跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/16 21:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王冠勛
研究生(外文):Guan-Shiun Wang
論文名稱:新穎性聚氨脂型分散劑應用於石墨烯分散及可撓曲式導電薄膜
論文名稱(外文):Novel polyurethane dispersant for disperse graphene for flexible conductive film uses
指導教授:林江珍
指導教授(外文):Jiang-Jen Lin
口試日期:2017-07-07
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:58
中文關鍵詞:石墨烯聚氨脂型分散劑水相有機相導電膜壓克力膜硬度
外文關鍵詞:graphenepolyurethane-type dispersant (POEUPOPU)aqueousorganic mediumconductive filmacrylate filmhardness
相關次數:
  • 被引用被引用:0
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文大致分為兩部份,第一部分為針對石墨烯的分散劑設計與合成,探討不同官能基的聚氨脂型(Polyurethane-type)分散劑對分散及穩定石墨烯的影響,藉由過去本實驗室對石墨烯之分散建構的基礎理論下,並開發出針對水相(POPU)及有機相(POPU)溶劑之2種分散劑結構。初步以可見光紫外光分光光譜儀(UV-VIS Spectophotometer)測試各種分散劑對石墨烯之分散性,後續以穿透式電子顯微鏡(Transmission electron microscopy, TEM) 和原子力顯微鏡(Atomic Force Microscopic, AFM)鑑定石墨烯之層數及分散情形。

第二部分為分散後石墨烯之應用,藉由POEU分散劑石將墨烯分散於水相系統後,我們導入水性PU將其製備成可撓曲式導電薄膜。當石墨烯含量從0.1wt%提升至3wt%時,其導電值可達到1.96 x101 S/m,並可點亮LED燈泡。而在相同比例下,未經POEU分散之石墨烯所製備之薄膜其導電值僅有1.61x10-2 S/m。由此可證實分散石墨烯之重要性。另一有機相系統下,利用POPU將石墨烯分散至乙酸乙酯溶劑中,並導入壓克力樹脂中以提升壓克力膜之硬度,由於石墨烯本身之高強度機械性質,當其含量添加至0.3wt%時,可將膜硬度從原本的4H提升至8H,並且維持高達87%以上之光穿透度。但若是未經良好分散之石墨烯,其硬度僅能提升至6H並因其容易堆疊造成薄膜不均且光穿透度低(81%)。在上述兩種應用下,可見石墨烯分散劑之重要性。
致謝 I
中文摘要 II
Abstract III
Index V
List of Figures VII
List of Tables IX
List of Schemes X
Chapter 1. Introduction 1
1-1 Nanomaterial 1
1-2 Introduction to dispersion of graphene 4
1-3 Introduction of Polyurethane 8
1-4 Polymeric dispersant to disperse graphene 10
1-4-1 Homemade dispersant of POE/POP-Segmented Imide (POEM/POPM) 10
1-4-2 Synthesis of polyurethane-type dispersant for graphene 16
1-5 Application of graphene dispersion 16
1-5-1 Graphene/POEU/WPU Conductive film 17
1-5-2 Graphene/POPU/Acrylate film 18
Chapter 2. Experimental Section 20
2-1 Materials 20
2-2 Synthesis of polyurethane-type dispersant for graphene 20
2-3 Preparation of graphene dispersion in aqueous and ethyl acetate 24
2-4 Form the Graphene/POEU/WPU conductivity film 24
2-5 Preparation of Graphene/Acrylic resin by UV-Curing 25
2-6 Characterization 26
Chapter 3. Results and discussion 28
3-1 Dispersibility of Polyurethane-type dispersant (POEU, POPU) for graphene 28
3-2 Characterization measurements of graphene dispersion 39
3-3 Application of graphene dispersion 44
3-3-1 Flexible and Conductive film of Graphene/POEU/WPU 44
3-3-2 Hardness of Graphene/POPU/Acrylate film 47
Chapter 4. Conclusion 50
Chapter 5. References 53
1.Abou El-Nour; M., K. M.; Eftaiha, A. a.; Al-Warthan, A.; Ammar, R. A. A., Synthesis and applications of silver nanoparticles. Arabian Journal of Chemistry 2010, 3 (3), 135-140.
2.Shaoming Huang; Dai., L.; Mau, A. W. H., Patterned Growth and Contact Transfer of Well-Aligned Carbon Nanotube Films. J. Phys. Chem. B, 1999, 103, 4223-4227.
3.Sinha Ray, S.; Okamoto, M., Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science 2003, 28 (11), 1539-1641.
4.Liu, W. F. C., C. S., Engineering Biomaterials to Control Cell Function. Materials Today 2005, 8, 28-35.
5.Lee., C.; Wei., X.; Kysar., J. W.; Hone., J., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. SCIENCE 2008, 321, 385-389.
6.Peter Blake, P. D.; Brimicombe, R. R.; Nair, T. J.; Booth, D. J.; Fred Schedin; Leonid A. Ponomarenko; Sergey V. Morozov; Helen F. Gleeson; Ernie W. Hill; Geim, A. K.; Novoselov, K. S., Graphene-Based Liquid Crystal Device. Nano Lett. 2008, 8, 1704-1708.
7.Kang, X.; Wang, J.; Wu, H.; Liu, J.; Aksay, I. A.; Lin, Y., A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta 2010, 81 (3), 754-9.
8.Stankovich, S.; Dikin, D. A.; Dommett, G. H.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S., Graphene-based composite materials. Nature 2006, 442 (7100), 282-6.
9.Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera-Alonso, M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X.; Ruoff, R. S.; Nguyen, S. T.; Aksay, I. A.; Prud''Homme, R. K.; Brinson, L. C., Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 2008, 3 (6), 327-31.
10.Wang, C.; Li, D.; Too, C. O.; Wallace, G. G., Electrochemical Properties of Graphene Paper Electrodes Used in Lithium Batteries. Chemistry of Materials 2009, 21 (13), 2604-2606.
11.K., G.; Dimitrakakis; Emmanuel Tylianakis; Froudakis, G. E., Pillared Graphene: A New 3-D Network Nanostructure for Enhanced Hydrogen Storage. Nano Lett. 2008, 8, 3166-3170.
12.J. Scott Bunch; Arend M. van der Zande; Scott S. Verbridge; Ian W. Frank; M., D.; Tanenbaum, J. M.; Parpia, H. G.; Craighead, P. L.; McEuen, Electromechanical Resonators from Graphene Sheets. SCIENCE 2007, 315, 490-494.
13.Shih, P.-T. Synthesis of Polymeric Dispersants for Nanomaterials and Dye-Sensitized Solar Cell (Unpublished doctoral dissertation). Unpublished doctoral dissertation, National Taiwan University, Taipei, Taiwan, 2015.
14.Eda, G.; Fanchini, G.; Chhowalla, M., Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 2008, 3 (5), 270-4.
15.Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45 (7), 1558-1565.
16.Kim, J. T.; Kim, B. K.; Kim, E. Y.; Park, H. C.; Jeong, H. M., Synthesis and shape memory performance of polyurethane/graphene nanocomposites. Reactive and Functional Polymers 2014, 74, 16-21.
17.Stankovich, S., Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 2006, 44(15), 3342-3347.
18.Ahn, H.; Kim, T.; Choi, H.; Yoon, C.; Um, K.; Nam, J.; Ahn, K. H.; Lee, K., Gelation of graphene oxides induced by different types of amino acids. Carbon 2014, 71, 229-237.
19.Hao, R.; Qian, W.; Zhang, L.; Hou, Y., Aqueous dispersions of TCNQ-anion-stabilized graphene sheets. Chem Commun (Camb) 2008, (48), 6576-8.
20.Yuxi Xu; Hua Bai; Gewu Lu; Chun Li; Shi, G., Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets. J. AM. CHEM. SOC 2008, 130, 5856-5857.
21.Shih, P.-T.; Dong, R.-X.; Shen, S.-Y.; Vittal, R.; Lin, J.-J.; Ho, K.-C., Transparent graphene–platinum nanohybrid films for counter electrodes in high efficiency dye-sensitized solar cells. Journal of Materials Chemistry A 2014, 2 (23), 8742.
22.Bai, H., et al, Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem. Commun. 2009, 13, 1667-1669.
23.Krol, P., Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Progress in Materials Science 2007, 52 (6), 915-1015.
24.Demharter, A., Polyurethane rigid foam, a proven thermal insulating material for applications between +130°C and -196°C. Cryogenics 1998, 38, 113-117.
25.MILTZ., J.; GRUENBAUM, C., Evaluation of Cushioning Properties of Plastic Foams
From Compressive Nleasu re m e n ts. POLYMER ENGINEERING AND SCIENCE 1981, 21, 1010-1014.
26.Kim, B. K., Aqueous polyurethane dispersions. Colloid Polym Sci 1996, 274, 599-611.
27.Lu, Q.-W.; Hoye, T. R.; Macosko, C. W., Reactivity of common functional groups with urethanes: Models for reactive compatibilization of thermoplastic polyurethane blends. Journal of Polymer Science Part A: Polymer Chemistry 2002, 40 (14), 2310-2328.
28.RAVEY’, M.; PEARCE, E. M., Flexible Polyurethane Foam. L Thermal Decomposition
of a Polyether-based, Water-blown Commercial Type of Flexible Polyurethane Foam. Journal of Apphecf Polymer Science, 1997, 63, 47-74.
29.KIM, B. K.; LEE, J. C., Waterborne Polyurethanes and Their Properties. Journal of Polymer Science Part A: Polymer Chemistry 1996, 34, 1095-1104.
30.Jiang, L., Facile and novel electrochemical preparation of a graphene–transition metal oxide nanocomposite for ultrasensitive electrochemical sensing of acetaminophen and phenacetin. Nanoscale 2014, 6(1), 207-214.
31.Shih, P. T., Transparent graphene–platinum nanohybrid films for counter electrodes in high efficiency dye-sensitized solar cells. Journal of Materials Chemistry A 2014, 2(23), 8742-8748.
32.Liu, P.; K. Gong; Xiao, P., Preparation and characterization of poly (vinyl acetate)-intercalated graphite oxide. Carbon 1999, 37(12), 2073-2075.
33.Kotov; N.A.; Dékány, I.; Fendler, J. H., Ultrathin graphite oxide–polyelectrolyte composites prepared by self‐assembly: Transition between conductive and non‐conductive states. Advanced Materials 1996, 8(8), 637-641.
34.Fang, C.-Y. Performance Enhancement of sp2 Carbon Incorporated Polymer Gel Electrolyte in Dye-sensitized Solar Cell (Unpublished master’s dissertation). National Taiwan University, Taipei, Taiwan, 2016.
35.Noble, K.-L., Waterborne polyurethanes. Progress in Organic Coatings 1997, 131-136.
36.Peng, L.; Zhou, L.; Li, Y.; Pan, F.; Zhang, S., Synthesis and properties of waterborne polyurethane/attapulgite nanocomposites. Composites Science and Technology 2011, 71 (10), 1280-1285.
37.Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N. H.; Bose, S.; Lee, J. H., Recent advances in graphene based polymer composites. Progress in Polymer Science 2010, 35 (11), 1350-1375.
38.A. Allaouia; S. Baia, b.; H.M. Chengb; J.B. Baia, Mechanical and electrical properties of a MWNT/epoxy composite. Composites Science and Technology 2002, 62, 1993-1998.
39.J. Sandlera; M.S.P. Shaffera; T. Prasseb; W. Bauhoferb; K. Schultea; A.H. Windlea, Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 1999, 40, 5967-5971.
40.H., A.; Castro Neto, F.; Guinea, N.; R., M.; Peres, K.; Novoselov, S.; Geim, A. K., The electronic properties of graphene. REVIEWS OF MODERN PHYSICS 2009, 81, 109-162.
41.Decker, C., Kinetic Study and New Applications of UV Radiation Curing. Macromolecular Rapid Communication 2002, 23, 1067-1093.
42.Dzunuzovic, E.; Tasic, S.; Bozic, B.; Babic, D., UV-curable hyperbranched urethane acrylate oligomers containing soybean fatty acids. Progress in Organic Coatings 2004, 52, 136-143.
43.Mousaa; M., I.; Ibrahim; M., S.; Radi, H., Coating characteristics of UV curable epoxy acrylate oligomer modified with acrylated sunflower oil. Arab Journal of Nuclear Science and Applications 2014, 47, 1-13.
44.Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G., Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 2008, 3 (2), 101-5.
45.LIQUN ZHANG; YIZHONG WANG; YIQING WANG; YUAN SUI; YU, D., Morphology and Mechanical Properties of Clay/Styrene- Butadiene Rubber Nanocomposites. Journal of Applied Polymer Science 2000, 78, 1873-1878.
46.J C L¨ottersy; W Olthuis, P.; Veltink, H.; Bergveld, P., The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J. Micromech. Microeng. 1997, 7, 145-147.
47.Ng., C. B.; Scbadler., L. S.; Siegel., R., SYNTHESIS AND MECHANICAL PROPERTIES OF TiOz-EPOXY NANOCOMPOSITES. NanoStmcmred Materials, 1999, 12, 507-510.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊