|
[1].Ganji, F.; Vasheghani, F. S.; Vasheghani, V. E. Theoretical Description of Hydrogel Swelling: A Review. Iranian Polymer Journal. 2010, 19, 375-398. [2].Zhang, Z.; Chao, T.; Jiang, S. Physical, Chemical, and Chemical-Physical Double Network of Zwitterionic Hydrogels. J. Phys. Chem. B. 2008, 112, 5327-5332. [3].Park, K. M.; Lee, S. Y.; Joung, Y.K.; Na, J. S.; Lee, M. C.; Park, K.D. Thermosensitive chitosan–Pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration. Acta Biomaterialia. 2009, 5, 1956-1965. [4].Bruck, S. D. Aspects of Three Types of Hydrogels for Biomedical Applications. J. BIOMED. MATER. RES. 1973, 7, 387-404. [5].Hutchens, S. A.; Benson, R. S.; Evans, B. R.; O’Neill, H. M. Rawn, C. J. Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials. 2006, 27, 4661-4670. [6]. Hockaday, L. A.; Kang, K. H.; Colangelo, N. W.; Cheung, P. Y. C.; Duan, B.; Malone, E.; Wu, J.; Girardi, L. N.; Bonassar, L. J.; Lipson, H.; Chu, C. C.; Butcher, J. T. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication. 2012, 4, 1-12. [7]. Fedorovich,N. E.; Alblas, J.; Wijn, J. R. D.; Hennink, W. E.; Verbout, A. B. J.; Dhert, W. J. A. Hydrogels as Extracellular Matrices for Skeletal Tissue Engineering: State-of-the-Art and Novel Application in Organ Printing. Tissue Engineering. 2007, 13, 1905−1925. [8].Gil, E. S.; Hudson, S. M. Stimuli-reponsive polymers and their bioconjugates. Prog. Polym. Sci. 2004, 29, 1173–1222. [9].Hu, J.; Meng, H.; Li, G.; Ibekwe, S. I. A review of stimuli-responsive polymers for smart textile applications. Smart Mater. Struct. Sci. 2012, 21, 053001. [10].Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Advanced Drug Delivery Reviews. 2006, 58, 1655–1670. [11].Tseng, T. H.; Tao, L.; Hsieh, F. Y.; Wei, Y.; Chiu, I. M.; Hsu, S. h. An Injectable, Self-Healing Hydrogel to Repair the Central Nervous System. Adv. Mater. 2015, 27, 3518-3524. [12]. Peppasa, N. A.; Buresa, P.; Leobandunga, W.; Ichikawa, H. Hydrogels in pharmaceutical formulations. European Journal of Pharmaceutics and Biopharmaceutics. 2000, 50, 27-46. [13]. Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews. 2012, 64, 49-60. [14]. Meng, H.; Hu, J. A Brief Review of Stimulus-active Polymers Responsive to Thermal, Light, Magnetic, Electric, and Water/Solvent Stimuli. Journal of Intelligent Material Systems and Structures. 2010, 21, 859-885. [15]. Brian Derby: REVIEW Printing and Prototyping of Tissues and Scaffolds. SCIENCE. 2012, 338, 630-40. [16]. Wüst S,; Godla, M. E.; Müller, R.; Hofmann, S. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomaterialia. 2014, 10, 630-40. [17]. Bertassoni, L. E.;Cecconi, M.; Manoharan, V.; Nikkhah, M.; Hjortnaes, J.; Cristino, A. L.; Barabaschi, G.; Demarchi, D.; Dokmeci, M. R.; Yang, Y.; Khademhosseini, A. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip. 2014, 14, 2202-2211. [18]. Ou, C. W.; Su, C. H.; Jeng, U. S.; Hsu, S. h. Characterization of biodegradable polyurethane nanoparticles and thermally-induced self-assembly in water dispersion. ACS Appl. Mater. Interfaces. 2014, 6, 5685-5694. [19]. Hsu, S. h.; Hung, K. C.; Lin, Y. Y.; Su, C. H.; Yeh, H. Y.; Jeng, U. S.; Lu, C. Y.; Dai, S. A.; Fu, W. E.; Lin, J. C. Water-based synthesis and processing of novel biodegradable elastomers for medical applications. J. Mater. Chem. B. 2014, 2, 5083-5092. [20]. Chen, Y.; Hsu, S. h. Preparation and characterization of novel water-based biodegradable polyurethane nanoparticles encapsulating superparamagnetic iron oxide and hydrophobic drug. J. Mater. Chem. B. 2014, 2, 3391-3401. [21]. Tsai, Y. C.; Li, S.; Hu, S. G.; Chang, W. C; Jeng, U. S.; Hsu, S. h. Synthesis of Thermoresponsive Amphiphilic Polyurethane Gel as a New Cell Printing Material near Body Temperature. ACS Appl. Mater. Interfaces. 2015, 7, 27613−27623. [22]. Hsieh, F. Y.; Lin, H. H.; Hsu, S. h. 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials. 2015, 71, 48-57. [23]. Wang, X.; Jiao. L.; Sheng, K.; Li, C.; Dai, L.; Shi, G. Solution-processable graphene nanomeshes with controlled pore structures. Sci Rep. 2013, 3, 48-57. [24]. Geim, A. K.; Macdonald, A. H. Exploring carbon flatland. Physics Today. 2007, 71, 48-57. [25]. Rao, C. N. R.; Biswas, K.; Subrahmanyama, K. S.; Govindaraj, A. Graphene, the new nanocarbon. J. Mater. Chem. 2009, 19, 2457-2469. [26]. Yung, W. K. C.; Li, G.; Liem, H. M.; Choy, H. S.; Cai, Z. Eye-friendly reduced graphene oxide circuits with nonlinear optical transparency on flexible poly(ethylene terephthalate) substrates. J. Mater. Chem. C. 2015, 3, 11294. [27]. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science. 2004, 306, 666-669. [28]. Shen, H.; Zhang, L.; Liu, M.; Zhang, Z. Biomedical Applications of Graphene. Theranostics. 2012, 2, 283-294. [29]. Zhang, Y.; Nayak, T. R.; Hong, H.; Cai, W. Graphene: a versatile nanoplatform for biomedical applications. Nanoscale. 2012, 4, 3833-3842. [30]. Castro Neto, A. H.; Guinea, F.; Peres, N.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109-162. [31]. Chen, G. Y.; Pang, D. W.; Hwang, S. M.; Tuan, H. Y.; Hu, Y. C. A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials. 2012, 33, 418-427. [32]. Hu, X.; Li, D.; Tan, H.; Pan, C.; Chen, X. Injectable graphene oxide/graphene composite supramolecular hydrogel for delivery of anti-cancer drugs. J. Macromol. Sci. Part A. 2014, 51, 378-384. [33]. Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I. A.; Lin, Y. Graphene Based Electrochemical Sensors and Biosensors: A Review. Electroanalysis. 2010, 22, 1027-1036. [34]. Sinar, D.; Knopf, G. K.; Nikumb, S. Graphene-based inkjet printing of flexible bioelectronic circuits and sensors. Proc. of SPIE. 2013, 8612, 861204-2. [35]. Fraczek-Szczypta, A. Carbon nanomaterials for nerve tissue stimulation and regeneration. Mater. Sci. Eng. C. 2014, 34, 35-49. [36]. Lee, S. K.; Kim, H.; Shim, B. S. Graphene an emerging material for biological tissue engineering. Carbon Lett. 2013, 14, 63-75. [37]. Bressan, E.; Ferroni, L.; Gardin, C.; Sbricoli, L.; Gobbato, L.; Ludovichetti, F. S.; Tocco, I.; Carraro, A.; Piattelli, A.; Zavan, B. Graphene based scaffolds effects on stem cells commitment. Journal of Translational Medicine. 2014, 12:296. [38]. Bitounis, D.; Ali-Boucetta, H.; Hong, B. H.; Min, D. H.; Kostarelos, K. Prospects and challenges of graphene in biomedical applications. Adv. Mater. 2013, 25, 2258-2268. [39]. Park, S. Y.; Park, J.; Sim, S. H.; Sung, M. G.; Kim, K. S.; Hong, B. H.; Hong, S. Enhanced Differentiation of Human Neural Stem Cells in to Neurons on Graphene. Adv. Mater. 2011, 23, H263–H267. [40]. Heo, C.; Yoo, J.; Lee, S.; Jo, A.; Jung, S.; Yoo, H.; Lee, Y. H.; Suh, M. The control of neural cell-to-cell interactions through non-contact electrical field stimulation using graphene electrodes. Biomaterials. 2011, 32, 19-27. [41]. Lin, H. H.; Hsieh, F.-Y.; Tseng, C.-S.; Hsu, S. h. Preparation and characterization of a biodegradable polyurethane hydrogel and the hybrid gel with soy protein for 3D cell-laden bioprinting. J. Mater. Chem. B. 2016, 4, 6694. [42]. Akhavan, O.; Ghaderi, E.; Akhavan, A. Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials. 2012, 33, 8017-8025. [43]. Liao, K.-H.; Lin, Y.-S.; Macosko, C. W.; Haynes, C. L. Cytotoxicity of Graphene Oxide and Graphene in Human Erythrocytes and Skin Fibroblasts. ACS Appl. Mater. Interfaces. 2011, 3, 2607-2615. [44]. Xavier, J. M.; Rodrigues, C. M. P.; Solá, S. The Neuroscientist. 2016, 22, 346–358.
|