|
1.(a) Heyong He a, J. K. a., Michael Forster b, Anton Lerf b A new structural model for graphite oxide. Chemical Physics Letters 1998, 287, 53-56; (b) Hirata, M.; Gotou, T.; Horiuchi, S.; Fujiwara, M.; Ohba, M., Thin-film particles of graphite oxide 1. Carbon 2004, 42 (14), 2929-2937. 2.WILLIAM S. HUMMERS, J., AND RICHARD E. OFFEMAN Preparation of Graphitic Oxide Journal of the American Chemical Society 1958, 80, 1339-1339. 3.Akbar Bagri1, C. M., Muge Acik 3, Yves J. Chabal 3, Manish Chhowalla2† and Vivek B. Shenoy1*, Structural evolution during the reduction of chemically derived graphene oxide. NATURE CHEMISTRY 2010, 2, 581-587. 4.Kai Zhang; Lu Mao; Li Li Zhang; Hardy Sze On Chan; Zhao, X. S.; Wu*, a. J., Surfactant-intercalated, chemically reduced graphene oxide for high performance supercapacitor electrodes. Journal of Materials Chemistry 2011, 21, 7302–7307. 5.Mao, L.; Zhang, K.; On Chan, H. S.; Wu, J., Surfactant-stabilized graphene/polyaniline nanofiber composites for high performance supercapacitor electrode. J. Mater. Chem. 2012, 22 (1), 80-85. 6.Cai, X.; Zhang, Q.; Wang, S.; Peng, J.; Zhang, Y.; Ma, H.; Li, J.; Zhai, M., Surfactant-assisted synthesis of reduced graphene oxide/polyaniline composites by gamma irradiation for supercapacitors. Journal of Materials Science 2014, 49 (16), 5667-5675. 7.Mensing, J. P.; Wisitsoraat, A.; Phokharatkul, D.; Lomas, T.; Tuantranont, A., Novel surfactant-stabilized graphene-polyaniline composite nanofiber for supercapacitor applications. Composites Part B: Engineering 2015, 77, 93-99. 8.Wang, Z.; Ma, L.; Chen, W.; Huang, G.; Chen, D.; Wang, L.; Lee, J. Y., Facile synthesis of MoS2/graphene composites: effects of different cationic surfactants on microstructures and electrochemical properties of reversible lithium storage. RSC Advances 2013, 3 (44), 21675. 9.Ma, L.; Huang, G.; Chen, W.; Wang, Z.; Ye, J.; Li, H.; Chen, D.; Lee, J. Y., Cationic surfactant-assisted hydrothermal synthesis of few-layer molybdenum disulfide/graphene composites: Microstructure and electrochemical lithium storage. Journal of Power Sources 2014, 264, 262-271. 10.Balamurugan Devadas, S. C., Shen-Ming Chen*; Rajkumar, a. M., Investigation of morphologies and characterization of rare earth metal samarium hexacyanoferrate and its composite with surfactant intercalated graphene oxide for sensor applications†. RSC Advances 2014, 4, 45895–45902 11.Xu, J.; Cai, X.; Shen, F., Preparation and property of UV-curable polyurethane acrylate film filled with cationic surfactant treated graphene. Applied Surface Science 2016, 379, 433-439. 12.Shengyan Yin; †; Yanyan Zhang; †; Junhua Kong; †; Changji Zou; †; Chang Ming Li; ‡; Xuehong Lu; †; Jan Ma; †; Freddy Yin Chiang Boey; †; Chen, a. X.; †, Assembly of Graphene Sheets into Hierarchical Structures for High-Performance Energy Storage. ACS NANO 2011, 5, 3831–3838. 13.Shengyan Yin , Y. G., Moshe Herzberg , Lei Liu , Hang Sun , Yanyan Zhang , Fanben Meng , Xuebo Cao , Darren D. Sun , Hongyu Chen , Ariel Kushmaro , and Xiaodong Chen *, Functional Free-Standing Graphene Honeycomb Films. Adv. Funct. Mater. 2013, 23 ( 2972–2978). 14.Ke, Q.; Liu, Y.; Liu, H.; Zhang, Y.; Hu, Y.; Wang, J., Surfactant-modified chemically reduced graphene oxide for electrochemical supercapacitors. RSC Advances 2014, 4 (50), 26398. 15.Yu, P.; Li, Y.; Zhao, X.; Wu, L.; Zhang, Q., In situ growth of ordered polyaniline nanowires on surfactant stabilized exfoliated graphene as high-performance supercapacitor electrodes. Synthetic Metals 2013, 185-186, 89-95. 16.Rajagopalan, B.; Hur, S. H.; Chung, J. S., Surfactant-treated graphene covered polyaniline nanowires for supercapacitor electrode. Nanoscale Res Lett 2015, 10, 183. 17.Huang, G.; Chen, T.; Chen, W.; Wang, Z.; Chang, K.; Ma, L.; Huang, F.; Chen, D.; Lee, J. Y., Graphene-like MoS(2)/graphene composites: cationic surfactant-assisted hydrothermal synthesis and electrochemical reversible storage of lithium. Small 2013, 9 (21), 3693-703. 18.Fernández-Merino, M. J.; Paredes, J. I.; Villar-Rodil, S.; Guardia, L.; Solís-Fernández, P.; Salinas-Torres, D.; Cazorla-Amorós, D.; Morallón, E.; Martínez-Alonso, A.; Tascón, J. M. D., Investigating the influence of surfactants on the stabilization of aqueous reduced graphene oxide dispersions and the characteristics of their composite films. Carbon 2012, 50 (9), 3184-3194. 19.Srinivasarao, M.; Collings, D.; Philips, A.; Patel, S., Three-Dimensionally Ordered Array of Air Bubbles in a Polymer Film. Science 2001, 292 (5514), 79-83. 20.Beysens, D., Dew nucleation and growth. Comptes Rendus Physique 2006, 7 (9-10), 1082-1100. 21.Muñoz-Bonilla, A.; Fernández-García, M.; Rodríguez-Hernández, J., Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Progress in Polymer Science 2014, 39 (3), 510-554. 22.Wong, K. H.; Hernández-Guerrero, M.; Granville, A. M.; Davis, T. P.; Barner-Kowollik, C.; Stenzel, M. H., Water-assisted formation of honeycomb structured porous films. Journal of Porous Materials 2006, 13 (3-4), 213-223. 23.Stenzel, M. H.; Barner‐Kowollik, C.; Davis, T. P., Formation of honeycomb‐structured, porous films via breath figures with different polymer architectures. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44 (8), 2363-2375. 24.Song, L.; Bly, R. K.; Wilson, J. N.; Bakbak, S.; Park, J. O.; Srinivasarao, M.; Bunz, U. H., Facile Microstructuring of Organic Semiconducting Polymers by the Breath Figure Method: Hexagonally Ordered Bubble Arrays in Rigid Rod‐Polymers. Advanced Materials 2004, 16 (2), 115-118. 25.Orlov, M.; Tokarev, I.; Scholl, A.; Doran, A.; Minko, S., pH-responsive thin film membranes from poly (2-vinylpyridine): water vapor-induced formation of a microporous structure. Macromolecules 2007, 40 (6), 2086-2091. 26.Roszol, L.; Lawson, T.; Koncz, V.; Noszticzius, Z. n.; Wittmann, M.; Sarkadi, T.; Koppa, P. l., Micropatterned Polyvinyl Butyral Membrane for Acid− Base Diodes. The Journal of Physical Chemistry B 2010, 114 (43), 13718-13725. 27.Stenzel-Rosenbaum, M. H.; Davis, T. P.; Fane, A. G.; Chen, V., Porous Polymer Films and Honeycomb Structures Made by the Self-Organization of Well-Defined Macromolecular Structures Created by Living Radical Polymerization Techniques. Angewandte Chemie International Edition 2001, 40 (18), 3428-3432. 28.Deepak, V. D.; Asha, S. K., Self-Organization-Induced Three-Dimensional Honeycomb Pattern in Structure-Controlled Bulky Methacrylate Polymers: Synthesis, Morphology, and Mechanism of Pore Formation. The Journal of Physical Chemistry B 2006, 110 (43), 21450-21459. 29.Grayson, S. M.; Frechet, J. M. J., Convergent Dendrons and Dendrimers: from Synthesis to Applications. Chem. Rev. 2001, 101 (12), 3819-3868. 30.Tomalia, D. A.; Baker, H.; J., D.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P., A New Class of Polymers: Starburst-Dendritic Macromolecules. Polym. J. 1985, 17, 117-132. 31.Newkome, G. R.; Yao, Z.; Baker, G. R.; Gupta, V. K., Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol. J. Org. Chem. 1985, 50 (11), 2003-2004. 32.(a) Lothian-Tomalia, M. K.; Hedstrand, D. M.; Tomalia, D. A.; Padias, A. B.; H. K. Hall Jr., A contemporary survey of covalent connectivity and complexity. The divergent synthesis of poly(thioether) dendrimers. Amplified, genealogically directed synthesis leading to the de gennes dense packed state. Tetrahedron 1997, 53 (45), 15495-15513; (b) Padias, A. B.; Hall, H. K.; Tomalia, D. A.; McConnell, J. R., Starburst polyether dendrimers J. Org. Chem. 1987, 52 (24), 5305-5312. 33.Miller, T. M.; Neenan, T. X., Convergent synthesis of monodisperse dendrimers based upon 1,3,5-trisubstituted benzenes. Chem. Mater. 1990, 2 (4), 346-349. 34.Hawker, C. J.; Frechet, J. M. J., Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc. 1990, 112 (21), 7638-7647. 35.!!! INVALID CITATION !!! 14-17. 36.(a) Schluter, A. D.; Rabe, J. P., Dendronized Polymers: Synthesis, Characterization, Assembly at Interfaces, and Manipulation. Angew. Chem. Int. Ed. 2000, 39 (5), 864-883; (b) Cheng, C.-X.; Huang, Y.; Tang, R.-P.; Chen, E.-q.; Xi, F., Molecular Architecture Effect on Self-Assembled Nanostructures of a Linear-Dendritic Rod Triblock Copolymer in Solution. Macromolecules 2005, 38 (8), 3044-3047. 37.(a) Roovers, J.; Comanita, B., Dendrimers and Dendrimer-Polymer Hybrids Adv. Polym. Sci. 1999, 142, 179-228; (b) Zhao, Y.; Shuai, X.; Chen, C.; Xi, F., Synthesis of novel dendrimer-like star block copolymers with definite numbers of arms by combination of ROP and ATRP. Chem. Commun. 2004, 1608-1609; (c) Darcos, V.; Dureault, A.; Taton, D.; Gnanou, Y.; Marchand, P.; Caminade, A.-M.; Majoral, J.-P.; Destarac, M.; Leising, F., Synthesis of hybrid dendrimer-star polymers by the RAFT process. Chem. Commun. 2004, (18), 2110-2111. 38.Matthews, O. A.; Shipway, A. N.; Stoddart, J. F., Dendrimers-branching out from curiosities into new technologies. Prog. Polym. Sci. 1998, 23 (1), 1-56. 39.de Gennes, P. G.; Hervet, H., Statistics of « starburst » polymers. J. Physique Lett. 1983, 44 (9), 351-360. 40.Mourey, T. H.; Turner, S. R.; Rubinstein, M.; Frechet, J. M. J.; Hawker, C. J.; Wooley, K. L., Unique behavior of dendritic macromolecules: intrinsic viscosity of polyether dendrimers. Macromolecules 1992, 25 (9), 2401-2406. 41.Tomalia, D. A., Architecturally Driven Properties Based on the Dendritic State High Perform. Polym. 2001, 2, S1-S10. 42.Michels, J. J.; Baars, M. W. P. L.; Meijer, E. W.; Huskens, J.; Reinhoudt, D. N., Well-defined assemblies of adamantyl-terminated poly(propylene imine) dendrimers and b-cyclodextrin in water. J. Chem. Soc., Perkin Trans. 2 2000, 2, 1914-1918. 43.Wooley, K. L.; Frechet, J. M. J.; Hawker, C. J., Influence of shape on the reactivity and properties of dendritic, hyperbranched and linear aromatic polyesters. Polymer 1994, 35 (21), 4489-4495. 44.Hawker, C. J.; Malmstrom, E. E.; Frank, C. W.; Kampf, J. P., Exact Linear Analogs of Dendritic Polyether Macromolecules: Design, Synthesis, and Unique Properties J. Am. Chem. Soc. 1997, 119 (41), 9903-9904. 45.(a) Tomalia, D. A.; Naylor, A. M.; Goddard III, W. A., Starburst Dendrimers: Molecular-Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter. Angew. Chem. Int. Ed. 1990, 29 (2), 138-175; (b) de Brabander-van den Berg, E. M. M.; Meijer, E. W., Poly(propylene imine) Dendrimers: Large-Scale Synthesis by Hetereogeneously Catalyzed Hydroge. Angew. Chem. Int. Ed. 1993, 32 (9), 1308-1311. 46.(a) Hawker, C. J.; Farrington, P. J.; Mackay, M. E.; Wooley, K. L.; Frechet, J. M. J., Molecular Ball Bearings: The Unusual Melt Viscosity Behavior of Dendritic Macromolecules J. Am. Chem. Soc. 1995, 117 (15), 4409-4410; (b) Farrington, P. J.; Hawker, C. J.; Frechet, J. M. J.; Mackay, M. E., The Melt Viscosity of Dendritic Poly(benzyl ether) Macromolecules. Macromolecules 1998, 31 (15), 5043-5050. 47.(a) Dai, S. A.; Juang, T. Y.; Chen, C. P.; Chang, H. Y.; Kuo, W. J.; Su, W. C.; Jeng, R. J., Synthesis of N-aryl azetidine-2,4-diones and polymalonamides prepared from selective ring-opening reactions. J Appl Polym Sci 2007, 103 (6), 3591-3599; (b) Chen, C. P.; Dai, S. A.; Chang, H. L.; Su, W. C.; Jeng, R. J., Facile approach to polyurea/malonamide dendrons via a selective ring-opening addition reaction of azetidine-2,4-dione. J Polym Sci Pol Chem 2005, 43 (3), 682-688; (c) Chen, C. P.; Dai, S. A.; Chang, H. L.; Su, W. C.; Wu, T. M.; Jeng, R. J., Polyurethane elastomers through multi-hydrogen-bonded association of dendritic structures. Polymer 2005, 46 (25), 11849-11857. 48.(a) Tsai, C. C.; Juang, T. Y.; Dai, S. H. A.; Wu, T. M.; Su, W. C.; Liu, Y. L.; Jeng, R. J., Synthesis and montmorillonite-intercalated behavior of dendritic surfactants. Journal of Materials Chemistry 2006, 16 (21), 2056-2063; (b) Chen, Y. C.; Chang, H. L.; Lee, R. H.; Dai, S. H. A.; Su, W. C.; Jeng, R. J., Nonlinear optical polyimides consisting of chromophore-containing dendrons with site-isolation effect. Polym Advan Technol 2009, 20 (5), 493-500. 49.M. FLEISCHMANN, P. J. H. a. A. J. M., RAMAN SPECTRA OF PYRIDZNE ADSORBED AT A SILVER ELECTRODE CHEMICAL PHYSICS LETTERS 1974, 26, 163-166. 50.Nie, W. E. D. a. S., Single-Molecule and Single-Nanoparticle SERS: Examining the Roles of Surface Active Sites and Chemical Enhancement. J. Phys. Chem. B 2001, 106 (311-317). 51.Emory, S. N. a. S. R., Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering SCIENCE 1996, 275, 1102-1106. 52.E. C. Le Ru, E. B., M. Meyer, and P. G. Etchegoin† Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys. Chem. C 2007, 111 (13794-13803). 53.Albrecht, M. G.; Creighton, J. A., Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the American Chemical Society 1977, 99 (15), 5215-5217. 54.(a) Campion, A.; Kambhampati, P., Surface-enhanced Raman scattering. Chemical Society Reviews 1998, 27 (4), 241-250; (b) Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. Journal of Physical Chemistry B-Condensed Phase 2003, 107 (3), 668-677; (c) Haes, A. J.; Van Duyne, R. P., A unified view of propagating and localized surface plasmon resonance biosensors. Analytical and bioanalytical chemistry 2004, 379 (7-8), 920-930. 55.García-Vidal, F. J.; Pendry, J., Collective theory for surface enhanced Raman scattering. Physical Review Letters 1996, 77 (6), 1163. 56.Nie, S.; Emory, S. R., Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. science 1997, 275 (5303), 1102-1106. 57.Hao, E.; Schatz, G. C., Electromagnetic fields around silver nanoparticles and dimers. The Journal of chemical physics 2004, 120 (1), 357-366. 58.(a) Bantz, K. C.; Meyer, A. F.; Wittenberg, N. J.; Im, H.; Kurtulus, O.; Lee, S. H.; Lindquist, N. C.; Oh, S. H.; Haynes, C. L., Recent progress in SERS biosensing. Phys Chem Chem Phys 2011, 13 (24), 11551-67; (b) Doering, W. E.; Piotti, M. E.; Natan, M. J.; Freeman, R. G., SERS as a Foundation for Nanoscale, Optically Detected Biological Labels. Advanced Materials 2007, 19 (20), 3100-3108; (c) Xie, W.; Schlucker, S., Medical applications of surface-enhanced Raman scattering. Phys Chem Chem Phys 2013, 15 (15), 5329-44; (d) Li, D.-W.; Zhai, W.-L.; Li, Y.-T.; Long, Y.-T., Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Microchimica Acta 2013, 181 (1-2), 23-43; (e) Pang, S.; Yang, T.; He, L., Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. TrAC Trends in Analytical Chemistry 2016, 85, 73-82. 59.(a) Wang, H. H.; Liu, C. Y.; Wu, S. B.; Liu, N. W.; Peng, C. Y.; Chan, T. H.; Hsu, C. F.; Wang, J. K.; Wang, Y. L., Highly raman‐enhancing substrates based on silver nanoparticle arrays with tunable sub‐10 nm gaps. Advanced Materials 2006, 18 (4), 491-495; (b) Zhao, J.; Pinchuk, A. O.; McMahon, J. M.; Li, S.; Ausman, L. K.; Atkinson, A. L.; Schatz, G. C., Methods for describing the electromagnetic properties of silver and gold nanoparticles. Accounts of chemical research 2008, 41 (12), 1710-1720; (c) Bell, S. E.; McCourt, M. R., SERS enhancement by aggregated Au colloids: effect of particle size. Physical Chemistry Chemical Physics 2009, 11 (34), 7455-7462. 60.Kleinman, S. L.; Frontiera, R. R.; Henry, A.-I.; Dieringer, J. A.; Van Duyne, R. P., Creating, characterizing, and controlling chemistry with SERS hot spots. Physical Chemistry Chemical Physics 2013, 15 (1), 21-36. 61.(a) Talley, C. E.; Jackson, J. B.; Oubre, C.; Grady, N. K.; Hollars, C. W.; Lane, S. M.; Huser, T. R.; Nordlander, P.; Halas, N. J., Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano letters 2005, 5 (8), 1569-1574; (b) Orendorff, C. J.; Gole, A.; Sau, T. K.; Murphy, C. J., Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence. Analytical chemistry 2005, 77 (10), 3261-3266; (c) Guerrini, L.; Graham, D., Molecularly-mediated assemblies of plasmonic nanoparticles for Surface-Enhanced Raman Spectroscopy applications. Chem Soc Rev 2012, 41 (21), 7085-107. 62.(a) Ma, H.; Hao, J., Ordered patterns and structures via interfacial self-assembly: superlattices, honeycomb structures and coffee rings. Chem Soc Rev 2011, 40 (11), 5457-71; (b) Yang, S.; Lei, Y., Recent progress on surface pattern fabrications based on monolayer colloidal crystal templates and related applications. Nanoscale 2011, 3 (7), 2768-82; (c) Yang, S.; Lapsley, M. I.; Cao, B.; Zhao, C.; Zhao, Y.; Hao, Q.; Kiraly, B.; Scott, J.; Li, W.; Wang, L.; Lei, Y.; Huang, T. J., Large-Scale Fabrication of Three-Dimensional Surface Patterns Using Template-Defined Electrochemical Deposition. Advanced Functional Materials 2013, 23 (6), 720-730. 63.Liu, G. L.; Lee, L. P., Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics. Applied Physics Letters 2005, 87 (7), 074101. 64.(a) Widawski, G.; Rawiso, M.; Francois, B., Self-organized honeycomb morphology of star-polymer polystyrene films. Nature 1994, 369 (6479), 387-389; (b) Wu, C.-H.; Ting, W.-H.; Lai, Y.-W.; Dai, S. A.; Su, W.-C.; Tung, S.-H.; Jeng, R.-J., Tailored honeycomb-like polymeric films based on amphiphilic poly(urea/malonamide) dendrons. RSC Adv. 2016, 6 (94), 91981-91990; (c) Chang, C.-C.; Juang, T.-Y.; Ting, W.-H.; Lin, M.-S.; Yeh, C.-M.; Dai, S. A.; Suen, S.-Y.; Liu, Y.-L.; Jeng, R.-J., Using a breath-figure method to self-organize honeycomb-like polymeric films from dendritic side-chain polymers. Materials Chemistry and Physics 2011, 128 (1), 157-165. 65.(a) Ma, H.; Hao, J., Evaporation-induced ordered honeycomb structures of gold nanoparticles at the air/water interface. Chemistry 2010, 16 (2), 655-60; (b) Kong, L.; Dong, R.; Ma, H.; Hao, J., Au NP honeycomb-patterned films with controllable pore size and their surface-enhanced Raman scattering. Langmuir 2013, 29 (13), 4235-41.
|