跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2025/01/25 18:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳柏瑜
研究生(外文):Po-Yu Chen
論文名稱:製備非溶劑誘導巨孔電紡絲纖維及其吸附行為探討
論文名稱(外文):Preparation of Nonsolvent-Induced Macroporous Electrospun Fibers and Their Adsorption Behaviors
指導教授:童世煌
指導教授(外文):Shih-Huang Tung
口試日期:2017-07-21
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:72
中文關鍵詞:電紡絲多孔纖維非溶劑誘導相分離超疏水油污吸附空氣過濾
外文關鍵詞:ElectrospinningPorous fibersPhase separationSuperhydrophobicOil sorptionAir filtration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:259
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  電紡絲技術是一種簡單製造連續纖維的方法,細小的纖維具有高比表面積的特性,而孔洞纖維更可進一步的提昇纖維比表面積;不過,一般透過環境濕度影響所製造的纖維孔洞僅止於纖維表面,相對於纖維表面積的提昇有限。
  本研究中使用聚苯乙烯/氯苯/二甲基亞碸的三相系統,成功的利用非溶劑誘導相分離法(non-solvent induced phase separation, NIPS)製造出一系列具有特殊孔洞結構的電紡纖維,透過改變非溶劑含量調控纖維孔洞尺寸,其分佈達50至2000奈米之廣,另外還可透過添加鹽類進一步調整纖維尺寸與孔洞分佈,而利用非溶劑誘導相分離法獲得的孔洞深入纖維內部,可有效提昇其比表面積,且以上多種纖維孔洞型態只需要透過單純的電紡過程即可獲得,完全不需任何後處理。我們更進一步的結合雙軸電紡絲技術簡化改變孔洞結構的程序,只需簡單的調控內外軸流速即可產生多樣化的孔洞結構,並且透過雙軸電紡絲可獲得罕見的中空多孔纖維結構。
  而因聚苯乙烯其疏水但不疏油的特質,使此多孔纖維同時具有超疏水與超吸油的特性,這代表了此多孔纖維應用於油污吸附時具有非常良好的選擇性,而其中具有微米級杯狀開口的孔洞纖維更是展現了優越的油污吸附能力,對於矽油的極限吸油含量高達900 g/g,吸附速率達150 g/min,對於真空幫浦油的極限吸油含量可達650 g/g,吸附速率則高達210 g/min,與其他文獻中的聚苯乙烯纖維吸附材料相比有高達5倍的提昇,而透過一系列不同纖維孔洞尺寸的測試,發現纖維表面開孔尺寸是影響吸附速率的主要關鍵。
  本論文中亦進行了纖維濾材的空氣過濾實驗,分別透過單一與混合不同型態纖維吸附測試,藉此了解不同纖維結構對於過濾吸附空氣汙染物的貢獻,並比較液體與氣體吸附機制的差異,針對不同形式的汙染物提出合適的纖維結構設計方案。
Electrospinning technique is a straightforward method to produce continuous micro/nanoscale fibers. The common method for manufacturing porous electrospun fibers is vapor induced phase separation (VIPS). However, because the moisture condenses as water drops mainly on top of the solution, the remaining pores are generally isolated and only formed on the surface. Thus the increase of the specific surface area of fibers produced by the VIPS method is limited
In this study, the polystyrene/chlorobenzene/DMSO ternary system successfully produce a series of nonsolvent-induced porous fibers. The distribution of the pores was 50 to 2000 nm. The fiber size and the porous morphology can be simply controlled by adjusting the compositions of solvents and organic salt. The fibers with macroporous structure throughout can be fabricated by a simple one-step electrospinning process from the ternary system, without post-spun treatment. Furthermore, we used the co-axial electrospinning technique to adjust the pore structure by controlling the feed rates of inner and outer flows, which can produce a variety of porous structures, including the uncommon hollow porous fibers.
Since PS is a hydrophobic but not an oleophobic material, the PS fibrous sorbents can selectively adsorb oil while repelling water. The microscale opening porous structures greatly enhances the oil adsorption capacity of the fibrous sorbents. The maximum adsorption of silicone oil was up to ~ 900 g/g, as well as significantly increases the adsorption rate, giving a considerable leap from the previous studies. The air pollutant adsorption tests were also conducted using different types of fibers as filters to understand the relationship between the fiber structure and the adsorption efficiency of aerosols. The design principles for applying appropriate fiber structures to different forms of pollutants are proposed.
第一章 緒論 1
1-1前言 1
1-2研究目的 2
第二章 文獻回顧與基礎理論 3
2-1電紡絲概述 3
2-1-1電紡絲簡介 3
2-1-2電紡參數影響纖維結構 5
2-1-3雙軸電紡絲 6
2-2相分離技術製備多孔材料概述 7
2-3多孔電紡絲纖維的應用及其原理 9
2-3-1油污分離 9
2-3-2空氣過濾 10
第三章 非溶劑誘導相分離多孔纖維 12
3-1相分離技術製備多孔電紡纖維簡介 12
3-2實驗 13
3-2-1材料 13
3-2-2 PS/CB/DMSO三相相圖 13
3-2-3單軸電紡絲溶液配製與裝置設定 13
3-2-4雙軸電紡絲裝置設定 15
3-3溶劑/非溶劑系統 15
3-3-1 PS/CB/DMSO系統電紡性 15
3-3-2孔洞形成機制 20
3-3-3濕度對PS/CB/DMSO電紡系統的影響機制 22
3-3-4高分子溶液黏度與孔洞型態 26
3-3-5流速與孔洞結構 28
3-4鹽類系統 29
3-4-1溶劑/鹽類系統 29
3-4-2溶劑/非溶劑/鹽類系統 - DMSO含量影響 30
3-4-3高分子溶液黏度與孔洞型態 33
3-4-4 TBAP含量影響 34
3-5 雙軸電紡絲孔洞結構 35
第四章 多孔纖維性質與應用 40
4-1簡介 40
4-1-1超疏水與接觸角 40
4-1-2油污洩漏處理 41
4-1-3空氣污染 41
4-2實驗 42
4-2-1材料 42
4-2-2纖維孔洞量測 43
4-2-3接觸角測試 44
4-2-4電紡纖維油污吸附能力測試 44
4-2-5空氣污染物吸附能力測試 45
4-3纖維孔洞分佈 46
4-4電紡纖維疏水性 47
4-5電紡纖維油污吸附特性 48
4-5-1極限吸附容量 48
4-5-2吸附速率 50
4-6電紡纖維空污過濾特性 52
4-7液相與氣相吸附過濾機制 54
4-8空氣污染-混合纖維濾材 57
第五章 結論與未來研究方向 59
5-1結論 59
5-2未來研究方向 61
5-2-1細胞培養與空氣過濾 61
5-2-2調控纖維孔洞型態 61
參考文獻 62
附錄 作者論文著述 72
1.Tomer, V.; Teye-Mensah, R.; Tokash, J. C.; Stojilovic, N.; Kataphinan, W.; Evans, E. A.; Chase, G. G.; Ramsier, R. D.; Smith, D. J.; Reneker, D. H., Selective Emitters for Thermophotovoltaics: Erbia-modified Electrospun Titania Nanofibers. Sol. Energy Mater. Sol. Cells 2005, 85, 477-488.

2.Laforgue, A., All-textile Flexible Supercapacitors Using Electrospun Poly(3,4-ethylenedioxythiophene) Nanofibers. J. Power Sources 2011, 196, 559-564.

3.Yang, L.; Fitié, C. F. C.; van der Werf, K. O.; Bennink, M. L.; Dijkstra, P. J.; Feijen, J., Mechanical Properties of Single Electrospun Collagen Type I Fibers. Biomaterials 2008, 29, 955-962.

4.Thavasi, V.; Singh, G.; Ramakrishna, S., Electrospun Nanofibers in Energy and Environmental Applications. Energ. Environ. Sci. 2008, 1, 205-221.

5.Wu, J.; Wang, N.; Zhao, Y.; Jiang, L., Electrospinning of Multilevel Structured Functional Micro-/nanofibers and their Applications. J. Mater. Chem. A 2013, 1, 7290-7305.

6.Huang, C.; Soenen, S. J.; Rejman, J.; Lucas, B.; Braeckmans, K.; Demeester, J.; De Smedt, S. C., Stimuli-responsive Electrospun Fibers and their Applications. Chem. Soc. Rev. 2011, 40, 2417-2434.

7.Huang, Z.-M.; Zhang, Y. Z.; Kotaki, M.; Ramakrishna, S., A Review on Polymer Nanofibers by Electrospinning and their Applications in Nanocomposites. Compos. Sci. Technol. 2003, 63, 2223-2253.

8.Ondarçuhu, T.; Joachim, C., Drawing a Single Nanofibre Over Hundreds of Microns. Europhys. Lett. 1998, 42, 215-220.

9.Feng, L.; Li, S.; Li, H.; Zhai, J.; Song, Y.; Jiang, L.; Zhu, D., Super-Hydrophobic Surface of Aligned Polyacrylonitrile Nanofibers. Angew. Chem. Int. Ed. 2002, 41, 1221-1223.

10.Ma, P. X.; Zhang, R., Synthetic Nano-scale Fibrous Extracellular Matrix. J. Biomed. Mater. Res. 1999, 46, 60-72.

11.Liu, G.; Ding, J.; Qiao, L.; Guo, A.; Dymov, B. P.; Gleeson, J. T.; Hashimoto, T.; Saijo, K., Polystyrene-block-poly(2-cinnamoylethyl methacrylate) Nanofibers—Preparation, Characterization, and Liquid Crystalline Properties. Chem. Eur. J. 1999, 5, 2740-2749.

12.Anton, F. Process and apparatus for preparing artificial threads. US patent 1,975,504, 1934.

13.Anton, F. Method and apparatus for spinning. US patent 2,160,962, 1939.

14.Anton, F. Artificial thread and method of producing same. US patent 2,187,306, 1940.

15.Anton, F. Production of artificial fibers from fiber forming liquids. US patent 2,323,025, 1943.

16.Anton, F. Method and apparatus for spinning. US patent 2,349,950, 1944.

17.Megelski, S.; Stephens, J. S.; Chase, D. B.; Rabolt, J. F., Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers. Macromolecules 2002, 35, 8456-8466.

18.Theron, S. A.; Zussman, E.; Yarin, A. L., Experimental Investigation of the Governing Parameters in the Electrospinning of Polymer Solutions. Polymer 2004, 45, 2017-2030.

19.Jarusuwannapoom, T.; Hongrojjanawiwat, W.; Jitjaicham, S.; Wannatong, L.; Nithitanakul, M.; Pattamaprom, C.; Koombhongse, P.; Rangkupan, R.; Supaphol, P., Effect of Solvents on Electro-spinnability of Polystyrene Solutions and Morphological Appearance of Resulting Electrospun Polystyrene Fibers. Eur. Polym. J. 2005, 41, 409-421.

20.Yu, J. H.; Fridrikh, S. V.; Rutledge, G. C., The Role of Elasticity in the Formation of Electrospun Fibers. Polymer 2006, 47, 4789-4797.

21.Shenoy, S. L.; Bates, W. D.; Frisch, H. L.; Wnek, G. E., Role of Chain Entanglements on Fiber Formation During Electrospinning of Polymer Solutions: Good Solvent, Non-specific Polymer–polymer Interaction Limit. Polymer 2005, 46, 3372-3384.

22.Koombhongse, S.; Liu, W.; Reneker, D. H., Flat Polymer Ribbons and other Shapes by Electrospinning. J. Polym. Sci., Part B: Polym. Phys. 2001, 39, 2598-2606.

23.Liu, W.; Huang, C.; Jin, X., Tailoring the Grooved Texture of Electrospun Polystyrene Nanofibers by Controlling the Solvent System and Relative Humidity. Nanoscale Res. Lett. 2014, 9, 350.

24.Pai, C.-L.; Boyce, M. C.; Rutledge, G. C., Morphology of Porous and Wrinkled Fibers of Polystyrene Electrospun from Dimethylformamide. Macromolecules 2009, 42, 2102-2114.

25.Tripatanasuwan, S.; Zhong, Z.; Reneker, D. H., Effect of Evaporation and Solidification of the Charged Jet in Electrospinning of Poly(ethylene oxide) Aqueous Solution. Polymer 2007, 48, 5742-5746.

26.Fashandi, H.; Karimi, M., Pore Formation in Polystyrene Fiber by Superimposing Temperature and Relative Humidity of Electrospinning Atmosphere. Polymer 2012, 53, 5832-5849.

27.Fashandi, H.; Karimi, M., Characterization of Porosity of Polystyrene Fibers Electrospun at Humid Atmosphere. Thermochim. Acta 2012, 547, 38-46.

28.Katsogiannis, K. A. G.; Vladisavljević, G. T.; Georgiadou, S., Porous Electrospun Polycaprolactone (PCL) Fibres by Phase Separation. Eur. Polym. J. 2015, 69, 284-295.

29.Taylor, G., Electrically Driven Jets. Proc. R. Soc. London, Ser. A 1969, 313, 453-475.

30.Yarin, A. L.; Koombhongse, S.; Reneker, D. H., Taylor Cone and Jetting from Liquid Droplets in Electrospinning of Nanofibers. J. Appl. Phys. 2001, 90, 4836-4846.
31.Reneker, D. H.; Yarin, A. L.; Fong, H.; Koombhongse, S., Bending Instability of Electrically Charged Liquid Jets of Polymer Solutions in Electrospinning. J. Appl. Phys. 2000, 87, 4531-4547.

32.Yarin, A. L.; Koombhongse, S.; Reneker, D. H., Bending Instability in Electrospinning of Nanofibers. J. Appl. Phys. 2001, 89, 3018-3026.

33.Rayleigh, L., On the Equilibrium of Liquid Conducting Masses Charged with Electricity. Philos. Mag. 1882, 14, 184-186.

34.Reneker, D. H.; Fong, H.; editors, Washington DC: American Chemical Society 2005.

35.Greiner, A.; Wendorff, J. H.; Yarin, A. L.; Zussman, E., Biohybrid Nanosystems with Polymer Nanofibers and Nanotubes. Appl. Microbiol. Biotechnol. 2006, 71, 387-393.

36.Li, D.; Xia, Y., Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning. Nano Lett. 2004, 4, 933-938.

37.Moghe, A. K.; Gupta, B. S., Co‐axial Electrospinning for Nanofiber Structures: Preparation and Applications. Polym. Rev. 2008, 48, 353-377.

38.Yu, J. H.; Fridrikh, S. V.; Rutledge, G. C., Production of Submicrometer Diameter Fibers by Two-Fluid Electrospinning. Adv. Mater. 2004, 16, 1562-1566.

39.Sun, Z.; Zussman, E.; Yarin, A. L.; Wendorff, J. H.; Greiner, A., Compound Core–Shell Polymer Nanofibers by Co-Electrospinning. Adv. Mater. 2003, 15, 1929-1932.

40.Chen, J.-Y.; Kuo, C.-C.; Lai, C.-S.; Chen, W.-C.; Chen, H.-L., Manipulation on the Morphology and Electrical Properties of Aligned Electrospun Nanofibers of Poly(3-hexylthiophene) for Field-Effect Transistor Applications. Macromolecules 2011, 44, 2883-2892.

41.Li, C.-L.; Wang, D.-M.; Deratani, A.; Quémener, D.; Bouyer, D.; Lai, J.-Y., Insight into the Preparation of Poly(vinylidene fluoride) Membranes by Vapor-induced Phase Separation. J. Membr. Sci. 2010, 361, 154-166.
42.Srinivasarao, M.; Collings, D.; Philips, A.; Patel, S., Three-Dimensionally Ordered Array of Air Bubbles in a Polymer Film. Science 2001, 292, 79-83.

43.Chang, H.-H.; Beltsios, K.; Chen, Y.-H.; Lin, D.-J.; Cheng, L.-P., Effects of Cooling Temperature and Aging Treatment on the Morphology of Nano- and Micro-Porous Poly(ethylene-co-vinyl alcohol) Membranes by Thermal Induced Phase Separation Method. J. Appl. Polym. Sci. 2014, 131, 40374.

44.Lin, D.-J.; Chang, H.-H.; Chen, T.-C.; Lee, Y.-C.; Cheng, L.-P., Formation of Porous Poly(vinylidene fluoride) Membranes with Symmetric or Asymmetric Morphology by Immersion Precipitation in the Water/TEP/PVDF System. Eur. Polym. J. 2006, 42, 1581-1594.

45.Matthews, J. A.; Wnek, G. E.; Simpson, D. G.; Bowlin, G. L., Electrospinning of Collagen Nanofibers. Biomacromolecules 2002, 3, 232-238.

46.Katta, P.; Alessandro, M.; Ramsier, R. D.; Chase, G. G., Continuous Electrospinning of Aligned Polymer Nanofibers onto a Wire Drum Collector. Nano Lett. 2004, 4, 2215-2218.

47.Li, D.; Wang, Y.; Xia, Y., Electrospinning Nanofibers as Uniaxially Aligned Arrays and Layer-by-Layer Stacked Films. Adv. Mater. 2004, 16, 361-366.

48.Li, D.; Wang, Y.; Xia, Y., Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays. Nano Lett. 2003, 3, 1167-1171.

49.Laudenslager, M. J.; Sigmund, W. M., A Continuous Process to Align Electrospun Nanofibers into Parallel and Crossed Arrays. J. Nanopart. Res. 2013, 15, 1487.

50.Matthias, M. L. A.; Christian, G.; Helga, B.; Heinrich, S., Electrospinning of Aligned Fibers with Adjustable Orientation Using Auxiliary Electrodes. Sci. Technol. Adv. Mater. 2012, 13, 035008.

51.Kiselev, P.; Rosell-Llompart, J., Highly Aligned Electrospun Nanofibers by Elimination of the Whipping Motion. J. Appl. Polym. Sci. 2012, 125, 2433-2441.

52.Choi, H.-M.; Moreau, J. P., Oil Sorption Behavior of Various Sorbents Studied by Sorption Capacity Measurement and Environmental Scanning Electron Microscopy. Microsc. Res. Tech. 1993, 25, 447-455.

53.Zhu, H.; Qiu, S.; Jiang, W.; Wu, D.; Zhang, C., Evaluation of Electrospun Polyvinyl Chloride/Polystyrene Fibers As Sorbent Materials for Oil Spill Cleanup. 2011, 45, 4527-4531.

54.Li, P.; Qiao, Y.; Zhao, L.; Yao, D.; Sun, H.; Hou, Y.; Li, S.; Li, Q., Electrospun PS/PAN Fibers with Improved Mechanical Property for Removal of Oil from Water. Mar. Pollut. Bull. 2015, 93, 75-80.

55.Jing, L.; Shim, K.; Toe, C. Y.; Fang, T.; Zhao, C.; Amal, R.; Sun, K.-N.; Kim, J. H.; Ng, Y. H., Electrospun Polyacrylonitrile–Ionic Liquid Nanofibers for Superior PM2.5 Capture Capacity. ACS Appl. Mater. Interfaces 2016, 8, 7030-7036.

56.Zhu, M.; Han, J.; Wang, F.; Shao, W.; Xiong, R.; Zhang, Q.; Pan, H.; Yang, Y.; Samal, S. K.; Zhang, F.; Huang, C., Electrospun Nanofibers Membranes for Effective Air Filtration. Macromol. Mater. Eng 2017, 302, 1600353.

57.Zhang, R.; Liu, C.; Hsu, P.-C.; Zhang, C.; Liu, N.; Zhang, J.; Lee, H. R.; Lu, Y.; Qiu, Y.; Chu, S.; Cui, Y., Nanofiber Air Filters with High-Temperature Stability for Efficient PM2.5 Removal from the Pollution Sources. Nano Lett. 2016, 16, 3642-3649.

58.Wang, Z.; Pan, Z.; Wang, J.; Zhao, R., A Novel Hierarchical Structured Poly(lactic acid)/Titania Fibrous Membrane with Excellent Antibacterial Activity and Air Filtration Performance. J. Nanomater. 2016, 2016, 17.

59.Liu, C.; Hsu, P.-C.; Lee, H.-W.; Ye, M.; Zheng, G.; Liu, N.; Li, W.; Cui, Y., Transparent Air Filter for High-efficiency PM2.5 Capture. Nat. Commun. 2015, 6, 6205.

60.Li, Z.; Kang, W.; Zhao, H.; Hu, M.; Ju, J.; Deng, N.; Cheng, B., Fabrication of a Polyvinylidene Fluoride Tree-like Nanofiber Web for Ultra High Performance Air Filtration. RSC Adv. 2016, 6, 91243-91249.

61.Li, Q.; Xu, Y.; Wei, H.; Wang, X., An Electrospun Polycarbonate Nanofibrous Membrane for High Efficiency Particulate Matter Filtration. RSC Adv. 2016, 6, 65275-65281.

62.Khalid, B.; Bai, X.; Wei, H.; Huang, Y.; Wu, H.; Cui, Y., Direct Blow-Spinning of Nanofibers on a Window Screen for Highly Efficient PM2.5 Removal. Nano Lett. 2017, 17, 1140-1148.

63.Barhate, R. S.; Ramakrishna, S., Nanofibrous Filtering Media: Filtration Problems and Solutions from Tiny Materials. J. Membr. Sci. 2007, 296, 1-8.

64.Ahn, Y. C.; Park, S. K.; Kim, G. T.; Hwang, Y. J.; Lee, C. G.; Shin, H. S.; Lee, J. K., Development of High Efficiency Nanofilters Made of Nanofibers. Curr. Appl. Phys. 2006, 6, 1030-1035.

65.Lin, J.; Shang, Y.; Ding, B.; Yang, J.; Yu, J.; Al-Deyab, S. S., Nanoporous Polystyrene Fibers for Oil Spill Cleanup. Mar. Pollut. Bull. 2012, 64, 347-352.

66.Wu, J.; Wang, N.; Wang, L.; Dong, H.; Zhao, Y.; Jiang, L., Electrospun Porous Structure Fibrous Film with High Oil Adsorption Capacity. ACS Appl. Mater. Interfaces 2012, 4, 3207-3212.

67.Wang, Z.; Pan, Z., Preparation of hierarchical structured nano-sized/porous poly(lactic acid) composite fibrous membranes for air filtration. Appl. Surf. Sci. 2015, 356, 1168-1179.

68.Ceylan, D.; Dogu, S.; Karacik, B.; Yakan, S. D.; Okay, O. S.; Okay, O., Evaluation of Butyl Rubber as Sorbent Material for the Removal of Oil and Polycyclic Aromatic Hydrocarbons from Seawater. Environ. Sci. Technol. 2009, 43, 3846-3852.

69.Batchelor, G. K., An Introduction to Fluid Dynamic. 1967.

70.Gustavsson, J., Why We Need Effective Air Filtration. Filtr. Sep. 2002, 39, 14-17.

71.Hung, C.-H.; Leung, W. W.-F., Filtration of Nano-aerosol Using Nanofiber Filter Under Low Peclet Number and Transitional Flow Regime. Sep. Purif. Technol. 2011, 79, 34-42.

72.Werner, R. M.; Clarenburg, L. A., Aerosol Filters. Pressure Drop across Single-Component Glass Fiber Filters. Ind. Eng. Chem. Proc. Des. Dev 1965, 4, 288-293.

73.Kaur, S.; Sundarrajan, S.; Rana, D.; Matsuura, T.; Ramakrishna, S., Influence of Electrospun Fiber Size on the Separation Efficiency of Thin Film Nanofiltration Composite Membrane. J. Membr. Sci. 2012, 392, 101-111.

74.Desai, K.; Kit, K.; Li, J.; Michael Davidson, P.; Zivanovic, S.; Meyer, H., Nanofibrous Chitosan Non-wovens for Filtration Applications. Polymer 2009, 50, 3661-3669.

75.Davies, C. N., Filtration of Aerosols. J. Aerosol Sci. 1983, 14, 147-161.

76.Yang, Z. Z.; Lin, J. H.; Tsai, I. S.; Kuo, T. Y., Particle Filtration with an Electret of Nonwoven Polypropylene Fabric. Text. Res. J. 2002, 72, 1099-1104.

77.Hakobyan, N. A., Introduction to Basics of Submicron Aerosol Particles Filtration Theory via Ultrafine Fiber Media Am. J. Phys. 2015, 8, 140-151.

78.Lu, P.; Xia, Y., Maneuvering the Internal Porosity and Surface Morphology of Electrospun Polystyrene Yarns by Controlling the Solvent and Relative Humidity. Langmuir 2013, 29, 7070-7078.

79.Nezarati, R. M.; Eifert, M. B.; Cosgriff-Hernandez, E., Effects of Humidity and Solution Viscosity on Electrospun Fiber Morphology. Tissue Eng., Part C 2013, 19, 810-819.

80.Casper, C. L.; Stephens, J. S.; Tassi, N. G.; Chase, D. B.; Rabolt, J. F., Controlling Surface Morphology of Electrospun Polystyrene Fibers:  Effect of Humidity and Molecular Weight in the Electrospinning Process. Macromolecules 2004, 37, 573-578.

81.Park, J.-Y.; Lee, I.-H., Relative Humidity Effect on the Preparation of Porous Electrospun Polystyrene Fibers. J. Nanosci. Nanotechnol. 2010, 10, 3473-3477.

82.McCann, J. T.; Marquez, M.; Xia, Y., Highly Porous Fibers by Electrospinning into a Cryogenic Liquid. J. Am. Chem. Soc. 2006, 128, 1436-1437.

83.Qi, Z.; Yu, H.; Chen, Y.; Zhu, M., Highly Porous Fibers Prepared by Electrospinning a Ternary System of Nonsolvent/Solvent/Poly(L-lactic acid). Mater. Lett. 2009, 63, 415-418.

84.Wei, Z.; Zhang, Q.; Wang, L.; Wang, X.; Long, S.; Yang, J., Porous Electrospun Ultrafine Fibers via a Liquid–liquid Phase Separation Method. Colloid Polym. Sci. 2013, 291, 1293-1296.

85.Choi, J. S.; Lee, S. W.; Jeong, L.; Bae, S.-H.; Min, B. C.; Youk, J. H.; Park, W. H., Effect of Organosoluble Salts on the Nanofibrous Structure of Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Int. J. Biol. Macromol. 2004, 34, 249-256.

86.Lin, D.-J.; Chang, C.-L.; Huang, F.-M.; Cheng, L.-P., Effect of Salt Additive on the Formation of Microporous Poly(vinylidene fluoride) Membranes by Phase Inversion from LiClO4/Water/DMF/PVDF System. Polymer 2003, 44, 413-422.

87.Chen, J.; Song, Y.; Sheng, Y.; Chang, M.; Xie, X.; Abualrejal, M. M. A.; Guan, H.; Shi, Z.; Zou, H., Luminescence Properties and Judd–Ofelt Analysis of SiO2:Ln3+ (Eu, Tb) Hollow Nanofibers Fabricated by Co-axial Electrospinning Method. J. Alloys Compd. 2017, 716, 144-155.

88.Nayani, K.; Katepalli, H.; Sharma, C. S.; Sharma, A.; Patil, S.; Venkataraghavan, R., Electrospinning Combined with Nonsolvent-Induced Phase Separation To Fabricate Highly Porous and Hollow Submicrometer Polymer Fibers. Ind. Eng. Chem. Res. 2012, 51, 1761-1766.

89.Barthlott, W.; Neinhuis, C., Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces. Planta 1997, 202, 1-8.

90.Jing, P.; Fang, X.; Yan, J.; Guo, J.; Fang, Y., Ultra-low Density Porous Polystyrene Monolith: Facile Preparation and Superior Application. J. Mater. Chem. A 2013, 1, 10135-10141.

91.He, Y.; Liu, Y.; Wu, T.; Ma, J.; Wang, X.; Gong, Q.; Kong, W.; Xing, F.; Liu, Y.; Gao, J., An Environmentally Friendly Method for the Fabrication of Reduced Graphene Oxide Foam with a Super Oil Absorption Capacity. J. Hazard. Mater. 2013, 260, 796-805.

92.Si, P.; Wang, J.; Zhao, C.; Xu, H.; Yang, K.; Wang, W., Preparation and Morphology Control of Three-dimensional Interconnected Microporous PDMS for Oil Sorption. Polym. Adv. Technol. 2015, 26, 1091-1096.

93.Lin, T.-C.; Krishnaswamy, G.; Chi, D. S., Incense Smoke: Clinical, Structural and Molecular Effects on Airway Disease. Clin. Mol. Allergy 2008, 6, 3.

94.Ritter, H. L.; Drake, L. C., Pressure Porosimeter and Determination of Complete Macropore-Size Distributions. Pressure Porosimeter and Determination of Complete Macropore-Size Distributions. Ind. Eng. Chem. Anal. Ed. 1945, 17, 782-786.

95.Drake, L. C., Pore-Size Distribution in Porous Materials. Ind. Eng. Chem. 1949, 41, 780-785.

96.Washburn, E. W., Note on a Method of Determining the Distribution of Pore Sizes in a Porous Material. Proc. Nat. Acad. Sci. 1921, 7, 115-116.

97.Johnson, R. F.; Manjreker, T. G.; Halligan, J. E., Removal of Oil from Water Surfaces by Sorption on Unstructured Fibers. Environ. Sci. Technol. 1973, 7, 439-443.

98.Schaub, N. J.; Britton, T.; Rajachar, R.; Gilbert, R. J., Engineered Nanotopography on Electrospun PLLA Microfibers Modifies RAW 264.7 Cell Response. ACS Appl. Mater. Interfaces 2013, 5, 10173-10184.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊