|
1.Krevelen, D. W. v., New Developments in the Field of Flame-Resistant Fibres. Die Angewandte Makromolekulare Chemie 1972, 22, 133-157. 2.Krevelen, D. W. v., Some basic aspects of flame resistance of polymeric materials. Polymer 1975, 16, 615-620. 3.Alaee, M., An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environment International 2003, 29 (6), 683-689. 4.Laoutid, F.; Bonnaud, L.; Alexandre, M.; Lopez-Cuesta, J. M.; Dubois, P., New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Materials Science and Engineering: R: Reports 2009, 63 (3), 100-125. 5.Chattopadhyay, D. K.; Webster, D. C., Thermal stability and flame retardancy of polyurethanes. Progress in Polymer Science 2009, 34 (10), 1068-1133. 6.Cain, A. A.; Nolen, C. R.; Li, Y.-C.; Davis, R.; Grunlan, J. C., Phosphorous-filled nanobrick wall multilayer thin film eliminates polyurethane melt dripping and reduces heat release associated with fire. Polymer Degradation and Stability 2013, 98 (12), 2645-2652. 7.Wilson, W. E.; O’Donovan, J. T.; Fristrom, R. M., Flame inhibition by halogen compounds. Symposium (International) on Combustion 1969, 12 (1), 929-942. 8.Suzanne, M.; Zhang, J.; Ukleja, S.; Ramani, A.; Delichatsios, M. A.; Patel, P.; Shaw, S.; Clarke, P.; Cusack, P., Comparison of brominated and halogen free flame retardant behaviours in glass-fibre- reinforced poly(butylene terephthalate). In MCS7, Italy, 2011. 9.Meerts, I. A. T. M.; Zanden, J. J. v.; Luijks, E. A. C.; Leeuwen-Bol, I. v.; Marsh, G.; Jakobsson, E.; Bergman, Å.; Brouwer, A., Potent Competitive Interactions of Some Brominated Flame Retardants and Related Compounds with Human Transthyretin in Vitro. Toxicol Sci 2000, 56 (1), 95-104. 10.WHO/ICPS, Environmental Health Criteria 152: Polybrominated biphenyls. Organization, W. H., Ed. Geneva, 1994. 11.WHO/ICPS, Environmental Health Criteria 162: Brominated diphenylethers. Organization, W. H., Ed. Geneva, 1994. 12.WHO/ICPS, Environmental Health Criteria 172: Tetrabromobisphenol A and derivatives. Organization, W. H., Ed. Geneva, 1995. 13.Restriction of the Use of Hazardous Substances in electrical and electronic equipment, RoHS. Commission, E., Ed. 2003. 14.Xie, H.; Lai, X.; Zhou, R.; Li, H.; Zhang, Y.; Zeng, X.; Guo, J., Effect and mechanism of N-alkoxy hindered amine on the flame retardancy, UV aging resistance and thermal degradation of intumescent flame retardant polypropylene. Polymer Degradation and Stability 2015, 118, 167-177. 15.Edenharter, A.; Breu, J., Applying the flame retardant LDH as a Trojan horse for molecular flame retardants. Applied Clay Science 2015, 114, 603-608. 16.Thirumal, M.; Khastgir, D.; Nando, G. B.; Naik, Y. P.; Singha, N. K., Halogen-free flame retardant PUF: Effect of melamine compounds on mechanical, thermal and flame retardant properties. Polymer Degradation and Stability 2010, 95 (6), 1138-1145. 17.Konig, A.; Fehrenbacher, U.; Kroke, E.; Hirth, T., Thermal Decomposition Behavior of the Flame Retardant Melamine in Slabstock Flexible Polyurethane Foams. Journal of Fire Sciences 2009, 27 (3), 187-211. 18.Liang, H.; Asif, A.; Shi, W., Thermal degradation and flame retardancy of a novel methacrylated phenolic melamine used for UV curable flame retardant coatings. Polymer Degradation and Stability 2005, 87 (3), 495-501. 19.Lotsch, B. V.; Schnick, W., New light on an old story: formation of melam during thermal condensation of melamine. Chemistry 2007, 13 (17), 4956-68. 20.Tai, Q.; Yuen, R. K. K.; Yang, W.; Qiao, Z.; Song, L.; Hu, Y., Iron-montmorillonite and zinc borate as synergistic agents in flame-retardant glass fiber reinforced polyamide 6 composites in combination with melamine polyphosphate. Composites Part A: Applied Science and Manufacturing 2012, 43 (3), 415-422. 21.Perret, B.; Schartel, B.; Stöß, K.; Ciesielski, M.; Diederichs, J.; Döring, M.; Krämer, J.; Altstädt, V., Novel DOPO-based flame retardants in high-performance carbon fibre epoxy composites for aviation. European Polymer Journal 2011, 47 (5), 1081-1089. 22.Salmeia, K. A.; Gaan, S., An overview of some recent advances in DOPO-derivatives: Chemistry and flame retardant applications. Polymer Degradation and Stability 2015, 113, 119-134. 23.Gouri, M. E.; Bachiri, A. E.; Hegazi, S. E.; Ziraoui, R.; Rafik, M.; Harfi, A. E., A phosphazene compound multipurpose application -Composite material precursor and reactive flame retardant for epoxy resin materials. J. Mater. Environ. Sci 2011, 2 (4), 319-334. 24.He, Y.; Chen, Y.; Zheng, Q.; Zheng, J.; Chen, S., Preparation and properties of flame-retardant viscose fiber modified with poly[bis(methoxyethoxy)phosphazene]. Fibers and Polymers 2015, 16 (5), 1005-1011. 25.Hutchison, J. C.; Bissessur, R.; Shriver, D. F., New Polyphosphazene—Clay and Cryptand—Clay Intercalates. 1996; Vol. 622, p 262-272. 26.Silvestrelli, P. L.; Gleria, M.; Milani, R.; Boscoletto, A. B., Surface Functionalization with Phosphazene Substrates. Part II. Theoretical and Experimental Investigations of the Interactions of Hexachlorocyclophosphazene with Hydroxylated Silicon-based Surfaces. Journal of Inorganic and Organometallic Polymers and Materials 2006, 16 (4), 327-341. 27.Chen, Y. M.; Liao, Y. L.; Lin, J. J., Synergistic effect of silicate clay and phosphazene-oxyalkyleneamines on thermal stability of cured epoxies. J Colloid Interface Sci 2010, 343 (1), 209-16. 28.Huang, T.-K.; Wang, Y.-C.; Hsieh, K.-H.; Lin, J.-J., Molecular-level dispersion of phosphazene–clay hybrids in polyurethane and synergistic influences on thermal and UV resistance. Polymer 2012, 53 (19), 4060-4068. 29.Hornsby, P. R., The application of magnesium hydroxide as a fire retardant and smoke‐suppressing additive for polymers. Fire and Materials 1994, 18 (5), 269. 30.Charles, A. W.; Alexander, B. M., Fire-retardant fillers. In Fire Retardancy of Polymeric Materials, 2 ed.; Charles, A. W.; Alexander, B. M., Eds. 2009; pp 163-185. 31.Hornsby, P. R.; Watson, C. L., A study of the mechanism of flame retardance and smoke suppression in polymers filled with magnesium hydroxide. Polymer Degradation and Stability 1990, 30 (1), 73. 32.Patra, D.; Vangal, P.; Cain, A. A.; Cho, C.; Regev, O.; Grunlan, J. C., Inorganic nanoparticle thin film that suppresses flammability of polyurethane with only a single electrostatically-assembled bilayer. ACS Appl Mater Interfaces 2014, 6 (19), 16903-8. 33.Pavlidou, S.; Papaspyrides, C. D., A review on polymer–layered silicate nanocomposites. Progress in Polymer Science 2008, 33 (12), 1119-1198. 34.Mitchell, J. K.; Soga, K., In Fundamentals of Soil Behavior, 3 ed.; John Wiley & Sons Inc: New York, 2005. 35.Usuki, A.; Hasegawa, N.; Kadoura, H.; Okamoto, T., Three-Dimensional Observation of Structure and Morphology in Nylon-6/Clay Nanocomposite. Nano Letters 2001, 1 (5), 271. 36.Theng, B. K. G., In Formation and Properties of Clay-Polymer Complexes, 2 ed.; Elsevier Science: Oxford, 2012. 37.Wang, Y. C.; Huang, T. K.; Tung, S. H.; Wu, T. M.; Lin, J. J., Self-assembled clay films with a platelet-void multilayered nanostructure and flame-blocking properties. Sci Rep 2013, 3, 2621. 38.Pinnavaia, T. J., Intercalated clay catalysts. Science 1983, 220 (4595), 365. 39.Ajjou, A. N.; Harouna, D.; Detellier, C.; Alper, H., Cation-exchanged montmorillonite catalyzed hydration of styrene derivatives. Journal of Molecular Catalysis A: Chemical 1997, 126 (1), 55. 40.Ho, J. Y.; Liu, T. Y.; Wei, J. C.; Wang, J. K.; Wang, Y. L.; Lin, J. J., Selective SERS detecting of hydrophobic microorganisms by tricomponent nanohybrids of silver-silicate-platelet-surfactant. ACS Appl Mater Interfaces 2014, 6 (3), 1541-9. 41.Celis, R.; Hermosín, M. C.; Carrizosa, M. J.; Cornejo, J., Inorganic and Organic Clays as Carriers for Controlled Release of the Herbicide Hexazinone. Journal of Agricultural and Food Chemistry 2002, 50 (8), 2324. 42.Rawajfih, Z.; Nsour, N., Characteristics of phenol and chlorinated phenols sorption onto surfactant-modified bentonite. J Colloid Interface Sci 2006, 298 (1), 39-49. 43.Király, Z.; Veisz, B.; Mastalir, Á.; Köfaragó, G., Preparation of Ultrafine Palladium Particles on Cationic and Anionic Clays, Mediated by Oppositely Charged Surfactants: Catalytic Probes in Hydrogenations. Langmuir 2001, 17 (17), 5381. 44.Liang, J. J.; Wei, J. C.; Lee, Y. L.; Hsu, S. H.; Lin, J. J.; Lin, Y. L., Surfactant-modified nanoclay exhibits an antiviral activity with high potency and broad spectrum. J Virol 2014, 88 (8), 4218-28. 45.Wei, J.-C.; Yen, Y.-T.; Wang, Y.-T.; Hsu, S.-h.; Lin, J.-J., Enhancing silver nanoparticle and antimicrobial efficacy by the exfoliated clay nanoplatelets. RSC Advances 2013, 3 (20), 7392. 46.Lin, J. J.; Lin, W. C.; Li, S. D.; Lin, C. Y.; Hsu, S. H., Evaluation of the antibacterial activity and biocompatibility for silver nanoparticles immobilized on nano silicate platelets. ACS Appl Mater Interfaces 2013, 5 (2), 433-43. 47.Wei, J.-C.; Yen, Y.-T.; Su, H.-L.; Lin, J.-J., Inhibition of Bacterial Growth by the Exfoliated Clays and Observation of Physical Capturing Mechanism. The Journal of Physical Chemistry C 2011, 115 (38), 18770-18775. 48.Tseng, H. J.; Lin, J. J.; Ho, T. T.; Tseng, S. M.; Hsu, S. H., The biocompatibility and antimicrobial activity of nanocomposites from polyurethane and nano silicate platelets. J Biomed Mater Res A 2011, 99 (2), 192-202. 49.Chiu, C.-W.; Huang, T.-K.; Wang, Y.-C.; Alamani, B. G.; Lin, J.-J., Intercalation strategies in clay/polymer hybrids. Progress in Polymer Science 2014, 39 (3), 443-485. 50.LeBaron, P. C.; Wang, Z.; Pinnavaia, T. J., Polymer-layered silicate nanocomposites: an overview. Applied Clay Science 1999, 15 (1–2), 11. 51.Lee, C. H.; Liu, K. Y.; Chang, S. H.; Lin, K. J.; Lin, J. J.; Ho, K. C.; Lin, K. F., Gelation of ionic liquid with exfoliated montmorillonite nanoplatelets and its application for quasi-solid-state dye-sensitized solar cells. J Colloid Interface Sci 2011, 363 (2), 635-9. 52.Chan, Y.-N.; Hsu, R.-S.; Lin, J.-J., Mechanism of Silicate Platelet Self-Organization during Clay-Initiated Epoxy Polymerization. The Journal of Physical Chemistry C 2010, 114 (23), 10373. 53.Liao, Y.-L.; Chiu, C.-W.; Lin, J.-J., General Intercalation of Poly(oxyalkylene)−Amidoacids for Anionic and Cationic Layered Clays. Industrial & Engineering Chemistry Research 2010, 49, 5001. 54.Chen, Y.-C.; Juang, T.-Y.; Dai, S. A.; Wu, T.-M.; Lin, J.-J.; Jeng, R.-J., Optical Non-Linearity from Montmorillonite Intercalated with a Chromophore-Containing Dendritic Structure: A Self-Assembly Approach. Macromolecular Rapid Communications 2008, 29 (7), 587-592. 55.Chiou, J.-Y.; Hsu, R.-S.; Chiu, C.-W.; Lin, J.-J., A stepwise mechanism for intercalating hydrophobic organics into multilayered clay nanostructures. RSC Advances 2013, 3 (31), 12847. 56.Lin, J.-J.; Chan, Y.-N.; Lan, Y.-F., Hydrophobic Modification of Layered Clays and Compatibility for Epoxy Nanocomposites. Materials 2010, 3 (4), 2588-2605. 57.Okada, A.; Usuki, A., The chemistry of polymer-clay hybrids. Materials Science and Engineering: C 1995, 3 (2), 109. 58.Okada, A.; Usuki, A., Twenty Years of Polymer-Clay Nanocomposites. Macromolecular Materials and Engineering 2006, 291 (12), 1449-1476. 59.Chiou, J.-Y.; Huang, T.-K.; Hsieh, K.-H.; Lin, J.-J., Fine dispersion of phosphazene-amines and silicate platelets in epoxy nanocomposites and the synergistic fire-retarding effect. Journal of Polymer Research 2014, 21 (6). 60.Chou, C.-C.; Lin, J.-J., One-Step Exfoliation of Montmorillonite via Phase Inversion of Amphiphilic Copolymer Emulsion. Macromolecules 2005, 38, 230. 61.Lin, J.-J.; Chan, Y.-N.; Chang, W.-H., Amphiphilic Poly(oxyalkylene)-Amines Interacting with Layered Clays Intercalation, Exfoliation and New Applications. In Advanced Nanomaterials, Geckeler, K. E.; Nishide, H., Eds. John Wiley & Sons Inc.: New York, 2010; pp 459–480. 62.Chu, C.-C.; Chiang, M.-L.; Tsai, C.-M.; Lin, J.-J., Exfoliation of Montmorillonite Clay by Mannich Polyamines with Multiple Quaternary Salts. Macromolecules 2005, 38, 6240. 63.Chiu, C.-W.; Chu, C.-C.; Cheng, W.-T.; Lin, J.-J., Exfoliation of smectite clays by branched polyamines consisting of multiple ionic sites. European Polymer Journal 2008, 44 (3), 628-636. 64.Walther, A.; Bjurhager, I.; Malho, J. M.; Pere, J.; Ruokolainen, J.; Berglund, L. A.; Ikkala, O., Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways. Nano Lett 2010, 10 (8), 2742. 65.Apaydin, K.; Laachachi, A.; Ball, V.; Jimenez, M.; Bourbigot, S.; Toniazzo, V.; Ruch, D., Polyallylamine–montmorillonite as super flame retardant coating assemblies by layer-by layer deposition on polyamide. Polymer Degradation and Stability 2013, 98 (2), 627-634. 66.Chang, S.; Slopek, R. P.; Condon, B.; Grunlan, J. C., Surface Coating for Flame-Retardant Behavior of Cotton Fabric Using a Continuous Layer-by-Layer Process. Industrial & Engineering Chemistry Research 2014, 53 (10), 3805-3812. 67.Kumar, S. P.; Takamori, S.; Araki, H.; Kuroda, S., Flame retardancy of clay–sodium silicate composite coatings on wood for construction purposes. RSC Adv. 2015, 5 (43), 34109-34116. 68.Huang, Y. H.; Chen, M. H.; Lee, B. H.; Hsieh, K. H.; Tu, Y. K.; Lin, J. J.; Chang, C. H., Evenly distributed thin-film Ag coating on stainless plate by tricomponent Ag/silicate/PU with antimicrobial and biocompatible properties. ACS Appl Mater Interfaces 2014, 6 (22), 20324-33. 69.D3806-98: Standard Test Method of Small-Scale Evaluation of Fire-Retardant Paints (2-Foot Tunnel Method). ASTM, Ed. 70.E662-15a: Standard Test Method for Specific Optical Density of Smoke Generated by Solid Materials. ASTM, Ed. 71.E84-15b: Standard Test Method for Surface Burning Characteristics of Building Materials. ASTM, Ed. 72.Amigó, J. M.; Serrano, F. J.; Kojdecki, M. A.; Bastida, J.; Esteve, V.; Reventós, M. M.; Martí, F., X-ray diffraction microstructure analysis of mullite, quartz and corundum in porcelain insulators. Journal of the European Ceramic Society 2005, 25 (9), 1479-1486. 73.Morris, M. C.; McMurdie, H. F.; Evans, E. H.; Paretzkin, B.; Parker, H. S.; Panagiotopoulos, N. C., Section 18 - Data for 58 Substances. In Standard X-ray Diffraction Powder Patterns, Hubbard, C. R., Ed. National Measurement Laboratory: Washington, DC, 1981. 74.Sheng, G. D.; Shao, D. D.; Fan, Q. H.; Xu, D.; Chen, Y. X.; Wang, X. K., Effect of pH and ionic strength on sorption of Eu(III) to MX-80 bentonite: batch and XAFS study. Radiochimica Acta 2009, 97 (11). 75.Kontoyannis, C. G.; Vagenas, N. V., Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy. The Analyst 2000, 125 (2), 251-255. 76.Wu, H.; Xie, H.; He, G.; Guan, Y.; Zhang, Y., Effects of the pH and anions on the adsorption of tetracycline on iron-montmorillonite. Applied Clay Science 2016, 119 (1), 161. 77.Yu, S.; Mei, H.; Chen, X.; Tan, X.; Ahmad, B.; Alsaedi, A.; Hayat, T.; Wang, X., Impact of environmental conditions on the sorption behavior of radionuclide 90Sr(II) on Na-montmorillonite. Journal of Molecular Liquids 2015, 203, 39-46. 78.Bhowmick, S.; Chakraborty, S.; Mondal, P.; Van Renterghem, W.; Van den Berghe, S.; Roman-Ross, G.; Chatterjee, D.; Iglesias, M., Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: Kinetics and mechanism. Chemical Engineering Journal 2014, 243, 14-23. 79.Kulbicki, G., High temperature phases of montmorillonite. In Clays and Clay Minerals, Swineford, A., Ed. Washinton, D. C., 1958; p 144. 80.Uno, Y.; Kohyama, N.; Sato, M.; Takeshi, H., High temperature phase transformation of montmorillonites. Journal of the Mineralogical Society of Japan 1986, 17 (Special), 155. 81.Fajnor, V. Š.; Gerthofferová, H.; Kuchta, Ľ.; Masár, J., High-temperature phases of montmorillonite synthetized from the oxides SiO2-Al2O3-MgO-CaO. Journal of thermal analysis 1982, 24 (1), 51.
|