跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/03 17:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖御華
研究生(外文):Yu-Hua Liao
論文名稱:雙功能型交聯添加劑對有機光伏太陽能電池之效率與熱穩定性探討
論文名稱(外文):Crosslinkable Dual-functional Additives for Efficient and Thermally Stable Organic Photovoltaics
指導教授:鄭如忠
指導教授(外文):Ru-Jong Jeng
口試委員:陳志平陳永忠詹立行
口試日期:2017-05-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:90
中文關鍵詞:PTB7-ThPC61BM太陽能電池交聯反應效率熱穩定性
外文關鍵詞:PTB7-ThPC61BMOSCCrosslinkingEfficiencyThermal stability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文設計合成以二酮吡咯並吡咯(Diketopyrrolopyrrole, DPP)中心且末端具有疊氮官能基的交聯小分子材料,並將其添加入以高光電轉換效率的導電高分子Poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b'']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)] (PTB7-Th)與碳球衍生物[6,6]-phenyl-C61-butyric acid methyl ester (PC61BM)為主動層的有機太陽能電池中。藉由小分子適當的能階與填充主動層材料之可見光吸收範圍提升元件效率,也透過加熱產生化學交聯反應以提供穩定性,達到雙功能性的效果。合成出的三種交聯小分子以DPP為中心,雙噻吩、苯環與三聯苯為臂鏈,分別命名為DPPBTDA、DPPPDA與DPPTPTA,透過加入不同化學結構的交聯小分子探討其對有機太陽能電池效率提升與熱穩定性的影響。以高效率的導電高分子PTB7-Th為施體與碳球衍生物PC61BM為受體 (1:1.5, w/w) 混摻不同比例小分子材料以製備成太陽能電池之主動層,元件採反式結構。在AM 1.5照度下發現添加適當比例之交聯小分子能夠有效提升其光電轉換效率,混摻5wt % DPPBTDA元件的光伏參數:開路電壓為 0.70 V,短路電流為14.77 mAcm-2,填充因子為65.5%,轉換效率為6.75 %;導入5wt % DPPPDA之開路電壓為 0.76 V,短路電流為14.63 mAcm-2,填充因子為66.0 %,轉換效率為7.35 %。而混摻3wt % DPPTPTA之開路電壓為 0.76 V,短路電流為15.90 mAcm-2,填充因子為66.8 %,轉換效率更能達到8.11 %。另一方面,在高溫環境下維持穩定光伏轉換效率,主動層表面形貌之維持尤為重要。由傅里葉轉換紅外光譜分析儀 (FT-IR)與紫外光可見光光譜儀(UV-vis)鑑定交聯小分子之化學性交聯反應生成,經過高溫作用下,疊氮官能基會與碳球衍生物PC61BM進行3+2環化反應並生成共價鍵結,藉此穩定主動層形貌防止聚集,達到高效熱穩定性。利用光學顯微鏡觀察PTB7-Th與PC61BM組成之主動層,添加適量交聯小分子,於長時間150 oC高溫環境下主動層形貌之相分離程度減緩,結晶數量明顯減少,其中又以DPPTPTA效果最佳。混摻5wt % DPPTPTA的系統在18小時的加熱後仍能夠維持4.02 %的轉換效率。為了探討交聯小分子對太陽能電之效率提升的機制,我們透過螢光光譜(PL)證實DPPPDA與DPPTPTA能透過螢光共振能量傳遞(FRET)的方式將能量傳遞至PTB7-Th。也經由EQE的測量發現添加DPPPDA與DPPTPTA能夠形成緊密的階梯式能階幫助載子傳遞。最後也以原子力顯微鏡(AFM)觀察添加合成出的小分子對於主動層材料的影響。至於熱穩定性提升機制的方面,我們分別透過AFM與光學顯微鏡(OM)觀察主動層形貌的變化,由結果顯示添加是當比例的交聯添加劑確實能夠抑制相分離的產生並增強元件熱穩定性。經由元件效率的測量以及機制的探討,證實添加適量的DPPPDA與DPPTPTA確實能夠達到提升元件效率並增強熱穩定性的雙功能性效果。
A novel type of crosslinkers based on diketopyrrolopyrrole (DPP) as core, azide groups on the terminal of alkyl chains along with bithienyl, phenyl or terphenyl as conjugated arms (DPPBTDA, DPPPDA and DPPTPTA, accordingly) were developed. In order to investigate the enhancement of efficiency and thermal stability caused by crosslinkers, DPPBTDA, DPPPDA and DPPTPTA were respectively blend into the active layer which consist of a high performance conducting polymer (PTH7-Th) and a fullerene derivative (PC61BM). Inverted organic solar cells (OSCs) were fabricated by spin-coating the blends of PTB7-Th as donor, PC61BM as acceptor and different amounts of DPPBTDA, DPPPDA or DPPTPTA. In terms of photovoltaic performance, the OSC with 5% DPPBTDA showed a power conversion efficiency of 6.75 % whereas the OSC with 5% DPPPDA showed a power conversion efficiency of 7.35 %. Furthermore, a power conversion efficiency of 8.11 % was observed for the sample with 3 % DPPTPTA. On the other hand, the morphology of active layer has to be carefully controlled to offer optimum photovoltaic performances. According to FT-IR and UV-vis analysis, the crosslinking reaction did occur between the additives and PC61BM. The optical microscope (OM) result also indicates that only few fullerene crystals can be observed in the active layers with the crosslinkers upon heating the samples at 150˚C for 18 hours. Especially, the device with 5% DPPTPTA remained a power conversion efficiency of 4.02 % after heated at 150˚C for 18 h. The photoluminescence (PL) result showed that energy transfer was present between PTB7-Th, and two individual crosslinkers, DPPPDA and DPPTPTA. The external quantum efficiency (EQE) measurement also showed that the respective addition of DPPPDA and DPPTPTA increased the power conversion by enhancing the charge transfer. These two measurements revealed the mechanisms of the enhancement of power conversion efficiency. Apart from that, the result of atomic force microscope (AFM) and OM showed that the addition of crosslinkers inhibited macrophase separation in the active layers. Based on the above, two of the crosslinkers (DPPPDA and DPPTPTA) were able to increase the power conversion efficiency with fluorescence resonance energy transfer (FRET) and ladder-like energy levels and all of them could bring about stable morphology and further enhance the thermal stability via crosslinking reactions.
口試委員審定書I
誌謝II
摘要III
AbstractV
目錄VII
圖目錄IX
表目錄XII
第一章 緒論1
1.1前言1
1.2太陽能發展歷史及太陽能電池介紹2
1.3有機太陽能電池介紹3
1.4有機太陽能電池工作原理5
1.5太陽放射光譜圖7
1.6太陽能電池基本特性參數9
1.7 有機太陽能元件的發展12
1.7.1單層結構元件(single layer device)12
1.7.2雙層異質接面結構元件(bilayer heterojunction device)13
1.7.3單層異質接面結構元件(bulk heterojunction device)14
第二章 文獻回顧與研究動機16
2.1 文獻回顧16
2.2 研究動機25
第三章 實驗內容27
3.1使用藥品與溶劑27
3.2使用儀器30
3.3實驗流程圖34
3.4 交聯材料之合成流程35
第四章 結果與討論47
4.1 小分子基本性質47
4.1.1 結構基本分析47
4.1.2 熱性質51
4.1.3 光學性質53
4.2 交聯鑑定57
4.3 元件光伏特性59
4.3.1 效率提升特性59
4.3.2 熱穩定提升特性62
4.4小分子添加劑對效率與熱穩定性提升之機制探討66
4.4.1 效率提升分析66
4.4.1 熱穩定性提升分析70
第五章 結論75
參考文獻77
附錄82
1.R. E. Smalley, Energy & NanoTechnology Conference, Rice University, 2003
2.馬振基;張正華;李陵嵐;葉處平;楊平華. 有機與塑膠太陽能電池, 五南圖書出版股份有限公司, 2007.
3.A. Becquerel, CR Acad. Sci, 1839, 9, 711-714.
4.D. M. Chapin, C. Fuller and G. Pearson, Journal of Applied Physics, 1954, 25, 676-677.
5.A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell and M. D. McGehee, Materials today, 2007, 10, 28-33.
6.S. Günes, H. Neugebauer and N. S. Sariciftci, Chemical reviews, 2007, 107, 1324-1338.
7.F. C. Krebs, S. A. Gevorgyan and J. Alstrup, Journal of Materials Chemistry, 2009, 19, 5442-5451.
8.A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, Chemical reviews, 2010, 110, 6595-6663.
9.B. O’regan and M. Grfitzeli, Nature, 1991, 353, 737-740.
10.M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa and V. Shklover, Journal of the American Chemical Society, 2001, 123, 1613-1624.
11.A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin and M. Grätzel, Science, 2011, 334, 629-634.
12.G. Yu, K. Pakbaz and A. Heeger, Applied Physics Letters, 1994, 64, 3422-3424.
13.Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade and H. Yan, Nat Commun, 2014, 5, 5293.
14.H. Yan, SPIE Organic Photonics+ Electronics, 2015.
15.Y.-J. Cheng, S.-H. Yang and C.-S. Hsu, Chemical reviews, 2009, 109, 5868-5923.
16.V. Arkhipov and H. Bässler, Physica Status Solidi (a), 2004, 201, 1152-1187.
17.J. Nelson, Current Opinion in Solid State and Materials Science, 2002, 6, 87-95.
18.D. Chirvase, Z. Chiguvare, M. Knipper, J. Parisi, V. Dyakonov and J. Hummelen, Synthetic Metals, 2003, 138, 299-304.
19.C. J. Brabec, G. Zerza, G. Cerullo, S. De Silvestri, S. Luzzati, J. C. Hummelen and S. Sariciftci, Chemical Physics Letters, 2001, 340, 232-236.
20.Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller‐Meskamp and K. Leo, Advanced Functional Materials, 2011, 21, 1076-1081.
21.E. Ahlswede, J. Hanisch and M. Powalla, Applied physics letters, 2007, 90, 163504.
22.S. R. Kurtz, D. Myers, T. Townsend, C. Whitaker, A. Maish, R. Hulstrom and K. Emery, Solar Energy Materials and Solar Cells, 2000, 62, 379-391.
23.M. Pagliaro, R. Ciriminna and G. Palmisano, ChemSusChem, 2008, 1, 880-891.
24.A. K. Ghosh and T. Feng, Journal of Applied Physics, 1978, 49, 5982-5989.
25.H. Antoniadis, B. Hsieh, M. Abkowitz, S. Jenekhe and M. Stolka, Synthetic Metals, 1994, 62, 265-271.
26.C. W. Tang, Applied Physics Letters, 1986, 48, 183-185.
27.N. Sariciftci, L. Smilowitz, A. Heeger and F. Wudl, Synthetic Metals, 1993, 59, 333-352.
28.H. Spanggaard and F. C. Krebs, Solar Energy Materials and Solar Cells, 2004, 83, 125-146.
29.G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Science, 1995, 270, 1789.
30.L. Lu, M. A. Kelly, W. You and L. Yu, Nature Photonics, 2015, 9, 491-500.
31.F. Padinger, R. S. Rittberger and N. S. Sariciftci, Advanced Functional Materials, 2003, 13, 85-88.
32.G. Li, V. Shrotriya, Y. Yao and Y. Yang, Journal of Applied Physics, 2005, 98, 043704.
33.D. Chirvase, J. Parisi, J. C. Hummelen and V. Dyakonov, Nanotechnology, 2004, 15, 1317.
34.J. Huang, G. Li and Y. Yang, Applied Physics Letters, 2005, 87, 112105.
35.V. Shrotriya, J. Ouyang, R. J. Tseng, G. Li and Y. Yang, Chemical Physics Letters, 2005, 411, 138-143.
36.Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray and L. Yu, Advanced Materials, 2010, 22.
37.J. H. Seo, A. Gutacker, Y. Sun, H. Wu, F. Huang, Y. Cao, U. Scherf, A. J. Heeger and G. C. Bazan, Journal of the American Chemical Society, 2011, 133, 8416-8419.
38.M. Jørgensen, K. Norrman, S. A. Gevorgyan, T. Tromholt, B. Andreasen and F. C. Krebs, Advanced materials, 2012, 24, 580-612.
39.J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong and A. J. Heeger, Advanced Materials, 2006, 18, 572-576.
40.J.-M. Y. Carrillo, R. Kumar, M. Goswami, B. G. Sumpter and W. M. Brown, Physical Chemistry Chemical Physics, 2013, 15, 17873-17882.
41.C. J. Schaffer, C. M. Palumbiny, M. A. Niedermeier, C. Jendrzejewski, G. Santoro, S. V. Roth and P. Müller‐Buschbaum, Advanced Materials, 2013, 25, 6760-6764.
42.H. Waters, J. Kettle, S.-W. Chang, C.-J. Su, W.-R. Wu, U.-S. Jeng, Y.-C. Tsai and M. Horie, Journal of Materials Chemistry A, 2013, 1, 7370-7378.
43.L. Li, D. L. Jacobs, Y. Che, H. Huang, B. R. Bunes, X. Yang and L. Zang, Organic Electronics, 2013, 14, 1383-1390.
44.H.-W. Liu, D.-Y. Chang, W.-Y. Chiu, S.-P. Rwei and L. Wang, Journal of Materials Chemistry, 2012, 22, 15586-15591.
45.Y.-C. Lai, T. Higashihara, J.-C. Hsu, M. Ueda and W.-C. Chen, Solar Energy Materials and Solar Cells, 2012, 97, 164-170.
46.G. Wantz, L. Derue, O. Dautel, A. Rivaton, P. Hudhomme and C. Dagron-Lartigau, Polymer International, 2014, 63, 1346-1361.
47.B. Liu, R. Q. Png, L. H. Zhao, L. L. Chua, R. H. Friend and P. K. Ho, Nat Commun, 2012, 3, 1321.
48.L. Derue, O. Dautel, A. Tournebize, M. Drees, H. Pan, S. Berthumeyrie, B. Pavageau, E. Cloutet, S. Chambon, L. Hirsch, A. Rivaton, P. Hudhomme, A. Facchetti and G. Wantz, Advanced Materials, 2014, 26, 5831-5838.
49.Y.-C. Chao, C.-H. Chuang, H.-L. Hsu, H.-J. Wang, Y.-C. Hsu, C.-P. Chen and R.-J. Jeng, Solar Energy Materials and Solar Cells, 2016, 157, 666-675.
50.L. Lu, T. Zheng, Q. Wu, A. M. Schneider, D. Zhao and L. Yu, Chem Rev, 2015, 115, 12666-12731.
51.Q. An, F. Zhang, L. Li, J. Wang, J. Zhang, L. Zhou and W. Tang, ACS Appl Mater Interfaces, 2014, 6, 6537-6544.
52.L. Ye, H.-H. Xu, H. Yu, W.-Y. Xu, H. Li, H. Wang, N. Zhao and J.-B. Xu, The Journal of Physical Chemistry C, 2014, 118, 20094-20099.
53.Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell and Y. Cao, Nature Photonics, 2015, 9, 174-179.
54.A. B. Tamayo, X.-D. Dang, B. Walker, J. Seo, T. Kent and T.-Q. Nguyen, Applied Physics Letters, 2009, 94, 103301.
55.L. M. Chen, Z. Hong, G. Li and Y. Yang, Advanced Materials, 2009, 21, 1434-1449.
56.J.-S. Huang, T. Goh, X. Li, M. Y. Sfeir, E. A. Bielinski, S. Tomasulo, M. L. Lee, N. Hazari and A. D. Taylor, Nature Photonics, 2013, 7, 479-485.
57.J. W. Rumer, R. S. Ashraf, N. D. Eisenmenger, Z. Huang, I. Meager, C. B. Nielsen, B. C. Schroeder, M. L. Chabinyc and I. McCulloch, Advanced Energy Materials, 2015, 5, 1401426.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top