跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/03 03:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘博澄
研究生(外文):Bo-Cheng Pan
論文名稱:高透明性含芳香胺結構聚醯胺孔洞膜及混成材料之合成與電致變色特性之研究
論文名稱(外文):Preparation and Electrochromic Behavior of Highly Transparent Triarylamine-based Porous Polyamide Films and Their Hybrid Materials
指導教授:劉貴生
口試日期:2017-08-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:123
中文關鍵詞:聚醯胺二氧化鈦孔洞結構電致變色元件複合材料
外文關鍵詞:polyamideelectrochromic deviceTiO2porous nanostructurehybrid material
相關次數:
  • 被引用被引用:0
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文分成四個章節,第一章為總體序論。第二章為奈米孔洞薄膜在電致變色上的應用。第三章是利用合成新型具有醇類官能基的電致變色高分子,透過溶膠凝膠法結合有機無機材料,並探討其在電致變色上的特性。第四章節為結論。此研究兩個主題皆致力在於改善電致變色的性質,其利用原本就存在於電致變色元件中的電解質來製造奈米孔洞不僅可以使電解質有更高的功能性並且產生能夠產生較多的表面積使的電解質可以更容易滲透,並且在更短的時間之內平衡電荷以達到增進電致變色特性, 其二利用結合有機無機材料使的具有強電子接收能力的金屬氧化物直接鍵結在高分子上,透過電子接收的特性使的氧化還原能進行得更順利,不僅能降低電位同時能夠提升電致變色特性,並且在與紫精衍生物搭配的同時能夠有正向的加乘效果,在元件中有更出色的電致變色特性。
This study has been separated into four chapters. Chapter 1 is the general introduction. In chapter 2, the porous polyamide films were prepared by the salt and the electrochromic behaviors between dense film and porous film have been investigated. In chapter 3, the electrochromic materials (ECMs) were synthesized and hybrids electrochromic devices (ECDs) were prepared. Chapter 4 is the conclusion.
The preparation and electrochromic properties of porous polyamide films were investigated. It was a novel method to prepare the porous films by blending the salt in polymer solution, and then the salt in the films would be removed. The electrolyte could have penetrateon to the film more easily through the porous structure. And it also increases the active area of electrochromic process. Because the benefits of porous structure the electrochromic properties were significantly increased. On the other hand, keeping the salt in polyamide films and then washed it by the injected electrolyte, this method could also achieve the similar enhancement of electrochormic properties.
In Chapter 3, the novel electrochromic material with hydroxyl group has been successfully synthesized. TiO2 combined with electrochromic material through the sol-gel reactions. TiO2 had strong electron accept ability which promoted the electrochromic material release the electron more easily and quickly, hence the response capability could be enhanced. Arranged the HV(BF4)2 and TiO2 in groups which exhibited additive effect in the ECD. Because of the additive effect, the enhancement of electrochomic properties was better than the single material system.
TABLE OF CONTENTS
ACKNOWLEDGEMENTS....I
ABSTRACT (in English)....II
ABSTRACT (in Chinese)....III
TABLE OF CONTENTS....IV
LIST OF TABLES....IX
LIST OF FIGURES....XII
CHAPTER 1....1
CHAPTER 2....52
CHAPTER 3....89
CHAPTER 4....121


Chapter 1
General Introduction

1. 1 High Performance Polymer....2
1.1. 1 Preparation of aromatic polyamides....4
1.1. 2 Modification of aromatic polyamides....8
1.1. 3 Polyamide with functional group....10
1. 2 Electrochromism....11
1.2. 1 Electrochromic system....16
1.2.1. 1 Transition-metal oxide....16
1.2.1. 2 Coordination complexes....18
1.2.1. 3 Organic material....20
1.2.1. 4 Conducting polymers....20
1.2.1. 5 Arylamine-based polymers....23
1.2. 2 Electrochromic device....26
1.2.2. 1 Transparency conducting layer....26
1.2.2. 2 Electrochromic layer....26
1.2.2. 3 Electrolyte layer....27
1.2.2. 4 Ion-storage layer....27
1. 3 Nanostructured in Electrochromic Materials and Device....29
1.3. 1 Nanostructures of transition metal oxides (TMOs)....30
1.3. 2 Nanostructures of conjugated polymers....32
1.3. 3 Viologens....33
1.3. 4 Conjugated polymer/TMO and TMO/TMO nanocomposites....34
1.3. 5 Nanocomposites of non-electrochromic/ electrochromic active materials....34
1. 4 Functional Hybrid Organic-Inorganic Nanocomposite....36
1.4. 1 Organic-Inorganic hybrids with physical interactions....37
1.4. 2 Organic-Inorganic hybrids with covalent bonds....39
1.4. 3 Titania-polymer hybrid....43
1. 5 Research Motivation....45
REFERENCE AND NOTES....46

Chapter 2
Preparation, Electrochromic Properties of Porous Polyamide Films

ABSTRACT....53
2.1 Introduction....54
2.2 Experimental Section....56
2.2.1 Materials....56
2.2.2 Polymer synthesis....57
2.2.3 Preparation the porous polyamide films....58
2.2.4 Fabrication of electrochromic device with pinhole structure....58
2.2.5 Measurement....60
2.3 Result and Discussion....61
2.3.1 Physical and optical properties of porous polyamide film....61
2.3.2 Optical properties of the porous polyamide films....64
2.3.3 Electrochemical properties of porous polyamide films....70
2.3.4 Spectroelectrochemistry....72
2.3.5 Electrochromic switching studies....73
2.3.6 Optical properties of porous ECD....76
2.3.7 Electrochemical and electrochromic properties of the porous ECD....78
2.3.8 Electrochomic properties of salt containing ECD....85
2.4 Summary....87
REFERENCES AND NOTES....88

Chapter 3
Synthesis and Characterization of Highly Transparent Polyamide/Titania Hybrid Materials for Electrochromic Application

ABSTRACT....90
3.1 Introduction....91
3.2 Experimental Section....93
3.2.1 Materials....93
3.2.2 Preparation of the TPPA & TPB polyamide....94
3.2.3 Preparation of TPPA-OH PA/titania and TPB-PA/titania hybrid films....95
3.2.4 Measurements....96
3.2.5 Fabrication and measurement of the electrochromic devices....97
3.3 Result and Discussion....98
3.3.1 Polymer synthesis....98
3.3.2 Basic properties of polyamides....99
3.3.2 Synthesis and characterization of polyamide hybrids....101
3.3.3 Electrochemical properties of the ECMs....103
3.3.4 Electrochemical properties of the ECDs....106
3.3.5 Spectroelectrochemistry....110
3.3.6 Electrochromic switching studies....112
3.3.7 Materials Integration....116
3.4 Summary....118
REFERENCE AND NOTES....119
Chapter 4
CONCLUSION

CONCLUSION....122

LIST OF TABLES

Chapter 1

Table1. 1 Some commercial aromatic high performance polymers....3
Table1. 2 Some commercialized aromatic polyamide....5
Table1. 3 Some soluble aromatic polyamides....9
Table1. 4 Some preparation routes for conducting polymer-based EC nanocomposites....39
Table1. 5 The reaction constant K of tetralkoxysilane in acid hydrolysis....42

Chapter 2

Table2. 1 Composition of different concentration of porous polyamide film....66
Table2. 2 Optical properties of porous polyamide films....67
Table2. 3 Electrochemical properties of pure polyamide and porous polyamide films....71
Table2. 4 Optical and electrochemical data collected for coloration efficiency measurements of pure polyamide ECD....83
Table2. 5 Optical and electrochemical data collected for coloration efficiency measurements of 0.075 M TBABF4 porous polyamide ECD....84
Table2. 6 Optical and electrochromic properties of 0.075 M TBABF4 contain polyamide film....86


Chapter 3

Table3. 1 Solubility behaviors of polyamides....99
Table3. 2 Thermal properties of polyamides....100
Table3. 3 Reaction composition of the TPPA-OH PA and TPB-OH PA hybrid films....102
Table3. 4 Electrochemical properties of TPPA-OH PA and the hybrids first oxidation test....105
Table3. 5Optical and electrochemical data collected for coloration efficiency measurements of TPPA-OH PATi20/HV ECD....115


LIST OF FIGURES

Chapter 1

Figure1. 1 Demonstrate Prussian blue multiple color change....12
Figure1. 2 Photographs of two different states of a 1×1m2 electrochromic windows (ECW) fabricated with a carbon-based electrode....14
Figure1. 3 (a) Smart window in Boeing 787 (b) Anti-glare back mirrors....14
Figure1. 4 Photographs of electrochromic device....15
Figure1. 5 Demonstrate the band structures of WO3 and WO2.....17
Figure1. 6 Some conducting polymer....21
Figure1. 7 Polarons and bipolarons in CPs....22
Figure1. 8 Conducting polymer chemical structures and characterized with colors changed to the neutral state (N), intermediate state (I), and doped state (D)....23
Figure1. 9 High-performance polymers (e.g., polyimide types, polyamide types, and epoxy types) utilizing the triarylamine units as an electrochromic functional moiety.....25
Figure1. 10 Electrochromic Device design showing the movement of ions....28
Figure1. 11 (a) Low-magnification TEM image, (b) Higher-magnification TEM image showing the coarse surface of WO3 nanorods and (c) High resolution transmission electron microscopy (HRTEM) images of the as-synthesised WO3 = nanorods. The inset shows the selected area electron diffraction pattern (SAED) takes from the single nanorods.....31
Figure1. 12 Effect of pH on particle morphology in sol-gel reactions....42


Chapter2

Figure2. 1 (a) Pure polyamide film (b) TBAP and TBABF4 chemical structure (c), (d) SEM images of TBAP and TBABF4 porous polyamide film (e), (f) The partial magnification from (c), (d)....63
Figure2. 2 Relationship between response time (s) and TBABF4 concentration (M)....64
Figure2. 3 Transmittance of the porous polyamide films (air as background)..... 66
Figure2. 4 Top view SEM images for the surface of the porous polyamide film 0.05 M TBABF4 (b) 0.075 M TBABF4 (c) 0.01 M TBABF4 (d) 0.125 M TBABF4 porous polyamide films....68
Figure2. 5 (a), (b) The surface and roughness analysis of 0.05 M porous polyamide film. (c), (d) The surface and roughness analysis of 0.125 M porous polyamide film.....69
Figure2. 6 Cyclic voltammetric diagrams of pure polyamide and porous polyamide film on ITO-coated glass substrate (coated area: 25 mm × 6 mm) in 0.1 M TBABF4/PC electrolyte at scan rate of 50 mV s-1....71
Figure2. 7 Electrochromic behavior of TPA-PA film coated on the ITO-coated substrate (coated area: 25 mm x 6 mm, thickness: 900 ± 50 nm) in TBABF4/PC at applied potentials.....72
Figure2. 8 Calculation of optical switching time at 770 nm (a) 1.05 V to -0.1 V of pure polyamide and (b) 1.03 V to -0.1 V 0.05M TBABF4 (c) 1.0 V to -0.1 V 0.075M TBABF4 (d) 0.97 V to -0.1 V 0.1M TBABF4 (e) 0.95 V to -0.1 V 0.125M TBABF4 porous polyamide films (coated area: 25 mm × 6 mm) in 0.1 M TBABF4/PC electrolyte....74
Figure2. 9 Different kinds of porous polyamide films correspond to Transmittance (%) at 550 nm and the coloring and bleaching time.....75
Figure2. 10 Optical properties of porous polyamide ECD (air as background).....77
Figure2. 11 Cyclic voltammetric diagrams of (a) pure polyamide (b) compare pure polyamide and porous polyamide ECD (coated area: 2 cm x 2 cm) in 0.1 M TBABF4/PC electrolyte....79
Figure2. 12 ECD Calculation of optical switching time at 770 nm (a) pure polyamide at applied potential of 2.1 V to -2.1 V (b) 0.05 M TBABF4 porous polyamide at applied potential of 2.02 V to -2.02 V (c) 0.075 M TBABF4 porous polyamide of applied potential of 1.95 V to -1.95 V of the cast films (coated area: 2 cm x 2 cm) in 0.1 M TBABF4/PC electrolyte with a cycle time of 200 s....81
Figure2. 13 ECD switching at 770 nm of (a) pure polyamide film applied potential of 2.1 V to -2.1 V (b) 0.075 M TBABF4 porous polyamide film applied potential of 1.95 V to -1.95 V of the cast films (coated area: 2cm x 2 cm) in 0.1 M TBABF4/PC electrolyte with a cycle time of 200 s for 30 cycles....82
Figure2. 14 Electrochromic device switching ECD at 770 nm of applied potential of 1.95 V to -1.95 V 0.075 M TBABF4 porous polyamide of the cast films (coated area: 2cm x 2 cm) in 0.025 M TBABF4/PC electrolyte with a cycle time of 200 s....86


Chapter 3

Figure3. 1 FT-IR of (a) TPPA-OH PA and (b) TPB-OH PA....98
Figure3. 2 DSC trace of polyamide with a heating rate of 20 ℃/ min in nitrogen.....100
Figure3. 3 TGA traces of TPPA-OH PA/TiO2 and TPB-OH PA/TiO2 hybrid materials in air.....102
Figure3. 4 TEM images of (a) TPPA-OHPATi20 and (b) TPB-OHPATi20 hybrid materials.....102
Figure3. 5 Cyclic voltammetric diagrams of (a) TPPA-OH PA and TPPA-OH PA hybrids (b) TPB-OH PA and TPB-OH PA hybrids on the ITO-coated glass substrate (thickness: 300 ± 50 nm; coated area: 25 mm × 6 mm) in 0.1 M TBABF4/PC at scan rate of 50 mV s-1.....104
Figure3. 6 Cyclic voltammetric diagrams of 1st Oxidation state test (a) TPPA-OH PA (b) TPPA-OH PATi5 (b) TPPA-OH PATi10 (d) TPPA-OH PATi20 on the ITO-coated glass substrate (coated area: 25 mm × 6 mm; thickness: 300 ± 50 nm) in 0.1 M TBABF4/PC at scan rate of 50 mV s-1....105
Figure3. 7 Cyclic voltammetric diagrams of (a) TPPA-OH PA (b) TPB-OH PA on the ITO-coated glass substrate ( thickness: 300 ± 50 nm on the ITO-coated glass substrate (coated area: 2 cm x 2 cm) in 0.1 M TBABF4/PC electrolyte....107
Figure3. 8 Partial magnification cyclic voltammetric diagrams of (a) TPPA-OH PA and TPPA-OH PA hybrids (b) TPB-OH PA and TPB-OH PA hybrids on the ITO-coated glass substrate (thickness : 300 ± 50 nm on the ITO-coated glass substrate (coated area: 2 cm x 2 cm) in 0.1 M TBABF4/PC electrolyte....108
Figure3. 9 Cyclic voltammetric diagrams of (a) TPPA-OH PA (b) TPB-OH PA on the ITO-coated glass substrate (thickness : 300 ± 50 nm on the ITO-coated glass substrate (coated area: 2 cm x 2 cm) in 0.1 M TBABF4/PC electrolyte with 0.015 M HV(BF4)2....108
Figure3. 10 Partial magnification cyclic voltammetric diagrams of (a) TPPA-OH PA and TPPA-OH PA hybrids (b) TPB-OH PA and TPB-OH PA hybrids (thickness : 300 ± 50 nm on the ITO-coated glass substrate (coated area: 2 cm x 2 cm) in 0.1 M TBABF4/PC electrolyte with 0.015 M HV(BF4)2....109
Figure3. 11 Electrochromic behavior of (a) TPPA-OH PA, (b) TPB-OH PA thin film on the ITO-coated glass substrate (coated area: 25 mm × 6 mm, thickness: 300 ± 50 nm) in 0.1 M TBABF4/PC at applied related potentials.....111
Figure3. 12 UV-Vis spectra of (a) TPPA-OH PA ECD, (b) TPPA-OH PA/HV ECD....111
Figure3. 13 UV-Vis spectra of (a) TPB-OH PA ECD, (b) TPB-OH PA/HV ECD....111
Figure3. 14 Electrochromic device switching of (a) 1.1 V to -1.15 V TPPA-OH PA (b) 1.05 V to -1.1 V TPPA-OH PATi5 (c) 1.02 V to -1.1 V TPPA-OH PATi10 (d) 1.0 V to -1.05 V TPPA-OH PATi20 at 430 nm (thickness: 300 ± 50 nm) on the ITO-coated glass substrate (coated area: 2 cm x 2 cm) in 0.1 M TBABF4/PC electrolyte with 0.015 M HV(BF4)2....113
Figure3. 15 Electrochromic device switching of (a) 1.35 to -1.40 V TPB-OH PA (b) 1.25 to -1.3 V TPB-OH PATi20 at 500 nm (thickness: 300 ± 50 nm) on the ITO-coated glass substrate (coated area: 2 cm x 2 cm) in 0.1 M TBABF4/PC electrolyte with 0.015 M HV(BF4)2....114
Figure3. 16 Electrochromic device switching 1.00 and -1.05 V of TPPA-OH PATi20 at 430 nm (thickness: 300 ± 50 nm) on the ITO-coated glass substrate (coated area: 2cm x 2 cm) in 0.1 M TBABF4/PC electrolyte with 0.015 M HV(BF4)2 with a cycle time of 100 s for 300 cycles....114
Figure3. 17 (a) Electrochromic behavior of TPPA-OH PATi20 and TPB-OH PATi20 blending at applied potentials (b) Transmittance of TPPA-OH PATi20 and TPB-OH PATi20 blending at 1.4 V(air as background).(thickness : 900 ± 200 nm on the ITO-coated glass substrate (coated area: 2 cm x 2 cm) in 0.1 M TBABF4/PC electrolyte with 0.015 M HV(BF4)2....117
Chapter 1
1.R. Hill, E. E. Walker, J. Polym. Sci, 1948, 3, 609.
2.P. W. Morgan, Chemtech, 1979, 9, 316.
3.P. E. Cassidy, Thermally STable Polymers, New York: Marcel Dekker, 1980.
4.P. M. Hergenrother, Die Angew. Markromol. Chem, 1986, 145, 323.
5.H. H. Yang, Aromatic High-Strength Fibers, New York: John Wiley & Sons 1989.
6.W. T. Leu, Thesis for Doctor of Philosophy Department of Chemical Engineering Tatung University, 2006.
7.N. Ogata and H. Tanaka, Polymer Journal, 1971, 2, 672.
8.N. Ogata and G. Suzuki, Macromolecular Syntheses, New York: JohnWiley & Sons, 1974.
9.N. Yamazaki, F. Higashi and J. Kawabata, Journal of Polymer Science: Polymer Chemistry Edition, 1974, 12, 2149
10.N. Yamazaki, M. Matsumoto and F. Higashi, Journal of Polymer Science: Polymer Chemistry Edition, 1975, 13, 1373
11.J. Preston and W. Hofferbert, J. Polym. Sci. Polym. Symp, 1978, 65, 13.
12.F. Higashi, S. I. Ogata and Y. Aoki, Journal of Polymer Science: Polymer Chemistry Edition, 1982, 20, 2081.
13.J. Preston, W. Krigbaum and R. Kotek, Journal of Polymer Science: Polymer Chemistry Edition, 1982, 20, 3241.
14.W. Krigbaum, R. Kotek, Y. Mihara and J. Preston, Journal of Polymer Science: Polymer Chemistry Edition, 1984, 22, 4045.
15.P. W. Morgan, Condensation polymers: by interfacial and solution methods, Interscience Publishers, 1965.
16.J. M. García, F. C. García, F. Serna and J. L. de la Peña, Progress in Polymer Science, 2010, 35, 623-686.
17.H. Manami, M. Nakazawa, Y. Oishi, M. A. Kakimoto and Y. Imai, Journal of Polymer Science Part A: Polymer Chemistry, 1990, 28, 465.
18.S. H. Hsiao, C. P. Yang and J. C. Fan, Macromolecular Chemistry and Physics, 1995, 196, 3041.
19.S. H. Hsiao and C. F. Chang, Journal of Polymer Science Part A: Polymer Chemistry, 1996, 34, 1433.
20.N. Ghatge, B. Shinde and U. Mulik, Journal of Polymer Science: Polymer Chemistry Edition, 1984, 22, 3359.
21.G. Eastmond, J. Paprotny and R. Irwin, Polymer, 1999, 40, 469.
22.S. H. Hsiao and K. Y. Chu, Journal of Polymer Science Part A: Polymer Chemistry, 1997, 35, 3385.
23.P. Hergenrother, K. Watson, J. Smith, J. Connell and R. Yokota, Polymer, 2002, 43, 5077.
24.S. H. Hsiao, C. P. Yang, M. H. Chuang and H. C. Hsiao, Journal of Polymer Science Part A: Polymer Chemistry, 2000, 38, 247.
25.M. L. Xie, Y. Oishi, M. A. Kakimoto and Y. Imai, Journal of Polymer Science Part A: Polymer Chemistry, 1991, 29, 55.
26.J. F. Espeso, J. G. De La Campa, A. E. Lozano and J. De Abajo, Journal of Polymer Science Part A: Polymer Chemistry, 2000, 38, 1014.
27.G. S. Liou and S. H. Hsiao, Journal of Polymer Science Part A: Polymer Chemistry, 2002, 40, 1781.
28.G. S. Liou, M. Maruyama, M. A. Kakimoto and Y. Imai, Journal of Polymer Science Part A: Polymer Chemistry, 1993, 31, 2499.
29.G. S. Liou, M. Maruyama, M. A. Kakimoto and Y. Imai, Journal of Polymer Science Part A: Polymer Chemistry, 1998, 36, 2029.
30.M. DESPAS, Ann. Chimie, 1958, 13, 496
31.G. CHAMPETIER, J. DESPAS, Bull. SOC. chim. France, 1955, 431.
32.M. TANIYAMA, J. chern. SOC. Japan, ind. Chem. Sect, 1953, 56, 438
33.I. HAYAS MA, J. chern. SOC. Japan, ind. Chern. Sect, 1957, 60, 646
34.P. M. S. Monk, R. J. Mortimer and D. R. Rosseinsky, Wiley, 2008.
35.J. R. Platt, J. Chem. Phys, 1961, 34, 862-863.
36.H. J. Byker, The Electrochemical Society, 1994, 94-2, 3.
37.S. K. Deb, Appl. Opt. Suppl, 1969, 3, 192
38.K. Itaya, J. Appl. Phys, 1982, 53, 804
39.L. D. Burke, T. A. M. Thomey and D. P. Whelan, J. Electroanal. Chem, 1980, 107, 201.
40.D. N. Buckley, L. D. Burke, J. Chem Soc, 1975, 72, 1447.
41.C. G. Granqvist, Sol. Energ. Mat. Sol. Cells, 2000, 60, 201
42.H. J. Yen and G. S. Liou, Polym. Chem, 2012, 3, 255.
43.H. J. Yen, C. J. Chen and G. S. Liou, Adv. Funct. Mater, 2013, 23, 5307.
44.Y. W. Chuang, H. J. Yen, J. H. Wu and G. S. Liou, ACS Appl. Mater. Interfaces, 2014, 6, 3594
45.B. W. Faughnan, R. S. Crandall and P. H. Heyman, RCA Rev, 1975, 36, 177
46.P. S. Patil, L. D. Kadam and C. D. Lokhande, Sol. Energ. Mat. Sol. Cells, 1998, 53, 229
47.P. M. S. Monk, R. J. Mortimer, D. R. Rosseinsky, VCH, Weinheim, 1995.
48.S. Gottesfeld, J. McIntyre, G. Beni and J. Shay, Appl. Phys. Lett, 1978, 33, 208.
49.P. Monk and C. M. Man, J. Chem. Phys, 1999, 10, 101.
50.N. R. de Tacconi, K. Rajeshwar and R. O. Lezna, Chem. Mater, 2003, 15, 3046.
51.A. K. Geim and K. S. Novoselov, Nat. Mater, 2007, 6, 183.
52.H. Wang, Chem. Commun, 2012, 49, 9
53.S. A. Sapp, G. A. Sotzing and J. R. Reynolds, Chem. Mater, 1998, 10, 2101.
54.P. R. Somani, Mater. Chem. Phys, 2002, 77, 117
55.M. Mastragostino, Applications of Electroactive Polymers; Chapman and Hall, London, 1993.
56.S. H. Cheng, S. H. Hsiao, T. H. Su and G. S. Liou, Macromolecules, 2005, 38, 307
57.E. T. Seo, R. F. Nelson, J. M. Fritsch, L. S. Marcoux, D. W. Leedy, and R. N. Adams, J. Am. Chem. Soc, 1966, 88, 3498
58.G. S. Liou, S. H. Hsiao and T. H. Su, J. Mater. Chem, 2005, 15, 1812
59.G. S. Liou, H. Y. Lin and H. J. Yen, J. Mater. Chem, 2009, 19, 7666.
60.G. S. Liou and H. Y. Lin, Macromolecules, 2009, 42, 125.
61.M. Deepa, A. K. Srivastava, K. N. Sood and S. A. Agnihotry, Nanotechnology, 2006, 17, 2625.
62.S. Gubbala, J. Thangala, and M. K. Sunkara, Sol. Energ. Mat. Sol. Cells, 2007, 91, 813.
63.C. C. Liao, F. R. Chen and J. J. Kai, Sol. Energ. Mat. Sol. Cells, 2007, 91, 1258.
64.S. J. Yoo, J. W. Lim, Y. E. Sung, Y. H. Jung, H. G. Choi and D. K. Kim, Appl. Phys. Lett, 2007, 90, 173126.
65.C. R. Xiong, A. E. Aliev, B. Gnade and K. J. Balkus, ACS Nano, 2008, 2, 293.
66.R. Deshpande, S. H. Lee, A. H. Mahan, P. A. Parilla, K. M. Jones, A. G. Norman, B. To, J. L. Blackburn, S. Mitra and A. C. Dillon, Solid State Ion, 2007, 178, 895.
67.Y. Y. Song, Z. D. Gao, J. H. Wang, X. H. Xia and R. Lynch, Adv. Funct. Mater, 2011, 21, 1941.
68.S. H. Lee, R. Deshpande, P. A. Parilla, K. M. Jones, B. To, A. H. Mahan and A. C. Dillon, Adv. Mater, 2006, 18, 763.
69.J. M. Wang, E. Khoo, P. S. Lee and J. Ma, J. Phys. Chem. C, 2009, 113, 9655.
70.R. S. Devan, S. Y. Gao, W. D. Ho, J. H. Lin, Y .R. Ma, P. S. Patil and Y. Liou, Appl. Phys. Lett, 2011, 98, 133117.
71.S. Y. Park, J. M. Lee, C. Noh and S. U. Son, J. Mater. Chem, 2009, 19, 7959.
72.J. M. Wang, E. Khoo, P. S. Lee and J. Ma, J. Phys. Chem. C, 2008, 112, 14306.
73.L. Ma, Y. Li, X. Yu, Q. Yang and C. H. Noh, Sol. Energ. Mat. Sol. Cells, 2008, 92, 1253.
74.S. I. Cho and S. B. Lee, Acc. Chem. Res, 2008, 41,699.
75.J. H. Ryu, D. O. Shin and K. D. Suh, J. Polym. Sci. A Polym. Chem, 2005, 43, 6562.
76.L. Cao, M. Mou and Y. Wang, J. Mater. Chem, 2009, 19, 3412.
77.B. Wang, G. L. Wilkes, J. C. Hedrick, S. C. Liptak and J. E. McGrath, Macromolecules, 1991, 24, 3449
78.C. Sanchez, F. Ribot and B. Lebeau, J. Mater. Chem, 1999, 35, 22
79.P. M. S. Monk, R. J. Mortimer and D. R. Rosseinsky , Cambridge Univ. Press, Cambridge 2007 .
80.M. Morita, Macromol. Chem. Phys, 1994, 195, 609.
81.L. J. Ma , Y. X. Li , X. F. Yu , Q. B. Yang , C. H. Noh , Sol. Energ. Mat. Sol. Cells, 2008, 92, 1253.
82.M. A. G. Namboothiry, T. Zimmerman, F. M. Coldren, J. Liu,K. Kim and D. L. Carroll , Syn. Met, 2007, 157, 580.
83.Y. C. Nah, S. S. Kim, J. H. Park, H. J. Park, J. Jo and D. Y. Kim, Electrochem.Commun, 2007, 9, 1542.
84.B. N. Reddy , M. Deepa, A. G. Joshi and A. K. Srivastava, J. Phys. Chem. C, 2011 , 115 , 18354 .
85.S. Bhandari, M. Deepa, S. N. Sharma, A. G. Joshi, A. K. Srivastava and R. Kant, J. Phys. Chem. C, 2010, 114, 14606.
86.S. Bhandari, M. Deepa, A. K. Srivastava, C. Lal and R. Kant, Macromol. Rapid Commun, 2008, 29, 1959.
87.J. Zhu, S. Wei, M. J. Alexander, T. D. Dang, T. C. Ho and Z. Guo, Adv. Funct. Mater, 2010, 20, 3076.
88.D. M. DeLongchamp and P. T. Hammond, Chem. Mater, 2004, 16, 4799.
89.W. Geffcken and E. Berger, German Patent, 1939, 736, 411
90.C. B. Hurd, Chem. Rev, 1938, 22, 403
91.Y. Chen and J. O. Iroh, Chem. Mater, 1999, 11, 1218
92.R. Aelion, A. Loebel and F. Eirich, J. Am. Chem. Soc, 1950, 72, 5750
93.C. J. Brinker, K. D. Keefer, D. W. Schaefer and C. S. Ashley, J. Non-Cryst. Solids, 1982, 48, 47
94.S. Xiong, S. L. Phua, B. S. Dunn, J. Ma and X. Lu, Chem. Mater, 2010, 22, 255.
95.W. J. Bae , A. R. Davis, J. Jung, W. H. Jo, K. R. Carter and E. B. Coughlin , Chem. Comm, 2011, 47, 10710.
Chapter 2
1.H. S. Liu, B. C. Pan, D, C, Huang, Y. R. Kung, C. M. Leu and G. S. Liou, NPG Asia Mater, 2017, 9, e388
2.C. H. LU, M. H. HON and I. C. LEU, J. Electron. Mater, 2017, 46, 2080
3.G. Cai, M. Cui, V. Kumar, P. Darmawan, J. Wang, X. Wang, A. L. S. Eh, K. Qian and P. S. Lee, Chem. Sci, 2016, 7, 1373
4.J. Zhou, S. Lin, Y. Chena, A. M. Gaskovc, Appl. Surf. Sci, 2017, 403, 274
5.F. Zheng, W. Man, M. Guo, M. Zhanga and Q. Zhen, CrystEngComm, 2015, 17, 5440
6.L. Liang, J. Zhang, Y. Zhou, J. Xie, X. Zhang, M. Guan, B. Pan and Y. Xie, Sci. Rep, 2013, 3, 1936
7.S. Poongodi, P. S. Kumar, D. Mangalaraj, N. Ponpandian , P. Meena , Y. Masuda, C. Lee, J. Alloys Compd, 2017, 719, 71
8.W.L. Kwong, N. Savvides, C.C. Sorrell, Electrochim. Acta, 2012, 75, 371
9.C. C. Chen, J Nanomater, 2013, 785023
10.A. Garreau and J. L. Duvail, Adv. Optical Mater. 2014, 2, 1122
11.X. J. Lv, J. W. Sun, B. Hu1, M. Ouyang, Z. Y. Fu1, P. J. Wang, G. F. Bian and C. Zhang, Nanotechnology, 2013, 24, 265705
12.Tuchikawa S, Trivandrum, India: Reseach Signpost, 2003, 293.
13.R. S. NICHOLSON and I. SHAIN, Anal. Chem, 1964, 36, 706
14.Z. Fang, H. Zhu, C. Preston, X. Han, Y. Li, S. Lee, X. Chai, G. Chen and L. Hu, J. Mater. Chem. C, 2013, 1, 6191

Chapter 3
1.H. C. Moon, T. P. Lodge, C. D. Frisbie, Chem. Mater, 2015, 27, 1420
2.P. Andersson Ersman, J. Kawahara, M. Berggren, Org. Electron, 2013, 14, 3371.
3.R. T. Wen, M. A. Arvizu, G. A. Niklasson, C. G. Granqvist, Surf. Coatings Technol, 2015, 278, 121.
4.P. Verge, P. H. Aubert, F. Vidal, L. Sauques, F. Tran-Van, S. Peralta, D. Teyssie, C. Chevrot, Chem. Mater, 2010, 22, 4539.
5.T. T. Steckler, P. Henriksson, S. Mollinger, A. Lundin, A. Salleo, M. R. Andersson, J. Am. Chem. Soc, 2014, 136, 1190.
6.T. Yasuda, Y. Shinohara, Y. Kusagaki, T. Matsuda, L. Han, T. Ishi-i, Polymer, 2015, 58, 139.
7.S. Toksabay, S. O. Hacioglu, N. A. Unlu, A. Cirpan, L. Toppare, Polymer, 2014, 55, 3093.
8.S. Bilal, S. Gul, R. Holze, A. u. H. A. Shah, Synth. Met, 2015, 206, 131.
9.G. Qu, F. Li, E. B. Berda, M. Chi, X. Liu, C. Wang, D. Chao, Polymer, 2015, 58, 60.
10.H. Wei, J. Zhu, S. Wu, S. Wei, Z. Guo, Polymer, 2013, 54, 1820.
11.J. E. Dick, A. Poirel, R. Ziessel, A. J. Bard, Electrochimica Acta, 2015, 178, 234.
12.Z. Xu, M. Wang, W. Fan, J. Zhao, H. Wang, Electrochimica Acta, 2015, 160, 271.
13.L. Zhang, Y. Wen, Y. Yao, J. Xu, X. Duan, G. Zhang, Electrochimica Acta, 2014, 116, 343
14.M. M, G. V, P. P, S. R, S. C, Electrochimica Acta, 2015, 174, 302.
15.J. Xue, Y. Zhu, M. Jiang, J. Su, Y. Liu, Mater. Lett, 2015, 149, 127.
16.A. T. Mane, S. T. Navale, R. C. Pawar, C. S. Lee, V. B. Patil, Synth. Met, 2015, 199, 187.
17.C. W. Kung, T. C. Wang, J. E. Mondloch, D. Fairen-Jimenez, D. M. Gardner, W. Bury, J. M. Klingsporn, J. C. Barnes, R. Van Duyne, J. F. Stoddart, M. R. Wasielewski, O. K. Farha, J. T. Hupp, Chem. Mater, 2013, 25, 5012.
18.L. Shao, J. W. Jeon, J. L. Lutkenhaus, Chem. Mater, 2012, 24, 181.
19.K. Lee, A. Mazare, P. Schmuki, Chem. Rev, 2014, 114, 9385.
20.B. R. Huang, T. C. Lin, Y. M. Liu, Sol. Energy Mater. Sol. Cells, 2015, 133, 32.
21.X. Yang, L. Chi, C. Chen, X. Cui, Q. Wang, Phys. E Lowdimensional Syst. Nanostructures, 2015, 66, 120.
22.X. Fu, C. Jia, Z. Wan, X. Weng, J. Xie, L. Deng, Org. Electron, 2014, 15, 2702.
23.Y. Osman, R. Jamal, A. Rahman, F. Xu, A. Ali, T. Abdiryim, Synth. Met, 2013, 179, 54.
24.Y. H. Chou, C. L. Tsai, W. C. Chen and G. S. Liou, Polym. Chem, 2014, 5, 6718
25.T. T. Huang, C. L. Tsai, S. Tateyama, T. Kaneko and G. S. Liou, Nanoscale, 2015, 8, 12793
26.C. J. Chen, C. L. Tsai, and G. S. Liou, J. Mater. Chem. C, 2014, 2, 2842
27.H. J. Yen, K. Y. Lin and G. S. Liou, J. Mater. Chem. C, 2011, 21, 6230.
28.H. J. Yen and G. S. Liou, Chem. Mater, 2009, 21, 4062
29.J. H. Wu and G. S. Liou, Adv. Funct. Mater, 2014, 24, 6422
30.Y. Xiao, L. Chu, Y. Sanakis and P. Liu, J. Am. Chem. Soc, 2009, 131, 9931
31.H. S. Liu, B. C. Pan, D, C, Huang, Y. R. Kung, C. M. Leu and G. S. Liou, NPG Asia Mater, 2017, 9, e388
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊