(3.237.178.91) 您好!臺灣時間:2021/03/04 09:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:范揚澤
研究生(外文):Yang-Ze Fan
論文名稱:新型含芳香胺結構功能性高分子及其混成材料之合成與電致變色性質研究
論文名稱(外文):Synthesis and Electrochromic Properties of Novel Triarylamine-based Functional Polymers and Hybrid Materials.
指導教授:劉貴生
口試日期:2017-08-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:112
中文關鍵詞:三芳胺聚醚混成材料sol-gel電致變色
外文關鍵詞:triarylaminepolyetherhybrid materialssol-gelelectrochromic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:72
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文分為四個章節,第一章為總體序論。第二章中以2種具有矽醚保護基的三芳香胺衍生單體TPA-2P及BDATA-2P與不同二氟單體合成二系列之新型芳香族聚醚。第三章節中將第二章節中所合成的具有矽醚保護基的三芳香胺衍生單體BDATA-2P及TDATA-2P,進行脫去矽醚保護基反應生成BDATA-2OH及TDATA-2OH。 單體上的羫基提供有效的有機-無機物鍵結位置,以sol-gel的方法來製備獲得三芳香安衍生單體/ZrO2混合膜。第五章為結論。
這些含三芳香胺結構之高分子及混成材料的合成、基本特性、電化學急電致變色性質皆被研究。所有的高分子具有良好的溶解性、出色的薄膜形成能力、良好的熱性質。在利用電化學與光譜電化學的方法下,這些含三芳香胺結構之高分子及混成材料展現良好的電致變色能力,隨著N中心數目的增長,並具有多段變色的能力。
This study has been separated into five chapters. Chapter 1 is general introduction. Chapter 2 includes two series of novel aromatic polyether derived from two kinds of triarylamine-based compounds TPA-2P, BDATA-2P and two kinds of difluoride. Chapter 3 describes two novel compounds BDATA-2OH and TDATA-2OH were prepared by using deprotection reaction from BDATA-2P and TDATA-2P. These triphenylamine derivatives via hydroxyl groups as the reaction sites to be introduced into the hybrid network by sol gel reaction. Chapter 4 is conclusions. The synthesis, basic characterization, electrochemical and electrochromic properties of these novel triarylamine-based functional polyethers and hybrid materials were investigated. All polymers revealed good solubility in many solvent with excellent thin-film-forming ability. These polymers also showed good thermal stability with the glass-transition temperature higher than 200 oC. All polymers and hybrid materials revealed good electrochromic characteristics and some electroactive films (BDATA-PES, TDATA-hybrid) showed multicolor electrochromic behavior by the electrochemical and spectroelectrochemical.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS......................I
ABSTRACT(in English).................II
ABSTRACT(in Chinese)................III
TABLE OF CONTENTS....................IV
LIST OF SCHEMES....................VIII
LIST OF TABLES........................X
LIST OF FIGURES......................XI
CHAPTER 1.............................1
CHAPTER 2............................36
CHAPTER 3............................88
CHAPTER 4...........................111
APPENDIX............................114

CHAPTER 1
General Introduction

1.1 DEVELOPMENT OF ELECTROCHROMISM............................2
1.2 ELECTROCHROMIC SYSTEMS....................................6
1.2.1 Transition-metal Oxides.................................6
1.2.2 Coordination Complexes..................................8
1.2.3 Organic Molecules......................................11
1.2.4 Conductive Polymers....................................13
1.2.5 Arylamine-Based Polymers...............................16
1.3 FUNCTIONAL HYBRID ORGANIC-INOGRANIC NANOCOMPOSITES.......21
1.3.1 Hybrid Nanocomposites with physical interactions.......22
1.3.2 Hybrid Nanocomposites with Chemical Bond...............24
1.3.3 Synthetic method of Organic-Inorganic Nanocomposites...26
1.4 RESEARCH MOTIVATION......................................31
REFERENCES AND NOTES.........................................32

CHAPTER 2
Synthesis and Electrochromism of Triarylamine-based Polyether

ABSTRACT..........................................37
2.1 Introduction..................................38
2.2 Experimental section..........................40
2.2.1 Materials...................................40
2.2.2 Measurement.................................42
2.2.3 Monomer Synthesis...........................43
2.2.4 Polymer synthesis...........................51
2.2.5 Preparation of the films....................53
2.3 Results and discussion........................54
2.3.1 Monomer Synthesis and Characterization......54
2.3.2 Polymer synthesis and characterization......62
2.3.3 Electrochromic Properties of the monomer....71
2.3.4 Electrochromic Properties of the polyether..76
2.4 Summary.......................................85
REFERENCES AND NOTES..............................86


CHAPTER 3
Synthesis, Preparation, and Electrochromism of Triarylamine/ Zirconia Hybrid Materials

ABSTRACT..........................................88
3.1 Introduction..................................89
3.2 Experimental section..........................90
3.2.1 Materials...................................90
3.2.2 Measurement.................................90
3.2.3 Monomer Synthesis...........................92
3.2.4 Preparation of hybrid film..................94
3.3 Results and discussion........................96
3.3.1 Monomer and hybrid synthesis................96
3.3.2 Electrochromic Properties of the hybrid....101
3.4 Summary......................................107
REFERENCES AND NOTES.............................108

CHAPTER 4
Conclusion
CONCLUSIONS......................................112

LIST OF SCHEMES
CHAPTER 1
Scheme 1.1..........................2
Scheme 1.2..........................7
Scheme 1.3..........................8
Scheme 1.4..........................8
Scheme 1.5..........................8
Scheme 1.6..........................9
Scheme 1.7..........................9
Scheme 1.8..........................9
Scheme 1.9 Metallophthalocyanine (Pc)..........................11
Scheme 1.10 4,4’-bipyridinium ion structure..........................12
Scheme 1.11 The redox states of viologen...........................12
Scheme 1.12 The typical conducting polymers..........................14
Scheme 1.13..........................17
Scheme 1.14..........................18
Scheme 1.15..........................18
Scheme 1.15..........................20
Scheme 1.16..........................20
Scheme 1.17 Sol-gel synthesis of organic-inorganic nanocomposites..........................26

CHAPTER 2
Scheme 2.1 The mechanism of silyl method4...........................39
Scheme 2.2 Synthetic route to target compound TPA-2P, BDATA-2P and TDATA-2P...........................55
Scheme 2.3 Preparation of polyether...........................63

CHAPTER 3
Scheme 3.1 Synthetic route to target compound BDATA-2OH and TDATA-2OH...........................97
Scheme 3.2 Synthetic route to target hybrid BDATA-hybrid and TDATA-hybrid...........................98

LIST OF TABLES
CHAPTER 1
Table 1.1 Color of viologens based on different substituted structure..........................12
Table 1.2 Color of polymers derived from electropolymerization of arylamines..........................17
Table 1.3 Electronegativity (χ), coordination number (N), and degree of unsaturation (N - Z) of some metals (Z=4)...........................29
Table 1.4 The reaction constant K of tetralkoxysilane in acid hydrolysis...........................29

CHAPTER 2
Table 2.1 Brand and purity of the materials used in this chapter..........................40
Table 2.2 Inherent viscosity and GPC data of polyether...........................64
Table 2.3 The solubility behavior of polyether...........................64
Table 2.4 Thermal properties of polyethe..........................66
Table 2.5 Electrochemical properties of polyether...........................79

CHAPTER 3
Table 3.1 Brand and purity of the materials used in this chapter..........................90

LIST OF FIGURESS
CHAPTER 1
Fig. 1.1 Photographs of (a) Anti-glare back mirrors and (b) E-papers (c) smart windows...........................4
Fig. 1.2 Swittching sequence of the electrochromic glass..........................5

Fig. 1.3 Chemical structures of all polymers characterized with colors corresponding to the doped state (D), neutral state (N), and intermediate state (I)...........................15

Fig. 1.4..........................21
Fig. 1.5 (a) EC cell at switched off and switched on stated. (b) Transmittance spectra of ECD in bleached state and colored state. (c) Chemical structure of the viologen and triphenylamine derivatives...........................24
Fig. 1.6 Synthesis route for the PANI-TiO2 hybrid...........................25
Fig. 1.7 Schematic of in situ synthesis of metal nanoparticles in a polymer matrix...........................27
Fig. 1.8 Ex situ synthesis schemes for the preparation of nanocomposites from blending route and in situ polymerization process...........................28
Fig. 1.9 Polymerization behavior of aqueous silica...........................30

CHAPTER 2
Fig. 2.1 (a) 1H NMR and (b) H-H COSY spectra of TPA-2P in THF-d8...........................56
Fig. 2.2 (a) 13C NMR and (b) C-H HMQC spectra of TPA-2P in THF-d8...........................57
Fig. 2.3 (a) 1H NMR and (b) H-H COSY spectra of BDATA-2P in THF-d8...........................58
Fig. 2.4 (a) 13C NMR and (b) C-H HMQC spectra of BDATA-2P in THF-d8...........................59
Fig. 2.5 (a) 1H NMR and (b) H-H COSY spectra of TDATA-2P in THF-d8...........................60
Fig. 2.6 (a) 13C NMR and (b) C-H HMQC spectra of TDATA-2P in THF-d8...........................61
Fig. 2.7 The photographs of polyether film (a) TPA-PES (film thickness : 41 ± 1 μm)..........................63
), (b) BDATA-PES (film thickness : 34 ± 5 μm) and (c) TPA-PEO (film thickness : 31 ± 1 μm)...........................63
Fig. 2.8 TGA thermograms of polyether under (a) N2 and (b) air at a heating rate of 20 oC/min...........................65
Fig. 2.9 DSC traces of the polyethers under N2 at a heating rate of 20 oC/min...........................66
Fig. 2.10 Comparison of FT-IR spectrum for bis(4-fluorophenyl) sulfone, TPA-2P and TPA-PES...........................67
Fig. 2.11 Comparison of FT-IR spectrum for 2,5-bis(4-fluorophenyl)-1,3,4-oxadiazole, TPA-2P and TPA-PEO...........................67
Fig. 2.12 Comparison of FT-IR spectrum for bis(4-fluorophenyl) sulfone, BDATA-2P and BDATA-PES...........................68
Fig. 2.13 Comparison of 1H NMR spectrum for bis(4-fluorophenyl) sulfone, TPA-2P and TPA-PES...........................69
Fig. 2.14 Comparison of 1H NMR spectrum for bis(4-fluorophenyl) sulfone, 2,5-bis(4-fluorophenyl)-1,3,4-oxadiazole, TPA-2P and TPA-PEO...........................69
Fig. 2.15 Comparison of 1H NMR spectrum for bis(4-fluorophenyl) sulfone, BDATA-2P and BDATA-PES...........................70
Fig. 2.16 Differential pulse voltammetry diagram of 0.001 M TPA-2P in CH3CN containing 0.1 M TBABF4. Scan rate: 2 mV/s; pulse amplitude: 50 mV; pulse width: 25 ms; pulse period: 0.2 s...........................72
Fig. 2.17 Differential pulse voltammetry diagram of 0.001 M BDATA-2P in NMP containing 0.1 M TBABF4. Scan rate: 2 mV/s; pulse amplitude: 50 mV; pulse width: 25 ms; pulse period: 0.2 s...........................72
Fig. 2.18 (a) Photo display of the electrochromic color change. (b) Absorbance spectrum at applied potentials of 0.00, 0.75 (V vs Ag/ AgCl). (c) Absorbance spectral change at various applied potentials between 0.00 and 0.80 (V vs Ag/ AgCl) for the electron oxidation of TPA-2P. (0.001 M TPA-2P was dissolved in CH3CN containing 0.1 M TBABF4)..........................74
Fig. 2.19 (a) Photo display of the electrochromic color change. (b) Absorbance spectrum at applied potentials of 0.00, 0.60, 0.85 and 1.25 (V vs Ag/ AgCl). (c) Absorbance spectral change at various applied potentials between 0.00 and 0.65 (V vs Ag/ AgCl) for the first electron oxidation of BDATA-2P. (d) Absorbance spectral change at various applied potentials between 0.65 and 0.90 (V vs Ag/ AgCl) for the second electron oxidation of BDATA-2P. (e) Absorbance spectral change at various applied potentials between 0.90 and 1.30 (V vs Ag/ AgCl) for the third electron oxidation of BDATA-2P. (0.001 M BDATA-2P was dissolved in NMP containing 0.1 M TBABF4)..........................75
Fig. 2.20 Differential pulse voltammetry diagram of TPA-PES film onto an ITO-coated glass substrate in CH3CN containing 0.1 M TBABF4. Scan rate: 2 mV/s; pulse amplitude: 50 mV; pulse width: 25 ms; pulse period: 0.2 s...........................77
Fig. 2.21 Differential pulse voltammetry diagram of BDATA-PES film onto an ITO-coated glass substrate in CH3CN containing 0.1 M TBABF4. Scan rate: 2 mV/s; pulse amplitude: 50 mV; pulse width: 25 ms; pulse period: 0.2 s...........................77
Fig. 2.22 Differential pulse voltammetry diagram of TPA-PEO film onto an ITO-coated glass substrate in CH3CN containing 0.1 M TBABF4. Scan rate: 2 mV/s; pulse amplitude: 50 mV; pulse width: 25 ms; pulse period: 0.2 s...........................78
Fig. 2.23 Cyclic voltammogram of TPA-PES film onto an ITO-coated glass substrate in CH3CN containing 0.1 M TBABF4 at the scan rate of 50 mV/s...........................79
Fig. 2.24 Cyclic voltammogram of BDATA-PES film onto an ITO-coated glass substrate in CH3CN containing 0.1 M TBABF4 at the scan rate of 25 mV/s...........................80
Fig. 2.25 Cyclic voltammogram of TPA-PEO film onto an ITO-coated glass substrate in CH3CN containing 0.1 M TBABF4 at the scan rate of 50 mV/s...........................80
Fig. 2.26 (a) Photo display of the electrochromic color change. Absorbance spectra for TPA-PES film onto ITO-coated glass substrate in CH3CN containing 0.1 M TBABF4 (b) at applied potentials of 0.00, 1.00 (V vs Ag/ AgCl) and (c) at various applied potentials between 0.00 and 1.05 (V vs Ag/ AgCl) for the electron oxidation. (Thickness : 431 ± 105 nm)...........................82
Fig. 2.27 (a) Photo display of the electrochromic color change. Absorbance spectra for BDATA-PES film onto ITO-coated glass substrate in CH3CN containing 0.1 M TBABF4 (b) at applied potentials of 0.00, 0.65, 0.85 and 1.25 (V vs Ag/ AgCl), (c) at various applied potentials between 0.00 and 0.70 (V vs Ag/ AgCl) for the first electron oxidation, (d) at various applied potentials between 0.70 and 0.95 (V vs Ag/ AgCl) for the second electron oxidation and (e) at various applied potentials between 0.95 and 1.35 (V vs Ag/ AgCl) for the third electron oxidation. (Thickness : 484 ± 53 nm)...........................83
Fig. 2.28 Absorbance spectra for TPA-PEO film onto ITO-coated glass substrate in CH3CN containing 0.1 M TBABF4 (a) at applied potentials of 0.00, 0.95 (V vs Ag/ AgCl) and (b) at various applied potentials between 0.00 and 1.00 (V vs Ag/ AgCl) for the electron oxidation. (Thickness : 224 ± 30 nm)...........................84

CHAPTER 3
Fig. 3.1 (a) 1H NMR and (b) H-H COSY spectra of BDATA-2OH in THF-d8..........................99
Fig. 3.2 (a) 13C NMR and (b) C-H HMQC spectra of BDATA-2OH in THF-d8...........................100
Fig. 3.3 Differential pulse voltammetry diagram of TDATA-hybrid film onto an ITO-coated glass substrate in CH3CN containing 0.1 M TBABF4. Scan rate: 2 mV/s; pulse amplitude: 50 mV; pulse width: 25 ms; pulse period: 0.2 s...........................102
Fig. 3.4 (a) Photo display of the electrochromic color change. Absorbance spectra for BDATA-hybrid film onto ITO-coated glass substrate in CH3CN containing 0.1 M TBABF4 (b) at applied potentials of 0.00, 0.55 (V vs Ag/ AgCl) and (c) at various applied potentials between 0.00 and 0.60 (V vs Ag/ AgCl) for the electron oxidation. (Thickness : 851 ± 81 nm)...........................104
Fig. 3.5 (a) Photo display of the electrochromic color change. Absorbance spectra for TDATA-hybrid film onto ITO-coated glass substrate in CH3CN containing 0.1 M TBABF4 (b) at applied potentials of 0.0, 0.5, 0.8, 1.1 and 1.4 (V vs Ag/ AgCl), (c) at various applied potentials between 0.0 and 0.6 (V vs Ag/ AgCl) for the first electron oxidation, (d) at various applied potentials between 0.6 and 0.9 (V vs Ag/ AgCl) for the second electron oxidation, (e) at various applied potentials between 0.9 and 1.2 (V vs Ag/ AgCl) for the third electron oxidation and (f) at various applied potentials between 1.2 and 1.5 (V vs Ag/ AgCl) for the fourth electron oxidation. (Thickness : 823 ± 67 nm)...........................105
REFERENCES AND NOTES (Chapter 1)
1.P. M. S. Monk, R. J. Mortimer and D. R. Rosseinsky, Electrochromism: Fundamentals and Applications, Wiley, 2008.
2.J. R. Platt, Journal of Chemical Physics, Chem. 1961, 34, 862.
3.W. Franz, Zeitschrift für Naturforschung A, 1958,13, 484.
4.L. Keldysh, Sov. Phys. JETP, 1958, 7, 788.
5.H. J. Byker, Proceedings of the. Symposium on Electrochromic Materials, 1994, 94-2, 3.
6.S. Deb, Applied Optics, 1969, 8, 192.
7.M. Green, Chemistry and industry, 1996, 641.
8.C. M. Lampert, Solar Energy Material, 1984, 11, 1.
9.R. Baetens, B.P. Jelle and A. Gustavsen, Solar Energy Materials and solar Cells, 2010, 94, 87.
10.E. S. Lee and D. DiBartolomeo, Solar Energy Materials and Solar Cells, 2002, 71, 465.
11.T. Kubo, J. Tanimoto, M. Minami, T. Toya, Y. Nishikitani and H, Watanabe, Solid State Ionics, 2003, 165, 97.
12.U. Bach, D. Corr, D. Lupo, F. Pichot and M. Ryan, Advanced Materials, 2002, 14, 845.
13.P. M. S. Monk, R. J. Mortimer and D. R. Rosseinsky, Electrochromism: Fundamentals and Applications, VCH, Weinheim, 1995.
14.W. C. Dautremont-Smith, Displays, 1982, 3, 3.
15.N. R. de Tacconi, K. Rajeshwar, R. O. Lezna, Chem Mater, 2003, 15, 3046.
16.C. G. Granqvist, Handbook of Inorganic Electrochromic Materials, Elsevier, 1995.
17.B. W. Faughnan, R. S. Crandall, Display Devices, 1980, 5, 181.
18.G. V. Granqvist, Phys. Thin Films, 1993, 17, 301
19.T. Tesfamichael, M. Arita, T. Bostrom and J. Bell, Thin Solid Films, 2010, 518, 4791.
20.D. T. Gillaspie, R. C. Tenent, and A. C. Dillon, J. Mater. Chem., 2010, 20, 9585.
21.D. R. Rosseinsky, and R. J. Mortimer, J. Adv. Mater., 2001, 13, 783.
22.B. W. Faughnan, and R. S. Crandall, Top. Appl. Phys., 1980, 40, 181.
23.Y. Jung, Jaeyoung Lee, Y. Taka, Electrochem. Solid-State Lett. 2004, 7, H5.
24.G. Beni, C. E. Rice, J. L. Shay, Electrochem. Soc., 1980, 127, 1342.
25.R. J. Mortimer, Chem. Soc. Rev., 1997, 26, 147.
26.F. am. Main, D. C. Gesellschaft, Gmelin, Handbuch der Anoroganischen Chemie, 1930, 59, 671.
27.V. D. Neff, J. Electrochem. Soc., 1978, 125,886.
28.N. R. Tacconi, K. Rajeshwar, R. O. Lezna, Chem. Mater., 2003, 15, 3046.
29.A. Braun, J. Tcherniac. Über die Produkte der Einwirkung von Acetanhydrid auf Phthalamid. Berichte der deutschen chemischen Gesellschaft., 1907, 40(2), 2709.
30.G. C. S. Collins, D. J. Schiffrin, Electrochem. Soc., 1985, 132, 1835.
31.D. Cummins, G. Boschloo, M. Ryan, D. Corr, S. N. Rao and D. Fitzmaurice, The Journal of Physical Chemistry B, 2000, 104, 11449.
32.R. Cinnsealach, G. Boschloo, S. N. Rao and D. Fitzmauriec, Solar Energy Materials and Solar Cells, 1999, 57, 107.
33.C. S. Ah, J. Song, S. M. Cho, T. Y. Kim, H. N. Kim, J. Y. Oh, H. Y. Chu and H. Ryu, Bulletin of the Korean Chemical Society, 2015, 36, 548.
34.Y. P. Jou, Thesis for Master of Materials Science and Engineering Fneg Chia University, 2007.
35.H. Shirakawa, A. G. MacDiarmid, A. J. Heeger,Heeger, Chem. Commun. 2003, 1, 4.
36.P. M. Beaujuge, J. R. Reynolds, Chem. Rev., 2010, 110, 268.
37.M. Mastragostino, Applications of Electroactive Polymers; Chapman and Hall, London, 1993.
38.Yang, C. C. Lin, H. T. Chen, Org. Lett., 2003, 5, 839.
39.M. Y. Chou, M. K. Leung, Y. O. Su, C. L. Chiang, C. C. Lin, J. H. Liu, C. K. Kuo, C. Y. Mou, Chem. Mater., 2004, 16, 654.
40.S. Beaupre´, J. Dumas, M. Leclerc, Chem. Mater., 2006, 18, 4011.
41.B. Lim, Y. C. Nah, J. T. Hwang, J. Ghim, D. Vak, J. Yun, J. M., D. Y. J. Kim, J. Mater. Chem., 2009, 19, 2380.
42.T. H. Su, S. H. Hsiao, G. S. Liou, J. Polym. Sci. Part A: Polym. Chem., 2005, 43, 2085.
43.G. S. Liou, S. H. Hsiao, T. H. Su, J. Mater. Chem., 2005, 15, 1812.
44.Yen, H. J.; Liou, G. S. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 1584.
45.G. S. Liou, S. H. Hsiao, W. C. Chen, H. J. Yen, Macromolecules, 2006, 39, 6036.
46.G. S. Liou, S. H. Hsiao, H. W. Chen, J. Mater. Chem. 2006, 16, 1831.
47. H. J. Yen, K. Y. Lin, G. S. Liou, J. Mater. Chem., 2011, 21, 6230.
48.C. Sanchez, B. Julian, P. Belleville, M. Popall, J. Mater. Chem., 2005, 15, 3559.
49.B. Arkles, Mater. Res. Bull., 2001, 26, 5, 402.
50.C. Sanchez and P. Go´mez-Romero, Functional Hybrid Materials, Wiley VCH, Weinheim, 2004.
51.S. Bhandari, M. Deepa, A. K. Srivastava, C. Lal, R. Kant, Macromol. Rapid Commun., 2008, 29, 1959.
52.S. Bhandari, M. Deepa, A. K. Srivastava, A. G. Joshi, R. Kant, Phys. Chem. B, 2009, 113, 9416.
53.D. Weng, Y. Shi, J. Zheng, C. Xu, Organic electronics, 2016, 34, 139.
54.V. K. Thakur, G. Ding, J. Ma, P. S. Lee, X. Lu, Adv. Mater., 2012, 24, 4071.
55.S. Xiong, S. L. Phua, B. S. Dunn, J. Ma, X. Lu, Chem. Mater., 2010, 22, 255.
56.G. S. Liou, P. H. Lin, H. J. Yen, Y. Y. Yu, T. W. Tsai and W. C. Chen, J. Mater. Chem., 2010, 20, 531.
57.Y. Q. Rao and S. Chen, Macromolecules 2008, 41, 4838.
58.C. J. Brinker and G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, 1st ed.; Academic Press: San Diego, 1990.
59.W. Que, Z. Sun, Y. Zhou, Y. L. Lam, Y. C. Chan and C. H. Kam, Thin Solid Films, 2000, 359, 177. (b)B. Wang and L. Hu, Ceram. Int., 2006, 32, 7.
60.A. D. Pomogailo, Russ. Chem. Rev., 2000, 69, 53.
61.U. Schubert, J. Mater. Chem., 2005, 15, 3701.
62.R. Aelion, A. Loebel and F. Eirich, J. Am. Chem. Soc. 1950, 72, 5750. J. Brinker and G. W. Scherer, Sol-Gel Science, London: Academic Press 1990.
63.C. J. Brinker, K. D. Keefer, D. W. Schaefer and C. S. Ashley, J. Non-Cryst. Solids. 1982, 48, 47.

REFERENCES AND NOTES (Chapter 2)
1.M.A. Hickner, H. Ghassemi, Y. S. Kim, B.R. Einsla and J. E. McGrath, Chemical R eviews, 2004, 104, 4587-4611.
2.F. F. Li, J. Y. Wang, M. J. Zhou, X. C. Liu, C. Wang and D. M. Chao, Chemical Research in Chinese Universities, 2015, 31, 1066-1071.
3.H. R. Kricheldorf and K. Bornhorst, Journal of Polymer Science Part a-Polymer Chemistry, 2008, 46, 3732-3739.
4.H. R. Kricheldorf and G. Bier, J. Polym. Sci., Polym. Chem., 1983, 21, 2283-2289.
5.J. L. Hedrick, R. Twieg, Macromolecules, 1992, 25, 2021.
6.A. Köllhofer, H. Plenio, Chemistry - A European Journal, 2003, 9, 1416-1425.
7.G. S. Liou, H. Y. Lin, Macromolecules, 2009, 42, 125-134.
8.G. S. Liou, C. W. Chang, Macromolecules, 2008, 41, 1667-1674.
9.H. W. Chang, K. H. Lin, C. C. Chueh, G. S. Liou, W. C. Chen, J. Polym. Sci. Part A: Polym. Chem., 2009, 47, 4037-4050.

REFERENCES AND NOTES (Chapter 3)
1.S. Xiong, S. L. Phua, B. S. Dunn, J. Ma, X. Lu, Chem. Mater., 2010, 22, 255-260.
2.Y. Li, T. Michinobu, J. Polym. Sci., Part A: Polym. Chem,. 2012, 50, 2111-2120.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔