delivery to MSC spheroids and their applications in peripheral nerve regeneration. Biomaterials 2014;35(9):2630-41.
[27]Anada T, Fukuda J, Sai Y, Suzuki O. An oxygen-permeable spheroid culture system for the prevention of central hypoxia and necrosis of spheroid. Biomaterials 2012; 33(33):8430-41.
[28]Suzuki S, Muneta T, Tsuji K, Ichinose S, Makino H, Umezawa A, Sekiya I. Properties and usefulness of aggregates of synovial mesenchymal stem cells as a source for cartilage regeneration. Arthritis Res Ther 2012;14(3):R136.
[29]Leipzig ND, Shoichet MS. The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials 2009;30(36):6867-78.
[30]Bencherif SA, Sands RW, Bhatta D, Arany P, Verbeke CS, Edwards DA, Mooney DJ. Injectable preformed scaffolds with shape-memory properties. Proc Natl Acad Sci U S A 2012 ;109(48):19590-5.
[31]Koshy ST, Ferrante TC, Lewin SA, Mooney DJ. Injectable, porous, and cell-responsive gelatin cryogels. Biomaterials 2014;35(8):2477-87.
[32]Liu W, Li Y, Zeng Y, Zhang X, Wang J, Xie L, Li X, Du Y. Microcryogels as injectable 3-D cellular microniches for site-directed and augmented cell delivery. Acta Biomater 2014;10(5):1864-75.
第五章
[1]Yu DX, Marchetto MC, Gage FH. Therapeutic translation of iPSCs for treating neurological disease. Cell Stem Cell 2013;12(6):678–688.
[2]Stoessl AJ. Gene therapy for Parkinson’s disease: a step closer? Lancet 2014;383:1107-1109.
[3]Picard-Riera N, Nait-Oumesmar B, Baron-Van Evercooren A. Endogenous adult neural stem cells: limits and potential to repair the injured central nervous system. J Neurosci Res 2004;76(2):223-31.
[4]Wichterle H, Lieberam I, Porter JA, Jessell TM. Directed differentiation of embryonic stem cells into motor neurons. Cell 2002 ;110(3):385-97.
[5]Lee H, Shamy GA, Elkabetz Y, Schofield CM, Harrsion NL, Panagiotakos G, et al. Directed differentiation and transplantation of human embryonic stem cell-derived motoneurons. Stem Cells 2007;25(8):1931-9.
[6]Prabhakaran MP, Venugopal JR, Ramakrishna S. Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Biomaterials 2009;30(28):4996-5003.
[7]Patel M, Yang S. Advances in reprogramming somatic cells to induced pluripotent stem cells. Stem cell Rev. 2010;6(3):367-80.
[8]Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science 2008;322(5903):949-53.
[9]Huang Y, Tan S. Direct lineage conversion of astrocytes to induced neural stem cells or neurons. Neurosci Bull 2015;31(3):357-67.
[10]Takahashi K, Okita K, Nakagawa M, Yamanaka S. Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2007; 2(12):3081-9.
[11]Hu BY, Weick JP, Yu J, Ma LX, Zhang XQ, Thomson JA, Zhang SC. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci U S A 2010;107(9):4335-40.
[12]Denham M, Dottori M. Neural differentiation of induced pluripotent stem cells. Methods Mol Biol 2011;793:99-110.
[13]Han DW, Tapia N, Hermann A, Hemmer K, Höing S, Araúzo-Bravo MJ, et al. Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell 2012;10(4):465-72.
[14]Ring KL, Tong LM, Balestra ME, Javier R, Andrews-Zwilling Y, Li G, et al. Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 2012;11(1):100-9.
[15] Liu Y, Labosky PA. Regulation of embryonic stem cell self-renewal and pluripotency by Foxd3. Stem Cells 2008;26(10):2475-84.
[16]Plank JL, Suflita MT, Galindo CL, Labosky PA. Transcriptional targets of Foxd3 in murine ES cells. Stem Cell Res 2014;12(1):233-40.
[17]Zhu L, Zhang S, Jin Y. Foxd3 suppresses NFAT-mediated differentiation to maintain the self-renewal of embryonic stem cells. EMBO Rep 2014;15(12):1286-96.
[18] Hsu SH, Huang GS, Ho TT, Feng F. Efficient gene silencing in mesenchymal stem cells by substrate-mediated RNA interference. Tissue Eng Part C Methods 2014;20(11):916-30.
[19]Lin YH, Fu KY, Hong PD, Ma H, Liou NH, Ma KH, et al. The effects of microenvironment on wound healing by keratinocytes derived from mesenchymal stem cells. Ann Plast Surg 2013;71 Suppl 1:S6774.
[20]Tseng TC, Hsu SH. Substrate-mediated nanoparticle/gene delivery to MSC spheroids and their applications in peripheral nerve regeneration. Biomaterials 2014;35(9):263041.
[21]Le Douarin NM, Creuzet S, Couly G, Dupin E. Neural crest cell plasticity and its limits. Development 2004;131(19):4637-50.
[22]Stewart RA, Arduini BL, Berghmans S, George RE, Kanki JP, Henion PD, Look AT. Zebrafish foxd3 is selectively required for neural crest specification, migration and survival. Dev Biol 2006;292(1):174-88.
[23]Liu Y, Labosky PA. Regulation of embryonic stem cell self-renewal and pluripotency by Foxd3. Stem Cells 2008;26(10):2475-84.
[24]Plank JL, Suflita MT, Galindo CL, Labosky PA. Transcriptional targets of Foxd3 in murine ES cells. Stem Cell Res 2014;12(1):233-40.
[25]Teng L, Mundell NA, Frist AY, Wang Q, Labosky PA. Requirement for Foxd3 in maintenance of neural crest progenitors. Development 2008;135(9):1615-24.
[26]Lister JA, Cooper C, Nguyen K, Modrell M, Grant K, Raible DW. Zebrafish Foxd3 is required for development of a subset of neural crest derivatives. Dev Biol 2006;290(1):92-104.
[27]Plank JL, Frist AY, LeGrone AW, Magnuson MA, Labosky PA. Loss of Foxd3 results in decreased β-cell proliferation and glucose intolerance during pregnancy. Endocrinology 2011;152(12):4589-600.
[28]Honoré SM, Aybar MJ, Mayor R. Sox10 is required for the early development of the prospective neural crest in Xenopus embryos. Dev Biol 2003;260(1):79-96.
[29]Cheung M, Briscoe J. Neural crest development is regulated by the transcription factor Sox9. Development 2003;130(23):5681-93.
[30]McKeown SJ, Lee VM, Bronner-Fraser M, Newgreen DF, Farlie PG. Sox10 overexpression induces neural crest-like cells from all dorsoventral levels of the neural tube but inhibits differentiation. Dev Dyn 2005;233(2):430-44.
[31]Wang Z, Oron E, Nelson B, Razis S, Ivanova N. Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. Cell Stem Cell 2012;10(4):440-54.
[32]Hanna LA, Foreman RK, Tarasenko IA, Kessler DS, Labosky PA. Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo. Genes Dev 2002;16(20):2650-61.
[33]Pan G, Li J, Zhou Y, Zheng H, Pei D. A negative feedback loop of transcription factors that controls stem cell pluripotency and self-renewal. FASEB J 2006;20(10):1730-2.
[34]Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 2003;113(5):643-55.
[35]Cassady JP, D''Alessio AC, Sarkar S, Dani VS, Fan ZP, Ganz K, Roessler R, Sur M et al. Direct lineage conversion of adult mouse liver cells and B lymphocytes to neural stem cells. Stem Cell Reports 2014;3(6):948-56.
[36]Huang Y, Tan S. Direct lineage conversion of astrocytes to induced neural stem cells or neurons. Neurosci Bull 2015;31(3):357-67.
[37]Hu BY, Weick JP, Yu J, Ma LX, Zhang XQ, Thomson JA, Zhang SC. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci U S A 2010;107(9):4335-40.
[38]Han DW, Tapia N, Hermann A, Hemmer K, Höing S, Araúzo-Bravo MJ, et al. Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell 2012;10(4):465-72.
[39]Ring KL, Tong LM, Balestra ME, Javier R, Andrews-Zwilling Y, Li G, Walker D, et al. Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 2012;11(1):100-9.
[40]Nitzan E, Krispin S, Pfaltzgraff ER, Klar A, Labosky PA, Kalcheim C. A dynamic code of dorsal neural tube genes regulates the segregation between neurogenic and melanogenic neural crest cells. Development 2013;140(11):2269-79.
[41]Mundell NA, Plank JL, LeGrone AW, Frist AY, Zhu L, Shin MK, Southard-Smith EM, Labosky PA. Enteric nervous system specific deletion of Foxd3 disrupts glial cell differentiation and activates compensatory enteric progenitors. Dev Biol 2012;363(2):373-87.
[42]Zhang Y, Tan X, Sun W, Xu P, Zhang PJ, Xu Y. Characterization of flounder (Paralichthys olivaceus) FoxD3 and its function in regulating myogenic regulatory factors. In Vitro Cell Dev Biol Anim 2011 ;47(5-6):399-405.
[43]Thomson TM, Rettig WJ, Chesa PG, Green SH, Mena AC, Old LJ. Expression of human nerve growth factor receptor on cells derived from all three germ layers. Exp Cell Res 1988;174(2):533-9.
[44]Stemple DL, Anderson DJ. Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell1992;71(6):973-85.
[45]Álvarez-Viejo M, Menéndez-Menéndez Y, Otero-Hernández J. CD271 as a marker to identify mesenchymal stem cells from diverse sources before culture. World J Stem Cells 2015;7(2):470-6.
[46]Kim J, Lo L, Dormand E, Anderson DJ. SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron 2003;38(1):17-31.
[47]Sánchez-Alvarez R, Gayen S, Vadigepalli R, Anni H. Ethanol diverts early neuronal differentiation trajectory of embryonic stem cells by disrupting the balance of lineage specifiers. PLoS One 2013;8(5):e63794.
[48]Zlotnik A, Yoshie O. The chemokine superfamily revisited. Immunity 2012;36:705-16.
[49]Tseng TC, Hsu SH. Substrate-mediated nanoparticle/gene delivery to MSC spheroids and their applications in peripheral nerve regeneration. Biomaterials 2014; 35(9):2630-41.
[50]Covello G, Siva K, Adami V, Denti MA. An electroporation protocol for efficient DNA transfection in PC12 cells. Cytotechnology 2014;66(4):543-53.
[51]Abdul Halim NS, Fakiruddin KS, Ali SA, Yahaya BH. A comparative study of non-viral gene delivery techniques to human adipose-derived mesenchymal stem cell. Int J Mol Sci 2014;15(9):15044-60.
[52]Takahashi K, Okita K, Nakagawa M, Yamanaka S. Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2007; 2(12):3081-9.
[53]Fong CY, Gauthaman K, Bongso A. Teratomas from pluripotent stem cells: A clinical hurdle. J Cell Biochem 2010;111(4):769-81.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔