跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/21 02:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭昱偉
研究生(外文):Yu-Wei Hsiao
論文名稱:新穎性奈米矽材於阻焰及阻熱應用開發
論文名稱(外文):Novel Nano Silicates for Fire-proof and Anti-heat Applications
指導教授:林江珍
口試日期:2017-07-07
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:85
中文關鍵詞:脫層奈米矽片有序波浪結構防火材抗焰性火焰擴散火焰貫穿甲基化三聚氰胺六氯環三磷腈水性聚氨酯海綿網狀結構
外文關鍵詞:exfoliationnano-silicate platelethighly-ordered wavy structuresflame retardantflame retardancyflame propagationflame penetrationmethylated melamine resinwater-borne polyurethanehexachlorocyclophosphazenesponge-like network structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:259
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以無機層狀黏土搭配水性聚氨酯及氮磷系耐燃劑,開發一系列阻熱抗焰劑(Anti-Flame Propagation Agent, AFPA),並將其製成塗料塗布於高分子基材(ex:PET)表面,進行防火性能之測試。在先前的研究中我們開發了將天然層狀黏土脫層為奈米矽片(nano-silicate platelet, NSP)之技術。奈米矽片具有高片徑比與高表面電荷的特性,使其可自組裝成有序波浪狀結構,層間含有高達40 %的空氣,使其具有阻熱阻焰的能力。我們將奈米矽片搭配甲基化三聚氰胺、六氯環三磷腈與水性聚氨酯,以改善薄膜之防火功能與機械性質。經瓦斯噴槍進行防火測試,複合薄膜阻擋火焰不擴散延燒(x軸與y軸方向),且可以阻擋火焰超過120秒(z軸方向可阻止火焰貫穿)。後續我們對燃燒後的薄膜進行了微結構、晶型與元素分析,發現AFPA薄膜在經過120秒的火焰燃燒後,產生了海綿網狀結構,且其從原本的石英與蒙托土特有晶型轉為方石英晶型。
We developed a series of anti-flame propagation agent (AFPA) comprising of the exfoliated nanoscale silicate platelets (NSP), organic resins and optionally phosphorus compound. The silicate clay nano-hybrids can be applied as surface coating resins into films. The NSP have self-assembling behaviors to form thin films with highly ordered structure that entrapped 40% air in the void. The air voids and its 2D structure provided great potential for flame retardant applications. For practical uses, polymer resins including methylated melamine, hexachlorocyclophosphazene (HCP), and water-borne polyurethane (WPU) were introduced into the coating films for improving its mechanical properties and flame retardancy. Layered structures of NSP composites were analyzed by scanning electron microscopy (SEM) and the flame test under butane torch was performed in a video, for showing the prevention of flame spread x-y and z-axis flame penetration for over 120 seconds. Further works on the AFPA films after combustion were characterized by SEM for their microstructures, by X-ray powder diffraction (XRD) for their crystalline structures and by energy dispersive X-ray spectroscopy (SEM-EDX) for element analysis. A sponge-like network structure was visualized, origin quartz and characteristic structures had transformed into β-cristobalite and amorphous structures after 120 seconds of flaming. The morphologies before and after combustion of the silicate-involved films gave rise to the elucidation of anti-fire mechanism.
口試委員審定書 ii
致謝 iii
摘要 iv
Abstract v
Contents vii
List of Figures ix
List of Tables xvi

Chapter 1. Introduction and Literature Review 1
1.1 Introduction of Flame Retardants 1
1.1.1 Polymer Combustion and Flame Retardants 1
1.1.2 Organohalogen Retardants 2
1.1.3 Organonitrogen Retardants 4
1.1.4 Phosphorus Retardants 5
1.1.5 Inorganic Retardants 7
1.2 Introduction of Layered Clays and Nano Silicate Platelets 9
1.2.1 Natural Layered Clays 9
1.2.2 Intercalation and Clay-polymer Nanocomposites 10
1.2.3 Exfoliation of Layered Clay to Nano Silicate Platelets 13
1.2.4 Self-assembly and Flame-shielding Property of Nano Silicate Platelets 16
1.3 Research Objectives 20
Chapter 2. Experimental Section 21
2.1 Materials 21
2.2 Synthesis of AFPA Paints 22
2.2.1 NSP Dispersants 22
2.2.2 NSP/WPU Dispersants 22
2.2.3 NSP/M Dispersants 23
2.2.4 NSP-HCP/M/WPU Dispersants 23
2.3 Procedures of AFPA Coating on PET Films 26
2.4 Characterization 27
2.4.1 Instrumental Characterization 27
2.4.2 Flame Test Method 27
Chapter 3. Result and Discussion 30
3.1 Synthesis of NSP-HCP/M/WPU Dispersants 30
3.2 Microstructure Characterization of AFPA Films 32
3.2.1 NSP Films on PET Films 32
3.2.2 NSP/WPU Films on PET Films 33
3.2.3 NSP/M Films on PET Films 34
3.2.4 NSP-HCP/M/WPU Films on PET Films 36
3.2.5 Basal Spacing of AFPA Films 37
3.3 Flame Retardancy of AFPA Paints 38
3.3.1 Simple Ignition Test 38
3.3.2 Flame Penetration Test 43
3.4 Analysis of Combusted AFPA Films 50
3.4.1 Microstructure Characterization by SEM 50
3.4.2 Basal Spacing Characterizations by XRD 58
3.4.3 Crystalline Structure Characterizations by XRD 59
3.4.4 Element Analysis by SEM-EDX 64
Chapter 4. Conclusion 73
Chapter 5. Reference 74
1.Krevelen, D. W. v., New Developments in the Field of Flame-Resistant Fibres. Die Angewandte Makromolekulare Chemie 1972, 22, 133-157.
2.Krevelen, D. W. v., Some basic aspects of flame resistance of polymeric materials. Polymer 1975, 16, 615-620.
3.Alaee, M., An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environment International 2003, 29 (6), 683-689.
4.Laoutid, F.; Bonnaud, L.; Alexandre, M.; Lopez-Cuesta, J. M.; Dubois, P., New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Materials Science and Engineering: R: Reports 2009, 63 (3), 100-125.
5.Chattopadhyay, D. K.; Webster, D. C., Thermal stability and flame retardancy of polyurethanes. Progress in Polymer Science 2009, 34 (10), 1068-1133.
6.Cain, A. A.; Nolen, C. R.; Li, Y.-C.; Davis, R.; Grunlan, J. C., Phosphorous-filled nanobrick wall multilayer thin film eliminates polyurethane melt dripping and reduces heat release associated with fire. Polymer Degradation and Stability 2013, 98 (12), 2645-2652.
7.Wilson, W. E.; O’Donovan, J. T.; Fristrom, R. M., Flame inhibition by halogen compounds. Symposium (International) on Combustion 1969, 12 (1), 929-942.
8.Suzanne, M.; Zhang, J.; Ukleja, S.; Ramani, A.; Delichatsios, M. A.; Patel, P.; Shaw, S.; Clarke, P.; Cusack, P., Comparison of brominated and halogen free flame retardant behaviours in glass-fibre- reinforced poly(butylene terephthalate). In MCS7, Italy, 2011.
9.Meerts, I. A. T. M.; Zanden, J. J. v.; Luijks, E. A. C.; Leeuwen-Bol, I. v.; Marsh, G.; Jakobsson, E.; Bergman, Å.; Brouwer, A., Potent Competitive Interactions of Some Brominated Flame Retardants and Related Compounds with Human Transthyretin in Vitro. Toxicol Sci 2000, 56 (1), 95-104.
10.WHO/ICPS, Environmental Health Criteria 152: Polybrominated biphenyls. Organization, W. H., Ed. Geneva, 1994.
11.WHO/ICPS, Environmental Health Criteria 162: Brominated diphenylethers. Organization, W. H., Ed. Geneva, 1994.
12.WHO/ICPS, Environmental Health Criteria 172: Tetrabromobisphenol A and derivatives. Organization, W. H., Ed. Geneva, 1995.
13.Restriction of the Use of Hazardous Substances in electrical and electronic equipment, RoHS. Commission, E., Ed. 2003.
14.Xie, H.; Lai, X.; Zhou, R.; Li, H.; Zhang, Y.; Zeng, X.; Guo, J., Effect and mechanism of N-alkoxy hindered amine on the flame retardancy, UV aging resistance and thermal degradation of intumescent flame retardant polypropylene. Polymer Degradation and Stability 2015, 118, 167-177.
15.Edenharter, A.; Breu, J., Applying the flame retardant LDH as a Trojan horse for molecular flame retardants. Applied Clay Science 2015, 114, 603-608.
16.Thirumal, M.; Khastgir, D.; Nando, G. B.; Naik, Y. P.; Singha, N. K., Halogen-free flame retardant PUF: Effect of melamine compounds on mechanical, thermal and flame retardant properties. Polymer Degradation and Stability 2010, 95 (6), 1138-1145.
17.Konig, A.; Fehrenbacher, U.; Kroke, E.; Hirth, T., Thermal Decomposition Behavior of the Flame Retardant Melamine in Slabstock Flexible Polyurethane Foams. Journal of Fire Sciences 2009, 27 (3), 187-211.
18.Liang, H.; Asif, A.; Shi, W., Thermal degradation and flame retardancy of a novel methacrylated phenolic melamine used for UV curable flame retardant coatings. Polymer Degradation and Stability 2005, 87 (3), 495-501.
19.Lotsch, B. V.; Schnick, W., New light on an old story: formation of melam during thermal condensation of melamine. Chemistry 2007, 13 (17), 4956-68.
20.Tai, Q.; Yuen, R. K. K.; Yang, W.; Qiao, Z.; Song, L.; Hu, Y., Iron-montmorillonite and zinc borate as synergistic agents in flame-retardant glass fiber reinforced polyamide 6 composites in combination with melamine polyphosphate. Composites Part A: Applied Science and Manufacturing 2012, 43 (3), 415-422.
21.Perret, B.; Schartel, B.; Stöß, K.; Ciesielski, M.; Diederichs, J.; Döring, M.; Krämer, J.; Altstädt, V., Novel DOPO-based flame retardants in high-performance carbon fibre epoxy composites for aviation. European Polymer Journal 2011, 47 (5), 1081-1089.
22.Salmeia, K. A.; Gaan, S., An overview of some recent advances in DOPO-derivatives: Chemistry and flame retardant applications. Polymer Degradation and Stability 2015, 113, 119-134.
23.Gouri, M. E.; Bachiri, A. E.; Hegazi, S. E.; Ziraoui, R.; Rafik, M.; Harfi, A. E., A phosphazene compound multipurpose application -Composite material precursor and reactive flame retardant for epoxy resin materials. J. Mater. Environ. Sci 2011, 2 (4), 319-334.
24.He, Y.; Chen, Y.; Zheng, Q.; Zheng, J.; Chen, S., Preparation and properties of flame-retardant viscose fiber modified with poly[bis(methoxyethoxy)phosphazene]. Fibers and Polymers 2015, 16 (5), 1005-1011.
25.Hutchison, J. C.; Bissessur, R.; Shriver, D. F., New Polyphosphazene—Clay and Cryptand—Clay Intercalates. 1996; Vol. 622, p 262-272.
26.Silvestrelli, P. L.; Gleria, M.; Milani, R.; Boscoletto, A. B., Surface Functionalization with Phosphazene Substrates. Part II. Theoretical and Experimental Investigations of the Interactions of Hexachlorocyclophosphazene with Hydroxylated Silicon-based Surfaces. Journal of Inorganic and Organometallic Polymers and Materials 2006, 16 (4), 327-341.
27.Chen, Y. M.; Liao, Y. L.; Lin, J. J., Synergistic effect of silicate clay and phosphazene-oxyalkyleneamines on thermal stability of cured epoxies. J Colloid Interface Sci 2010, 343 (1), 209-16.
28.Huang, T.-K.; Wang, Y.-C.; Hsieh, K.-H.; Lin, J.-J., Molecular-level dispersion of phosphazene–clay hybrids in polyurethane and synergistic influences on thermal and UV resistance. Polymer 2012, 53 (19), 4060-4068.
29.Hornsby, P. R., The application of magnesium hydroxide as a fire retardant and smoke‐suppressing additive for polymers. Fire and Materials 1994, 18 (5), 269.
30.Charles, A. W.; Alexander, B. M., Fire-retardant fillers. In Fire Retardancy of Polymeric Materials, 2 ed.; Charles, A. W.; Alexander, B. M., Eds. 2009; pp 163-185.
31.Hornsby, P. R.; Watson, C. L., A study of the mechanism of flame retardance and smoke suppression in polymers filled with magnesium hydroxide. Polymer Degradation and Stability 1990, 30 (1), 73.
32.Patra, D.; Vangal, P.; Cain, A. A.; Cho, C.; Regev, O.; Grunlan, J. C., Inorganic nanoparticle thin film that suppresses flammability of polyurethane with only a single electrostatically-assembled bilayer. ACS Appl Mater Interfaces 2014, 6 (19), 16903-8.
33.Pavlidou, S.; Papaspyrides, C. D., A review on polymer–layered silicate nanocomposites. Progress in Polymer Science 2008, 33 (12), 1119-1198.
34.Mitchell, J. K.; Soga, K., In Fundamentals of Soil Behavior, 3 ed.; John Wiley & Sons Inc: New York, 2005.
35.Usuki, A.; Hasegawa, N.; Kadoura, H.; Okamoto, T., Three-Dimensional Observation of Structure and Morphology in Nylon-6/Clay Nanocomposite. Nano Letters 2001, 1 (5), 271.
36.Theng, B. K. G., In Formation and Properties of Clay-Polymer Complexes, 2 ed.; Elsevier Science: Oxford, 2012.
37.Wang, Y. C.; Huang, T. K.; Tung, S. H.; Wu, T. M.; Lin, J. J., Self-assembled clay films with a platelet-void multilayered nanostructure and flame-blocking properties. Sci Rep 2013, 3, 2621.
38.Pinnavaia, T. J., Intercalated clay catalysts. Science 1983, 220 (4595), 365.
39.Ajjou, A. N.; Harouna, D.; Detellier, C.; Alper, H., Cation-exchanged montmorillonite catalyzed hydration of styrene derivatives. Journal of Molecular Catalysis A: Chemical 1997, 126 (1), 55.
40.Ho, J. Y.; Liu, T. Y.; Wei, J. C.; Wang, J. K.; Wang, Y. L.; Lin, J. J., Selective SERS detecting of hydrophobic microorganisms by tricomponent nanohybrids of silver-silicate-platelet-surfactant. ACS Appl Mater Interfaces 2014, 6 (3), 1541-9.
41.Celis, R.; Hermosín, M. C.; Carrizosa, M. J.; Cornejo, J., Inorganic and Organic Clays as Carriers for Controlled Release of the Herbicide Hexazinone. Journal of Agricultural and Food Chemistry 2002, 50 (8), 2324.
42.Rawajfih, Z.; Nsour, N., Characteristics of phenol and chlorinated phenols sorption onto surfactant-modified bentonite. J Colloid Interface Sci 2006, 298 (1), 39-49.
43.Király, Z.; Veisz, B.; Mastalir, Á.; Köfaragó, G., Preparation of Ultrafine Palladium Particles on Cationic and Anionic Clays, Mediated by Oppositely Charged Surfactants:  Catalytic Probes in Hydrogenations. Langmuir 2001, 17 (17), 5381.
44.Liang, J. J.; Wei, J. C.; Lee, Y. L.; Hsu, S. H.; Lin, J. J.; Lin, Y. L., Surfactant-modified nanoclay exhibits an antiviral activity with high potency and broad spectrum. J Virol 2014, 88 (8), 4218-28.
45.Wei, J.-C.; Yen, Y.-T.; Wang, Y.-T.; Hsu, S.-h.; Lin, J.-J., Enhancing silver nanoparticle and antimicrobial efficacy by the exfoliated clay nanoplatelets. RSC Advances 2013, 3 (20), 7392.
46.Lin, J. J.; Lin, W. C.; Li, S. D.; Lin, C. Y.; Hsu, S. H., Evaluation of the antibacterial activity and biocompatibility for silver nanoparticles immobilized on nano silicate platelets. ACS Appl Mater Interfaces 2013, 5 (2), 433-43.
47.Wei, J.-C.; Yen, Y.-T.; Su, H.-L.; Lin, J.-J., Inhibition of Bacterial Growth by the Exfoliated Clays and Observation of Physical Capturing Mechanism. The Journal of Physical Chemistry C 2011, 115 (38), 18770-18775.
48.Tseng, H. J.; Lin, J. J.; Ho, T. T.; Tseng, S. M.; Hsu, S. H., The biocompatibility and antimicrobial activity of nanocomposites from polyurethane and nano silicate platelets. J Biomed Mater Res A 2011, 99 (2), 192-202.
49.Chiu, C.-W.; Huang, T.-K.; Wang, Y.-C.; Alamani, B. G.; Lin, J.-J., Intercalation strategies in clay/polymer hybrids. Progress in Polymer Science 2014, 39 (3), 443-485.
50.LeBaron, P. C.; Wang, Z.; Pinnavaia, T. J., Polymer-layered silicate nanocomposites: an overview. Applied Clay Science 1999, 15 (1–2), 11.
51.Lee, C. H.; Liu, K. Y.; Chang, S. H.; Lin, K. J.; Lin, J. J.; Ho, K. C.; Lin, K. F., Gelation of ionic liquid with exfoliated montmorillonite nanoplatelets and its application for quasi-solid-state dye-sensitized solar cells. J Colloid Interface Sci 2011, 363 (2), 635-9.
52.Chan, Y.-N.; Hsu, R.-S.; Lin, J.-J., Mechanism of Silicate Platelet Self-Organization during Clay-Initiated Epoxy Polymerization. The Journal of Physical Chemistry C 2010, 114 (23), 10373.
53.Liao, Y.-L.; Chiu, C.-W.; Lin, J.-J., General Intercalation of Poly(oxyalkylene)−Amidoacids for Anionic and Cationic Layered Clays. Industrial & Engineering Chemistry Research 2010, 49, 5001.
54.Chen, Y.-C.; Juang, T.-Y.; Dai, S. A.; Wu, T.-M.; Lin, J.-J.; Jeng, R.-J., Optical Non-Linearity from Montmorillonite Intercalated with a Chromophore-Containing Dendritic Structure: A Self-Assembly Approach. Macromolecular Rapid Communications 2008, 29 (7), 587-592.
55.Chiou, J.-Y.; Hsu, R.-S.; Chiu, C.-W.; Lin, J.-J., A stepwise mechanism for intercalating hydrophobic organics into multilayered clay nanostructures. RSC Advances 2013, 3 (31), 12847.
56.Lin, J.-J.; Chan, Y.-N.; Lan, Y.-F., Hydrophobic Modification of Layered Clays and Compatibility for Epoxy Nanocomposites. Materials 2010, 3 (4), 2588-2605.
57.Okada, A.; Usuki, A., The chemistry of polymer-clay hybrids. Materials Science and Engineering: C 1995, 3 (2), 109.
58.Okada, A.; Usuki, A., Twenty Years of Polymer-Clay Nanocomposites. Macromolecular Materials and Engineering 2006, 291 (12), 1449-1476.
59.Chiou, J.-Y.; Huang, T.-K.; Hsieh, K.-H.; Lin, J.-J., Fine dispersion of phosphazene-amines and silicate platelets in epoxy nanocomposites and the synergistic fire-retarding effect. Journal of Polymer Research 2014, 21 (6).
60.Chou, C.-C.; Lin, J.-J., One-Step Exfoliation of Montmorillonite via Phase Inversion of Amphiphilic Copolymer Emulsion. Macromolecules 2005, 38, 230.
61.Lin, J.-J.; Chan, Y.-N.; Chang, W.-H., Amphiphilic Poly(oxyalkylene)-Amines Interacting with Layered Clays Intercalation, Exfoliation and New Applications. In Advanced Nanomaterials, Geckeler, K. E.; Nishide, H., Eds. John Wiley & Sons Inc.: New York, 2010; pp 459–480.
62.Chu, C.-C.; Chiang, M.-L.; Tsai, C.-M.; Lin, J.-J., Exfoliation of Montmorillonite Clay by Mannich Polyamines with Multiple Quaternary Salts. Macromolecules 2005, 38, 6240.
63.Chiu, C.-W.; Chu, C.-C.; Cheng, W.-T.; Lin, J.-J., Exfoliation of smectite clays by branched polyamines consisting of multiple ionic sites. European Polymer Journal 2008, 44 (3), 628-636.
64.Walther, A.; Bjurhager, I.; Malho, J. M.; Pere, J.; Ruokolainen, J.; Berglund, L. A.; Ikkala, O., Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways. Nano Lett 2010, 10 (8), 2742.
65.Apaydin, K.; Laachachi, A.; Ball, V.; Jimenez, M.; Bourbigot, S.; Toniazzo, V.; Ruch, D., Polyallylamine–montmorillonite as super flame retardant coating assemblies by layer-by layer deposition on polyamide. Polymer Degradation and Stability 2013, 98 (2), 627-634.
66.Chang, S.; Slopek, R. P.; Condon, B.; Grunlan, J. C., Surface Coating for Flame-Retardant Behavior of Cotton Fabric Using a Continuous Layer-by-Layer Process. Industrial & Engineering Chemistry Research 2014, 53 (10), 3805-3812.
67.Kumar, S. P.; Takamori, S.; Araki, H.; Kuroda, S., Flame retardancy of clay–sodium silicate composite coatings on wood for construction purposes. RSC Adv. 2015, 5 (43), 34109-34116.
68.Huang, Y. H.; Chen, M. H.; Lee, B. H.; Hsieh, K. H.; Tu, Y. K.; Lin, J. J.; Chang, C. H., Evenly distributed thin-film Ag coating on stainless plate by tricomponent Ag/silicate/PU with antimicrobial and biocompatible properties. ACS Appl Mater Interfaces 2014, 6 (22), 20324-33.
69.D3806-98: Standard Test Method of Small-Scale Evaluation of Fire-Retardant Paints (2-Foot Tunnel Method). ASTM, Ed.
70.E662-15a: Standard Test Method for Specific Optical Density of Smoke Generated by Solid Materials. ASTM, Ed.
71.E84-15b: Standard Test Method for Surface Burning Characteristics of Building Materials. ASTM, Ed.
72.Amigó, J. M.; Serrano, F. J.; Kojdecki, M. A.; Bastida, J.; Esteve, V.; Reventós, M. M.; Martí, F., X-ray diffraction microstructure analysis of mullite, quartz and corundum in porcelain insulators. Journal of the European Ceramic Society 2005, 25 (9), 1479-1486.
73.Morris, M. C.; McMurdie, H. F.; Evans, E. H.; Paretzkin, B.; Parker, H. S.; Panagiotopoulos, N. C., Section 18 - Data for 58 Substances. In Standard X-ray Diffraction Powder Patterns, Hubbard, C. R., Ed. National Measurement Laboratory: Washington, DC, 1981.
74.Sheng, G. D.; Shao, D. D.; Fan, Q. H.; Xu, D.; Chen, Y. X.; Wang, X. K., Effect of pH and ionic strength on sorption of Eu(III) to MX-80 bentonite: batch and XAFS study. Radiochimica Acta 2009, 97 (11).
75.Kontoyannis, C. G.; Vagenas, N. V., Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy. The Analyst 2000, 125 (2), 251-255.
76.Wu, H.; Xie, H.; He, G.; Guan, Y.; Zhang, Y., Effects of the pH and anions on the adsorption of tetracycline on iron-montmorillonite. Applied Clay Science 2016, 119 (1), 161.
77.Yu, S.; Mei, H.; Chen, X.; Tan, X.; Ahmad, B.; Alsaedi, A.; Hayat, T.; Wang, X., Impact of environmental conditions on the sorption behavior of radionuclide 90Sr(II) on Na-montmorillonite. Journal of Molecular Liquids 2015, 203, 39-46.
78.Bhowmick, S.; Chakraborty, S.; Mondal, P.; Van Renterghem, W.; Van den Berghe, S.; Roman-Ross, G.; Chatterjee, D.; Iglesias, M., Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: Kinetics and mechanism. Chemical Engineering Journal 2014, 243, 14-23.
79.Kulbicki, G., High temperature phases of montmorillonite. In Clays and Clay Minerals, Swineford, A., Ed. Washinton, D. C., 1958; p 144.
80.Uno, Y.; Kohyama, N.; Sato, M.; Takeshi, H., High temperature phase transformation of montmorillonites. Journal of the Mineralogical Society of Japan 1986, 17 (Special), 155.
81.Fajnor, V. Š.; Gerthofferová, H.; Kuchta, Ľ.; Masár, J., High-temperature phases of montmorillonite synthetized from the oxides SiO2-Al2O3-MgO-CaO. Journal of thermal analysis 1982, 24 (1), 51.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top