跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/24 17:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林哲增
研究生(外文):Che-Tseng Lin
論文名稱:1.含芘和羧酸的多官能基團之聚醯胺酸共聚高分子,在微米矽複合活物材料之鋰離子電池負極作為黏著劑的應用2.高分子側鏈含雙極性分子之合成、性質探討及其在電致發光二極體上的應用
論文名稱(外文):1. Multifunctional Co-poly(amic acid) containing Pyrenyl and Carboxylic Acid as a new Binder for Si-based Micro-Composite Anode of Lithium-Ion Battery2. Synthesis and Characterization of Polymers with Alkyl Main Chain Pendent Bipolar Unit as Host Applications in Electroluminescent Light-Emitting Diodes
指導教授:梁文傑梁文傑引用關係
指導教授(外文):Man-kit Leung
口試日期:2017-07-20
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:190
中文關鍵詞:多官能基團聚醯胺酸黏著劑鋰離子電池雙極性主體高分子發光二極體
外文關鍵詞:multifunctional co-poly(amic acid)binderLithium-ion batterybipolar hostpolymer light-emitting diodes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:267
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文研究中,主要分為兩個主題,第一個主題為利用具有多官能基團的聚醯胺酸(poly(amic acid),PAmA)共聚高分子,其側鏈上具有功能性之官能基團芘(pyrene)和羧酸(carboxylic acid),應用在鋰離子電池負極作為黏著劑,負極活物則是從切割廢料漿液回收所得的矽基粉體,並與氧化鎳還原鍛燒後,形成的高機械強度與高導電度的矽鎳複合物微米二次粒子。另一個主題則是開發三條具有雙極性特性的高分子,其雙極性基團,懸掛在聚苯乙烯側鏈上,作為高分子電致發光元件之主體材料。在第一章節,介紹鋰離子電池的原理、發展史以及回顧負極活物材料和黏著劑的文獻。進入第二章節,將合成出具有多官能基之聚醯胺酸(poly(amic acid),PAmA)共聚體作為黏著劑使用,以Si-Ni複合材料作為活物組裝成鋰離子電池之半電池測試。300圈的重複充放電後,其電容量殘餘率維持在79%,與海草酸鈉(sodium-alginate)標準品相比有更好的表現,100圈重複充放電後的體積膨脹率只有原來的43%,表示多官能基團之聚醯胺酸(poly(amic acid),PAmA)與活物矽、助導劑和銅箔之間都有強的作用力存在,而在介面間阻抗的實驗中也可觀察到導入芘(pyrene)基團的高分子中,整體材料間的導電性的提升,表示能更有效的分散助導劑(conductive additives)而達到此效果。在第三章節,介紹有機發光二極體(OLED)的原理、發展史以及各層元件中常用材料,最後則是磷光發光元件的文獻回顧。在第四章節中,合成出三條具有雙極性基團並懸掛在聚苯乙烯側鏈的高分子作為藍光及綠光磷光元件和具有熱活化延遲螢光(thermal activated delayed fluorescence,(TADF))發光特性的主體材料。雙極性基團為導入具有電洞傳輸功能及高的三重態能量的咔唑(carbazole),以苯環鄰位個別的連接三種具有不同電子傳輸特性的材料(惡二唑(1,3,4-oxadiazole)、三氮唑(1,2,4-triazole)、苯並咪唑(benzimidazole)),使高分子具有雙極性的特性,藉由苯環鄰位連接,能有效的截斷共軛長度,使高分子具有高的三重態能量;在高分子熱性質中,由於都具有剛硬的結構,使獲得較高的玻璃轉移溫度和熱烈解溫度;電化學研究發現,高分子皆可量測到氧化和還原峰訊號,表示皆具有電子、電洞傳輸能力,也觀察到P-CBZ-OXD高分子具有與客發光體較匹配的能階,因此元件表現最好;在藍色磷光發元件架構為ITO/PEDOT: PSS/P-CBZ-OXD: 20% FIrpic/SPPO13/Mg/Ag時,最大亮度與效率分別為1763 cd/m2和11.0 cd/A;在綠色磷光元件架構為ITO/PEDOT: PSS/P-CBZ-OXD: 15% Ir(ppy)3/SPPO13/Mg/Ag時,最大亮度與效率分別為7215 cd/m2和23.7 cd/A,而以具有TADF特性的綠光材料作為客發光體時,在元件架構為ITO/PEDOT: PSS/P-CBZ-OXD: 15% 4CzIPN/SPPO13/Mg/Ag時,最大亮度與效率分別為5592 cd/m2和27.3 cd/A
There are two subjects in this study. One is the multifunctional co-poly(amic acid) (PAmA) containing pyrene and carboxylic acid side chains that is developed as a binder in the recycled kerf-loss Si-Ni-SiC composite for anode of lithium-ion batteries (LIB). The other is to develop the three polymeric hosts with bipolar abilities, the bipolar function are as pendant group in polystrene (PS) side chain and application in electroluminescent polymer light-emitting device (PLED). Chapter 1 was introduced principle, development, and review of active materials and binders in anode of LIB. In chapter 2, the multifunctional co-PAmA is as binder in Si-Ni Composite anode for LIB. The cycling performance of 300 cycles, electrochemical impedance spectroscopy (EIS) , change of the film morphology after cycling process of 100 cycles by SEM analysis and adhesion strength are discussed. The capacity retention performance comparsion that of sodium-alginate can be apparently enhanced. In a long-cycle test of 300 lithiation/delithiation cycles, 79% of capacity retention is achieved. Small anode thickness expansion of 43% is found in a 100 cycle test, reflecting that the use of the PAmA binder can create strong interconnection among the Si particles, conductive carbons and copper electrode. EIS experiment shows improvement to the higher electric conductivity of polymers containing pyrenyl groups, which also facilitate the dispersion of the conductive carbon additives during mixing. In chapter 3 was introduced principle, development and common materials of organic light-emitting diodes (OLEDs). Also some paper review about employed FIrpic and Ir(ppy)3 as phosphorescent dopant in PLED devices. In Chapter 4, PS-based polymers which are containing bipolar function as a pendant group on the side chain as a host for application in blue- and green-light, as well as thermal activated delayed fluorescence-based (TADF-based) PLED. The bipolar groups contain respectively ortho-substituted of CBZ/1,3,4-oxadiazole (OXD), CBZ/1,2,4-triazole (TAZ) or CBZ/benzimidazole (BZI) to afford the polymers with a bipolar function. CBZ has a high triplet energy (ET) gap and as hole-transporting moiety. On the other hand, the electron-deficient aromatic heterocycles of OXD, TAZ and BZI groups are as an electron-transporting moiety.
The thermal stability, photophysical, electrochemical properties and electroluminescent performance in polymers have been discussed. All polymers show good thermal stability with high glass transition temperature (Tg) and decomposition temperature (Td) due to their rigid structure. By ortho-substituted between the bipolar groups can effectively interrupt conjugation length to obtain higher ET. In the electrochemical study, both the oxidation and reduction peak could be measured, indicating the polymers with hole- and electron-transporting abilities. In addition, we found that P-CBZ-OXD have suitable match of energy level than that of P-CBZ-TAZ and P-CBZ-BZI. Therefore, the best device performance of blue phosphorescent consisted of ITO/PEDOT: PSS/P-CBZ-OXD: 20% FIrpic/SPPO13/Mg/Ag that showed the maximum brightness of 1763 cd/m2 and the maximum current efficiency of 11.0 cd/A. For the best device performance of green phosphorescent consisted of ITO/PEDOT: PSS/P-CBZ-OXD: 15% Ir(ppy)3/SPPO13/Mg/Ag that showed the maximum brightness of 7215 cd/m2 and the maximum current efficiency of 23.7 cd/A. On the other hand, a green TADF emitter of 1,2,3,5-tetrakis (carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) was employed as guest, the devices consisted of ITO/PEDOT: PSS/P-CBZ-OXD: 15% 4CzIPN /SPPO13/Mg/Ag that showed the maximum brightness of 5592 cd/m2 and the maximum current efficiency of 27.3 cd/A.
Content list I
中文摘要 IV
Abstract VI
List of tables IX
List of figures X
Compounds of structure and their numbers XVII
Chapter 1. Introduction and Literature Review of Lithium Ion Battery 1
Introduction 1
1-1 Development of Rechargeable Li-ion Batteries 2
1-1-1 Basic Concepts and operation of Li-ion Batteries 2
1-1-2 Historical Developments of Li-battery Research 4
1-2 Active Materials for the negative electrodes 5
1-2-1 Carbon-base material 5
1-2-2 Alloying Materials 6
1-2-3 General aspects of silicon powders 7
1-2-4 Nanostructured Si 9
1-3 Review of binder for the negative electrodes 12
1-3-1 Historical Developments of binders for Li-ion battery Research 12
1-3-2 Polyimide as binders for Li-ion battery Research 14
Chapter 2. Poly(amic acid) contains Pyrene and Carboxylic acid Group in Side Chain as Binder in Si-Ni Composite Anode for Lithium-Ion Batteries 17
Introduction 17
2-1 Motivation 18
2-2 Experimental 21
2-2-1 Experimental Instruments and Chemical 21
2-2-2 Preparation and Characterizations of Si- Ni-SiC Composite for Active Material 23
2-2-3 Monomer synthesis 25
2-2-4 Synthesis Polymers (Binders) of P1, P2, P3 28
2-2-5 Electrode and Cell Preparation 31
2-3 Results and Discussion 32
2-3-1 Synthesis and Characterization of Monomers and Polymers 32
2-3-2 Thermal imidization of the PAmA’s 34
2-3-3 Initial five cycles voltage profile 35
2-3-4 Performance in the cycling tests 38
2-3-5 Electrochemical impedance spectroscopy (EIS) 41
2-3-6 Change of the film morphology after the discharge/charge cycling process according to the SEM analysis 43
2-3-7 Comparison of the Adhesion Strength 46
2-4 Conclusions 47
2-5 Supporting Information of chapter 2: Poly(amic acid) with Pyrene or Carboxylic acid Group of Side Chain as Binder in Si-Ni Composite Anode for Lithium-Ion Batteries 48
Chapter 3 Introduction and Literature Review of Organic Light-Emitting Diodes 63
Introduction 63
3-1 Development of OLEDs 64
3-1-1 Historical developments for OLED 64
3-1-2 Evolution of device for OLEDs 66
3-2 Basic Mechanism of Fluorescence and Phosphorescence 68
3-2-1 Theory of fluorescence and phosphorescence 68
3-2-2 Theory of PLED electroluminescence 69
3-3 Common Material of Organic Light-Emitting Device 70
3-3-1 Hole-injection materials 70
3-3-2 Hole-transporting materials 71
3-3-3 Electron-transporting materials 73
3-3-4 Emissive materials 76
3-4 Brief review of phosphorescent polymer light-emitting devices 80
Chapter 4. Polymer with Carbazole based of bipolar function as Pendant group on alkyl main chain as Host for Polymer Light-Emitting Diodes 91
Introduction 91
4-1 Motivation 92
Experimental 94
4-1-1 Experimental Instruments and Chemical 94
4-1-2 Device Fabrication 97
4-1-3 Monomer synthesis 99
4-1-4 Synthesis Polymers of P-CBZ-OXD, P-CBZ-TAZ and P-CBZ-BZI 108
4-2 Results and Discussion 111
4-2-1 Synthesis and Characterization of Monomers and Polymers 111
4-2-2 Thermal Properties 112
4-2-3 Photophysical properties 113
4-2-4 Electrochemical Properties 120
4-2-5 Electroluminescent Properties of Phosphorus Emitter as Guest 123
4-2-6 Modification of the PhPLED with SPPO13 as the electron transporting- hole blocking layer. 139
4-2-7 4CzIPN doped TADF green light emitting devices 144
4-3 Conclusions 146
4-4 Supporting Information of chapter 4: Polymer with Carbazole based of bipolar function as Pendant group on alkyl main chain as Host for Polymer Light-Emitting Diodes 147
Reference 173
1.Tarascon, J. M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.
2.Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X.; Shao, Y.; Engelhard, M. H.; Nie, Z.; Xiao, J., Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 2013, 135, 4450-4456.
3.Tarascon, J.-M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.
4.Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science 2011, 4, 3243-3262.
5.Wagner, C., Equations for transport in solid oxides and sulfides of transition metals. Progress in solid state chemistry 1975, 10, 3-16.
6.Rao, B.; Francis, R.; Christopher, H., Lithium‐aluminum electrode. J. Electrochem. Soc. 1977, 124, 1490-1492.
7.Baggetto, L.; Notten, P. H., Lithium-ion (De) insertion reaction of germanium thin-film electrodes: an electrochemical and in situ XRD study. J. Electrochem. Soc. 2009, 156, A169-A175.
8.Armand, M.; Chabagno, J.; Duclot, M.; Vashishta, P.; Mundy, J.; Shenoy, G., Fast ion transport in solids. Eds. Vashishta, P., Mundy, JN & Shenoy, G. K, North Holland, Amsterdan 1979.
9.Murphy, D.; Di Salvo, F.; Carides, J.; Waszczak, J., Topochemical reactions of rutile related structures with lithium. Materials Research Bulletin 1978, 13, 1395-1402.
10.Lazzari, M.; Scrosati, B., A cyclable lithium organic electrolyte cell based on two intercalation electrodes. J. Electrochem. Soc. 1980, 127, 773-774.
11.Thackeray, M.; David, W.; Bruce, P.; Goodenough, J., Lithium insertion into manganese spinels. Mater. Res. Bull. 1983, 18, 461-472.
12.Liu, X. H.; Liu, Y.; Kushima, A.; Zhang, S.; Zhu, T.; Li, J.; Huang, J. Y., In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures. Adv. Energy Mater. 2012, 2, 722-741.
13.Nagaura, T.; Tozawa, K., Lithium ion rechargeable battery. Prog. Batteries Solar Cells 1990, 9, 209–217.
14.Nishi, Y., The development of lithium ion secondary batteries. Chem. Rec. 2001, 1, 406-413.
15.Kheirabadi, N.; Shafiekhani, A., Graphene/Li-ion battery. J. Appl. Phys. 2012, 112, 124323.
16.Dey, A.; Sullivan, B., The electrochemical decomposition of propylene carbonate on graphite. J. Electrochem. Soc. 1970, 117, 222-224.
17.Flandrois, S.; Simon, B., Carbon materials for lithium-ion rechargeable batteries. Carbon 1999, 37, 165-180.
18.Winter, M.; Besenhard, J. O., Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta 1999, 45, 31-50.
19.Dey, A., Electrochemical alloying of lithium in organic electrolytes. J. Electrochem. Soc., 1971, 118, 1547-1549.
20.Reddy, A. L. M.; Gowda, S. R.; Shaijumon, M. M.; Ajayan, P. M., Hybrid nanostructures for energy storage applications. Advanced materials 2012, 24, 5045-5064.
21.Wang, J.; King, P.; Huggins, R., Investigations of binary lithium-zinc, lithium-cadmium and lithium-lead alloys as negative electrodes in organic solvent-based electrolyte. Solid State Ionics 1986, 20, 185-189.
22.Szczech, J. R.; Jin, S., Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 2011, 4, 56-72.
23.Kasavajjula, U.; Wang, C.; Appleby, A. J., Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 2007, 163, 1003-1039.
24.Liu, X. H.; Huang, J. Y., In situ TEM electrochemistry of anode materials in lithium ion batteries. Energy Environ. Sci. 2011, 4, 3844-3860.
25.Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G., High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater.
2010, 9, 353-358.
26.Sharma, R. A.; Seefurth, R. N., Thermodynamic Properties of the Lithium‐Silicon System. J. Electrochem. Soc. 1976, 123, 1763-1768.
27.Boukamp, B. A.; Lesh, G. C.; Huggins, R. A., All‐Solid Lithium Electrodes with Mixed‐Conductor Matrix. J. Electrochem. Soc. 1981, 128, 725-729.
28.Gao, B.; Sinha, S.; Fleming, L.; Zhou, O., Alloy Formation in Nanostructured Silicon. Adv. Mater. 2001, 13, 816-819.
29.Weydanz, W. J.; Wohlfahrt-Mehrens, M.; Huggins, R. A., A room temperature study of the binary lithium–silicon and the ternary lithium–chromium–silicon system for use in rechargeable lithium batteries. J. Power Sources 1999, 81–82, 237-242.
30.Obrovac, M.; Christensen, L., Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid-State Lett. 2004, 7, A93-A96.
31.Li, J.; Dahn, J., An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochem. Soc. 2007, 154, A156-A161.
32.Limthongkul, P.; Jang, Y.-I.; Dudney, N. J.; Chiang, Y.-M., Electrochemically-driven solid-state amorphization in lithium–metal anodes. J. Power Sources 2003, 119, 604-609.
33.Key, B.; Bhattacharyya, R.; Morcrette, M.; Seznéc, V.; Tarascon, J.-M.; Grey, C. P., Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. J. Am. Chem. Soc.
2009, 131, 9239-9249.
34.In Situ, X., Electrochemical Study of the Reaction of Lithium with Amorphous Silicon Hatchard, TD; Dahn. J. Electrochem. Soc. 2004, 151, A838-A842.
35.Misra, S.; Liu, N.; Nelson, J.; Hong, S. S.; Cui, Y.; Toney, M. F., In situ X-ray diffraction studies of (de) lithiation mechanism in silicon nanowire anodes. ACS Nano 2012, 6, 5465-5473.
36.McDowell, M. T.; Lee, S. W.; Harris, J. T.; Korgel, B. A.; Wang, C.; Nix, W. D.; Cui, Y., In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett. 2013, 13, 758-764.
37.Yoshio, M.; Wang, H.; Fukuda, K.; Umeno, T.; Dimov, N.; Ogumi, Z., Carbon-coated Si as a lithium-ion battery anode material. J. Electrochem. Soc. 2002, 149, A1598-A1603.
38.Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y., High-performance lithium battery anodes using silicon nanowires. Nat. Nano. 2008, 3, 31-35.
39.Song, T.; Xia, J.; Lee, J.-H.; Lee, D. H.; Kwon, M.-S.; Choi, J.-M.; Wu, J.; Doo, S. K.; Chang, H.; Park, W. I., Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett. 2010, 10, 1710-1716.
40.Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L.; Nix, W. D.; Cui, Y., Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011, 11, 2949-2954.
41.Yang, J.; Wang, B.; Wang, K.; Liu, Y.; Xie, J.; Wen, Z., Si/C composites for high capacity lithium storage materials. Electrochem. Solid-State Lett. 2003, 6, A154-A156.
42.Holzapfel, M.; Buqa, H.; Scheifele, W.; Novák, P.; Petrat, F.-M., A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion. Chem.Commun. 2005, 1566-1568.
43.Chew, S.; Guo, Z.; Wang, J.; Chen, J.; Munroe, P.; Ng, S.; Zhao, L.; Liu, H., Novel nano-silicon/polypyrrole composites for lithium storage. Electrochem. Commun. 2007, 9, 941-946.
44.Zhao, X.; Hayner, C. M.; Kung, M. C.; Kung, H. H., In‐Plane Vacancy‐Enabled High‐Power Si–Graphene Composite Electrode for Lithium‐Ion Batteries. Adv. Energy Mater. 2011, 1, 1079-1084.
45.Chen, Z.; Christensen, L.; Dahn, J., Large-volume-change electrodes for Li-ion batteries of amorphous alloy particles held by elastomeric tethers. Electrochem. Commun. 2003, 5, 919-923.
46.Kim, I.-S.; Kumta, P. N., High capacity Si/C nanocomposite anodes for Li-ion batteries. J. Power Sources 2004, 136, 145-149.
47.Shim, J.; Kostecki, R.; Richardson, T.; Song, X.; Striebel, K. A., Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature. J. Power Sources 2002, 112, 222-230.
48.Liu, W.-R.; Yang, M.-H.; Wu, H.-C.; Chiao, S.; Wu, N.-L., Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder. Electrochem. Solid-State Lett. 2005, 8, A100-A103.
49.Mazouzi, D.; Lestriez, B.; Roue, L.; Guyomard, D., Silicon composite electrode with high capacity and long cycle life. Electrochem. Solid-State Lett. 2009, 12, A215-A218.
50.Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G., A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 2011, 334, 75-79.
51.Magasinski, A.; Zdyrko, B.; Kovalenko, I.; Hertzberg, B.; Burtovyy, R.; Huebner, C. F.; Fuller, T. F.; Luzinov, I.; Yushin, G., Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. 2010, 2, 3004-3010.
52.Choi, N.-S.; Yew, K. H.; Choi, W.-U.; Kim, S.-S., Enhanced electrochemical properties of a Si-based anode using an electrochemically active polyamide imide binder. J. Power Sources 2008, 177, 590-594.
53.Kim, J. S.; Choi, W.; Cho, K. Y.; Byun, D.; Lim, J.; Lee, J. K., Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries. J. Power Sources 2013, 244, 521-526.
54.Choi, J.; Kim, K.; Jeong, J.; Cho, K. Y.; Ryou, M.-H.; Lee, Y. M., Highly Adhesive and Soluble Copolyimide Binder: Improving the Long-Term Cycle Life of Silicon Anodes in Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2015, 7, 14851-14858.
55.Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z., Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nature Chem. 2013, 5, 1042-1048.
56.Dos Santos, L. M.; Lacroix, J.; Chane-Ching, K.; Adenier, A.; Abrantes, L.; Lacaze, P., Electrochemical synthesis of polypyrrole films on copper electrodes in acidic and neutral aqueous media. J. Electroanal. Chem. 2006, 587, 67-78.
57.Park, S.-J.; Zhao, H.; Ai, G.; Wang, C.; Song, X.; Yuca, N.; Battaglia, V. S.; Yang, W.; Liu, G., Side-chain conducting and phase-separated polymeric binders for high-performance silicon anodes in lithium-ion batteries. J. Am. Chem. Soc. 2015, 137, 2565-2571.
58.Zhao, H.; Wei, Y.; Qiao, R.; Zhu, C.; Zheng, Z.; Ling, M.; Jia, Z.; Bai, Y.; Fu, Y.; Lei, J.; Song, X.; Battaglia, V. S.; Yang, W.; Messersmith, P. B.; Liu, G., Conductive Polymer Binder for High-Tap-Density Nanosilicon Material for Lithium-Ion Battery Negative Electrode Application. Nano Lett. 2015, 15, 7927-7932.
59.Numata, S.; Kinjo, N.; Makino, D., Chemical structures and properties of low thermal expansion coefficient polyimides. Polym Engng Sci. 1988, 28, 906-911.
60.Pistoia, G., Battery operated devices and systems: From portable electronics to industrial products. Elsevier2008.
61.Peled, E.; Menachem, C.; Bar‐Tow, D.; Melman, A., Improved Graphite Anode for Lithium‐Ion Batteries Chemically Bonded Solid Electrolyte Interface and Nanochannel Formation. J. Electrochem. Soc. 1996, 143, L4-L7.
62.Yoshio, M.; Wang, H.; Fukuda, K.; Hara, Y.; Adachi, Y., Effect of Carbon Coating on Electrochemical Performance of Treated Natural Graphite as Lithium‐Ion Battery Anode Material. J. Electrochem. Soc. 2000, 147, 1245-1250.
63.Yao, Y., Carbon based anode materials for lithium-ion batteries. University of Wollongong Thesis Collection 2003, 25.
64.Obrovac, M.; Christensen, L., Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid-State Lett. 2004, 7, A93-A96.
65.Wang, J. W.; He, Y.; Fan, F.; Liu, X. H.; Xia, S.; Liu, Y.; Harris, C. T.; Li, H.; Huang, J. Y.; Mao, S. X.; Zhu, T., Two-Phase Electrochemical Lithiation in Amorphous Silicon. Nano Lett. 2013, 13, 709-715.
66.Obrovac, M.; Krause, L., Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 2007, 154, A103-A108.
67.Winter, M.; Besenhard, J. O., Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta 1999, 45, 31-50.
68.Kim, I. s.; Kumta, P.; Blomgren, G., Si/TiN nanocomposites novel anode materials for Li‐Ion batteries. Electrochem. Solid-State Lett. 2000, 3, 493-496.
69.Dong, H.; Ai, X.; Yang, H., Carbon/Ba–Fe–Si alloy composite as high capacity anode materials for Li-ion batteries. Electrochem. Commun. 2003, 5, 952-957.
70.Liu, W.-R.; Wu, N.-L.; Shieh, D.-T.; Wu, H.-C.; Yang, M.-H.; Korepp, C.; Besenhard, J.; Winter, M., Synthesis and characterization of nanoporous NiSi-Si composite anode for lithium-ion batteries. J. Electrochem. Soc. 2007, 154, A97-A102.
71.Galperin, V.; Kitsyuk, E.; Skundin, A.; Tuseeva, E.; Kulova, T.; Shaman, Y. P.; Skorik, S., Electrodes based on the silicon-carbon nanotube composite for increased-capacity lithium batteries. Russian Microelectronics 2014, 43, 483-486.
72.Lin, Y.-C.; Wang, T.-Y.; Lan, C.-W.; Tai, C. Y., Recovery of silicon powder from kerf loss slurry by centrifugation. Powder Technol. 2010, 200, 216-223.
73.Woditsch, P.; Koch, W., Solar grade silicon feedstock supply for PV industry. Sol. Energy Mater. Sol. Cells 2002, 72, 11-26.
74.Pyun, E.; Mathisen, R. J.; Sung, C. S. P., Kinetics and mechanisms of thermal imidization of a polyamic acid studied by ultraviolet-visible spectroscopy. Macromolecules 1989, 22, 1174-1183.
75.Ge, J. J.; Li, C. Y.; Xue, G.; Mann, I. K.; Zhang, D.; Wang, S.-Y.; Harris, F. W.; Cheng, S. Z.; Hong, S.-C.; Zhuang, X., Rubbing-induced molecular reorientation on an alignment surface of an aromatic polyimide containing cyanobiphenyl side chains. J. Am. Chem. Soc. 2001, 123, 5768-5776.
76.Rubezhov, A., AN EFFICIENT SYNTHESIS OF 4, 4′-DIAMINODIPHENIC ACID. Org. Prep. Proced. Int. 2006, 38, 401-404.
77.Pryde, C. A., IR studies of polyimides. I. Effects of chemical and physical changes during cure. J. Polym. Sci., Part A: Polym. Chem. 1989, 27, 711-724.
78.Viehbeck, A.; Goldberg, M. J.; Kovac, C. A., Electrochemical Properties of Polyimides and Related Imide Compounds. J. Electrochem. Soc. 1990, 137, 1460-1466.
79.Mazur, S.; Lugg, P. S.; Yarnitzky, C., Electrochemistry of Aromatic Polyimides. J. Electrochem. Soc. 1987, 134, 346-353.
80.Wilkes, B. N.; Brown, Z. L.; Krause, L. J.; Triemert, M.; Obrovac, M. N., The Electrochemical Behavior of Polyimide Binders in Li and Na Cells. J. Electrochem. Soc. 2016, 163, A364-A372.
81.Park, S.-J.; Zhao, H.; Ai, G.; Wang, C.; Song, X.; Yuca, N.; Battaglia, V. S.; Yang, W.; Liu, G., Side-chain conducting and phase-separated polymeric binders for high-performance silicon anodes in lithium-ion batteries. J. Am. Chem. Soc. 2015, 137, 2565-2571.
82.Chang, C.-Y., Azide-assisted thermal cross-linking of Poly(N-ethyl-3-vinylcarbazole) : Application in Polymer Light Emitting Diodes and Phosphorescent Polymer. 2014.
83.Burrows, P. E.; Gu, G.; Bulovic, V.; Shen, Z.; Forrest, S. R.; Thompson, M. E., Achieving full-color organic light-emitting devices for lightweight, flat-panel displays. IEEE Trans. Electron Devices 1997, 44, 1188-1203.
84.Kimura, M.; Yudasaka, I.; Kanbe, S.; Kobayashi, H.; Kiguchi, H.; Seki, S.; Miyashita, S.; Shimoda, T.; Ozawa, T.; Kitawada, K.; Nakazawa, T.; Miyazawa, W.; Ohshima, H., Low-temperature polysilicon thin-film transistor driving with integrated driver for high-resolution light emitting polymer display. IEEE Trans. Electron Devices 1999, 46, 2282-2288.
85.Ya-Hsiang, T.; Bo-Ting, C.; Yu-Ju, K.; Chun-Chien, T.; Ko-Yu, C.; Ying-Jyun, W.; Huang-Chung, C., A new pixel circuit for driving organic light-emitting diode with low temperature polycrystalline silicon thin-film transistors. J. Display Technol. 2005, 1, 100-104.
86.Dijksman, J. F.; Duineveld, P. C.; Hack, M. J. J.; Pierik, A.; Rensen, J.; Rubingh, J. E.; Schram, I.; Vernhout, M. M., Precision ink jet printing of polymer light emitting displays. J. Mater. Chem. 2007, 17, 511-522.
87.Zheng, H.; Zheng, Y.; Liu, N.; Ai, N.; Wang, Q.; Wu, S.; Zhou, J.; Hu, D.; Yu, S.; Han, S.; Xu, W.; Luo, C.; Meng, Y.; Jiang, Z.; Chen, Y.; Li, D.; Huang, F.; Wang, J.; Peng, J.; Cao, Y., All-solution processed polymer light-emitting diode displays. Nat. Commun. 2013, 4, 1971.
88.Teichler, A.; Shu, Z.; Wild, A.; Bader, C.; Nowotny, J.; Kirchner, G.; Harkema, S.; Perelaer, J.; Schubert, U. S., Inkjet printing of chemically tailored light-emitting polymers. Eur. Polym. J. 2013, 49, pp. 2186-2195.
89.Bernanose, A., The mechanism of organic electroluminescence. J. Chim. Phys. 1955, 52, 396-400.
90.Bernanose, A.; Vouaux, P., Organic electroluminescence type of emission. J. Chim. Phys 1953, 50, 261.
91.Pope, M.; Kallmann, H.; Magnante, P., Electroluminescence in organic crystals. J. Chem. Phys. 1963, 38, 2042-2043.
92.Vincett, P.; Barlow, W.; Hann, R.; Roberts, G., Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films. Thin solid films 1982, 94, 171-183.
93.Partridge, R., Electroluminescence from polyvinylcarbazole films: 4. Electroluminescence using higher work function cathodes. Polymer 1983, 24, 755-762.
94.Burroughes, J.; Bradley, D.; Brown, A.; Marks, R.; Mackay, K.; Friend, R.; Burns, P.; Holmes, A., Light-emitting diodes based on conjugated polymers. nature 1990, 347, 539-541.
95.Gustafsson, G.; Treacy, G.; Cao, Y.; Klavetter, F.; Colaneri, N.; Heeger, A., The “plastic” led: A flexible light-emitting device using a polyaniline transparent electrode. Synthetic Metals 1993, 57, 4123-4127.
96.Koutselas, I.; Mitzi, D.; Papavassiliou, G. C.; Papaioannou, G.; Krautscheid, H., Optical and related properties of natural one-dimensional semiconductors based on PbI and SnI units. Synthetic metals 1997, 86, 2171-2172.
97.Parker, I. D., Carrier tunneling and device characteristics in polymer light‐emitting diodes. J. Applied Physics 1994, 75, 1656-1666.
98.Kim, D.; Lee, S.; Kim, J.; Kim, J.; Lee, H.; Cho, H.; Hong, S.; Kim, C., Improved efficiency of polymer LEDs using electron transporting layer. Synthetic metals 2001, 121, 1707-1708.
99.Birgerson, J.; Janssen, F.; van der Gon, A. D.; Tsukahara, Y.; Kaeriyama, K.; Salaneck, W. R., Doped polymeric cathodes for PPV/Al based LEDs. Synthetic metals 2002, 132, 57-61.
100.Adachi, C.; Tokito, S.; Tsutsui, T.; Saito, S., Organic electroluminescent device with a three-layer structure. Japanese journal of applied physics 1988, 27, L713.
101.Adamovich, V. I.; Cordero, S. R.; Djurovich, P. I.; Tamayo, A.; Thompson, M. E.; D’Andrade, B. W.; Forrest, S. R., New charge-carrier blocking materials for high efficiency OLEDs. Org. electron. 2003, 4, 77-87.
102.McGlynn, S.; Azumi, T.; Kasha, M., External Heavy‐Atom Spin—Orbital Coupling Effect. V. Absorption Studies of Triplet States. J. Phys. Chem. 1964, 40, 507-515.
103.Fukagawa, H.; Watanabe, K.; Tsuzuki, T.; Tokito, S., Highly efficient, deep-blue phosphorescent organic light emitting diodes with a double-emitting layer structure. Appl. Phys. Lett. 2008, 93, 133312.
104.Cao, Y.; Treacy, G. M.; Smith, P.; Heeger, A. J., Solution‐cast films of polyaniline: Optical‐quality transparent electrodes. Appl. Phys. Lett. 1992, 60, 2711-2713.
105.Gao, J.; Heeger, A.; Lee, J.; Kim, C., Soluble polypyrrole as the transparent anode in polymer light-emitting diodes. Synthetic Metals 1996, 82, 221-223.
106.Yang, Y.; Heeger, A., Polyaniline as a transparent electrode for polymer light‐emitting diodes: Lower operating voltage and higher efficiency. Appl. Phys. Lett. 1994, 64, 1245-1247.
107.Yu, W.-L.; Pei, J.; Cao, Y.; Huang, W., Hole-injection enhancement by copper phthalocyanine (CuPc) in blue polymer light-emitting diodes. J. Appl. Phys. 2001, 89, 2343-2350.
108.Heithecker, D.; Kammoun, A.; Dobbertin, T.; Riedl, T.; Becker, E.; Metzdorf, D.; Schneider, D.; Johannes, H.-H.; Kowalsky, W., Low-voltage organic electroluminescence device with an ultrathin, hybrid structure. Appl. Phys. Lett. 2003, 82, 4178-4180.
109.Elschner, A.; Bruder, F.; Heuer, H.-W.; Jonas, F.; Karbach, A.; Kirchmeyer, S.; Thurm, S.; Wehrmann, R., PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes. Synth. Met. 2000, 111, 139-143.
110.Bernius, M. T.; Inbasekaran, M.; O’Brien, J.; Wu, W., Progress with light-emitting polymers. Adv. Mater. 2000, 12, 1737-1750.
111.Scott, J.; Kaufman, J.; Brock, P.; DiPietro, R.; Salem, J.; Goitia, J., Degradation and failure of MEH‐PPV light‐emitting diodes. J. Appl. Phys. 1996, 79, 2745-2751.
112.Stolka, M.; Yanus, J.; Pai, D., Hole transport in solid solutions of a diamine in polycarbonate. J. Phys. Chem. 1984, 88, 4707-4714.
113.Shirota, Y.; Kuwabara, Y.; Inada, H.; Wakimoto, T.; Nakada, H.; Yonemoto, Y.; Kawami, S.; Imai, K., Multilayered organic electroluminescent device using a novel starburst molecule, 4, 4’, 4 ‘‐tris (3‐methylphenylphenylamino) triphenylamine, as a hole transport material. Appl. Phys. Lett. 1994, 65, 807-809.
114.Higuchi, A.; Inada, H.; Kobata, T.; Shirota, Y., Amorphous molecular materials: Synthesis and properties of a novel starburst molecule, 4, 4′, 4 ″‐Tri (N‐phenothiazinyl) triphenylamine. Adv. Mater. 1991, 3, 549-550.
115.Inada, H.; Shirota, Y., 1, 3, 5-Tris [4-(diphenylamino) phenyl] benzene and its methyl-substituted derivatives as a novel class of amorphous molecular materials. J. Mater. Chem. 1993, 3, 319-320.
116.Kuwabara, Y.; Ogawa, H.; Inada, H.; Noma, N.; Shirota, Y., Thermally stable multilared organic electroluminescent devices using novel starburst molecules, 4, 4′, 4 ″‐Tri (N‐carbazolyl) triphenylamine (TCTA) and 4, 4′, 4 ″‐Tris (3‐methylphenylphenylamino) triphenylamine (m‐MTDATA), as hole‐transport materials. Adv. Mater. 1994, 6, 677-679.
117.Heun, S.; Borsenberger, P., Hole transport in triarylamine doped polymers. Physica B: Condensed Matter 1995, 216, 43-52.
118.Bässler, H., Charge transport in disordered organic photoconductors. phys. status solidi b 1993, 175, 15-56.
119.Shirota, Y.; Okumoto, K.; Inada, H., Thermally stable organic light-emitting diodes using new families of hole-transporting amorphous molecular materials. Synth. Met. 2000, 111, 387-391.
120.Li, J.; Liu, D.; Li, Y.; Lee, C.-S.; Kwong, H.-L.; Lee, S., A high Tg carbazole-based hole-transporting material for organic light-emitting devices. Chem. Mater. 2005, 17, 1208-1212.
121.Thelakkat, M.; Schmidt, H. W., Low molecular weight and polymeric heterocyclics as electron transport/hole-blocking materials in organic light-emitting diodes. Polym. Adv. Technol. 1998, 9, 429-442.
122.Adachi, C.; Tsutsui, T.; Saito, S., Organic electroluminescent device having a hole conductor as an emitting layer. Appl. Phys. Lett. 1989, 55, 1489-1491.
123.Berggren, M.; Granströim, M.; Inganas, O.; Andersson, M., Ultraviolet electroluminescence from an organic light emitting diode. Adv. Mater. 1995, 7, 900-903.
124.Granström, M., Novel polymer light‐emitting diode designs using poly (thiophenes). Polym. Adv. Technol. 1997, 8, 424-430.
125.Andersson, M. R.; Thomas, O.; Mammo, W.; Svensson, M.; Theander, M.; Inganäs, O., Substituted polythiophenes designed for optoelectronic devices and conductors. J. Mater. Chem. 1999, 9, 1933-1940.
126.Pommerehne, J.; Vestweber, H.; Guss, W.; Mahrt, R. F.; Bässler, H.; Porsch, M.; Daub, J., Efficient two layer leds on a polymer blend basis. Adv. Mater. 1995, 7, 551-554.
127.Cao, Y.; Parker, I. D.; Yu, G.; Zhang, C.; Heeger, A. J., Improved quantum efficiency for electroluminescence in semiconducting polymers. Nature 1999, 397, 414-417.
128.Weinfurtner, K.-H.; Weissoertel, F.; Harmgarth, G.; Salbeck, J. In Novel amorphous molecular materials for organic light-emitting devices, Proc. SPIE Int. Soc. Opt. Eng.1998 International Society for Optics and Photonics; pp 40-48.
129.Berleb, S.; Brütting, W.; Schwoerer, M.; Wehrmann, R.; Elschner, A., Effect of majority carrier space charges on minority carrier injection in dye doped polymer light-emitting devices. J. Appl. Phys. 1998, 83, 4403-4409.
130.Bettenhausen, J.; Greczmiel, M.; Jandke, M.; Strohriegl, P., Oxadiazoles and phenylquinoxalines as electron transport materials. Synth. Met. 1997, 91, 223-228.
131.Kido, J.; Ohtaki, C.; Hongawa, K.; Okuyama, K.; Nagai, K., 1, 2, 4-Triazole Derivative as an Electron Transport Layer in Organic Electroluminescent Devices. Jpn. J. Appl. Phys. 1993, 32, L917.
132.Gao, Z.; Lee, C.; Bello, I.; Lee, S.; Chen, R.-M.; Luh, T.-Y.; Shi, J.; Tang, C., Bright-blue electroluminescence from a silyl-substituted ter-(phenylene–vinylene) derivative. Appl. Phys. Lett.
1999, 74, 865-867.
133.Anthopoulos, T. D.; Markham, J. P.; Namdas, E. B.; Samuel, I. D.; Lo, S.-C.; Burn, P. L., Highly efficient single-layer dendrimer light-emitting diodes with balanced charge transport. Appl. Phys. Lett. 2003, 82, 4824-4826.
134.Tang, C. W.; VanSlyke, S. A., Organic electroluminescent diodes. Appl. Phys. Lett. 1987, 51, 913-915.
135.Chen, C. H.; Shi, J., Metal chelates as emitting materials for organic electroluminescence. Coord. Chem. Rev. 1998, 171, 161-174.
136.Kim, K.; Lee, D. W.; Jin, J.-I., Electroluminescence properties of poly [2-(2′-ethylhexyloxy)-5-methoxy-1, 4-phenylenevinylene]/tris (8-hydroxyquinoline) aluminum two-layer devices. Synth. Met. 2000, 114, 49-56.
137.Duan, J.-P.; Sun, P.-P.; Cheng, C.-H., New iridium complexes as highly efficient orange–red emitters in organic light‐emitting diodes. Adv. Mater. 2003, 15, 224-228.
138.Yu, G.; Yin, S.; Liu, Y.; Shuai, Z.; Zhu, D., Structures, electronic states, and electroluminescent properties of a zinc (II) 2-(2-hydroxyphenyl) benzothiazolate complex. J. Am. Chem. Soc. 2003, 125, 14816-14824.
139.Baldo, M.; Thompson, M.; Forrest, S., High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer. Nature 2000, 403, 750-753.
140.Meyer, T. J., Photochemistry of metal coordination complexes: metal to ligand charge transfer excited states. Pure Appl. Chem. 1986, 58, 1193-1206.
141.Baldo, M. A.; O''brien, D.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M.; Forrest, S., Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 1998, 395, 151-154.
142.Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H.-E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E., Highly phosphorescent bis-cyclometalated iridium complexes: synthesis, photophysical characterization, and use in organic light emitting diodes. J. Am. Chem. Soc. 2001, 123, 4304-4312.
143.Adachi, C.; Baldo, M. A.; Forrest, S. R.; Lamansky, S.; Thompson, M. E.; Kwong, R. C., High-efficiency red electrophosphorescence devices. Appl. Phys. Lett. 2001, 78, 1622-1624.
144.Baldo, M.; Lamansky, S.; Burrows, P.; Thompson, M.; Forrest, S., Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Appl. Phys. Lett. 1999, 75, 4.
145.Tsutsui, T.; Yang, M.-J.; Yahiro, M.; Nakamura, K.; Watanabe, T.; Tsuji, T.; Fukuda, Y.; Wakimoto, T.; Miyaguchi, S., High quantum efficiency in organic light-emitting devices with iridium-complex as a triplet emissive center. Jpn. J. Appl. Phys. 1999, 38, L1502.
146.Tsuzuki, T.; Shirasawa, N.; Suzuki, T.; Tokito, S., Color Tunable Organic Light‐Emitting Diodes Using Pentafluorophenyl‐Substituted Iridium Complexes. Adv. Mater. 2003, 15, 1455-1458.
147.Tokito, S.; Iijima, T.; Suzuri, Y.; Kita, H.; Tsuzuki, T.; Sato, F., Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices. Appl. Phys. Lett. 2003, 83, 569-571.
148.Yeh, S. J.; Wu, M. F.; Chen, C. T.; Song, Y. H.; Chi, Y.; Ho, M. H.; Hsu, S. F.; Chen, C. H., New Dopant and Host Materials for Blue‐Light‐Emitting Phosphorescent Organic Electroluminescent Devices. Adv. Mater. 2005, 17, 285-289.
149.Adachi, C.; Kwong, R. C.; Djurovich, P.; Adamovich, V.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R., Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials. Appl. Phys. Lett. 2001, 79, 2082-2084.
150.Tsai, M. H.; Lin, H. W.; Su, H. C.; Ke, T. H.; Wu, C.-c.; Fang, F. C.; Liao, Y. L.; Wong, K. T.; Wu, C. I., Highly Efficient Organic Blue Electrophosphorescent Devices Based on 3, 6‐Bis (triphenylsilyl) carbazole as the Host Material. Adv. Mater. 2006, 18, 1216-1220.
151.Kim, S. H.; Jang, J.; Lee, J. Y., Improved color stability in white phosphorescent organic light-emitting diodes using charge confining structure without interlayer. Appl. Phys. Lett. 2007, 91, 123509.
152.Holmes, R.; Forrest, S.; Tung, Y.-J.; Kwong, R.; Brown, J.; Garon, S.; Thompson, M., Blue organic electrophosphorescence using exothermic host-guest energy transfer. Appl. Phys. Lett. 2003, 82, 2422-2424.
153.Tokito, S.; Iijima, T.; Suzuri, Y.; Kita, H.; Tsuzuki, T.; Sato, F., Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices. Appl. Phys.Lett. 2003, 83, 569-571.
154.Rehmann, N.; Ulbricht, C.; Köhnen, A.; Zacharias, P.; Gather, M. C.; Hertel, D.; Holder, E.; Meerholz, K.; Schubert, U. S., Advanced Device Architecture for Highly Efficient Organic Light‐Emitting Diodes with an Orange‐Emitting Crosslinkable Iridium (III) Complex. Adv. Mater. 2008, 20, 129-133.
155.Yang, X.; Müller, D. C.; Neher, D.; Meerholz, K., Highly efficient polymeric electrophosphorescent diodes. Adv. Mater. 2006, 18, 948-954.
156.Adachi, C.; Baldo, M. A.; Forrest, S. R.; Thompson, M. E., High-efficiency organic electrophosphorescent devices with tris (2-phenylpyridine) iridium doped into electron-transporting materials. Appl. Phys. Lett. 2000, 77, 904.
157.Moon-Jae, Y.; Tetsuo, T., Use of Poly(9-vinylcarbazole) as Host Material for Iridium Complexes in High-Efficiency Organic Light-Emitting Devices. Jpn. J. Appl. Phys. 2000, 39, L828.
158.Lamansky, S.; Djurovich, P. I.; Abdel-Razzaq, F.; Garon, S.; Murphy, D. L.; Thompson, M. E., Cyclometalated Ir complexes in polymer organic light-emitting devices. J. Appl. Phys. 2002, 92, 1570-1575.
159.Lee, C.-C.; Yeh, K.-M.; Chen, Y., New host copolymers containing pendant triphenylamine and carbazole for efficient green phosphorescent OLEDs. Polymer 2008, 49, 4211-4217.
160.Chuang, C.-N.; Chuang, H.-J.; Wang, Y.-X.; Chen, S.-H.; Huang, J.-J.; Leung, M.-k.; Hsieh, K.-H., Polymers with alkyl main chain pendent biphenyl carbazole or triphenylamine unit as host for polymer light emitting diodes. Polymer 2012, 53, 4983-4992.
161.van Dijken, A.; Bastiaansen, J. J. A. M.; Kiggen, N. M. M.; Langeveld, B. M. W.; Rothe, C.; Monkman, A.; Bach, I.; Stössel, P.; Brunner, K., Carbazole Compounds as Host Materials for Triplet Emitters in Organic Light-Emitting Diodes:  Polymer Hosts for High-Efficiency Light-Emitting Diodes. J. Am. Chem. Soc. 2004, 126, 7718-7727.
162.Zhang, Y.; Zuniga, C.; Kim, S.-J.; Cai, D.; Barlow, S.; Salman, S.; Coropceanu, V.; Brédas, J.-L.; Kippelen, B.; Marder, S., Polymers with Carbazole-Oxadiazole Side Chains as Ambipolar Hosts for Phosphorescent Light-Emitting Diodes. Chem. Mater. 2011, 23, 4002-4015.
163.Yang, X. H.; Jaiser, F.; Klinger, S.; Neher, D., Blue polymer electrophosphorescent devices with different electron-transporting oxadiazoles. Appl. Phys. Lett. 2006, 88, 021107.
164.Nakamura, A.; Tada, T.; Mizukami, M.; Yagyu, S., Efficient electrophosphorescent polymer light-emitting devices using a Cs/Al cathode. Appl. Phys. Lett. 2004, 84, 130-132.
165.Yook, K. S.; Jang, S. E.; Lee, J. Y., Efficiency Improvement of Solution Processed Blue Phosphorescent Devices Using High Triplet Energy Electron Transport Layer. Electrochem. Solid-State Lett. 2010, 13, J122-J124.
166.Earmme, T.; Ahmed, E.; Jenekhe, S. A., Solution-Processed Highly Efficient Blue Phosphorescent Polymer Light-Emitting Diodes Enabled by a New Electron Transport Material. Adv. Mater. 2010, 22, 4744-4748.
167.Shao, S.; Ding, J.; Ye, T.; Xie, Z.; Wang, L.; Jing, X.; Wang, F., A Novel, Bipolar Polymeric Host for Highly Efficient Blue Electrophosphorescence: a Non-Conjugated Poly(aryl ether) Containing Triphenylphosphine Oxide Units in the Electron-Transporting Main Chain and Carbazole Units in Hole-Transporting Side Chains. Adv. Mater. 2011, 23, 3570-3574.
168.Mizuno, Y.; Takasu, I.; Uchikoga, S.; Enomoto, S.; Sawabe, T.; Amano, A.; Wada, A.; Sugizaki, T.; Yoshida, J.; Ono, T.; Adachi, C., Fluorinated Carbazole Derivatives as Wide-Energy-Gap Host Material for Blue Phosphorescent Organic Light-Emitting Diodes. J. Phys. Chem. C 2012, 116, 20681-20687.
169.Stanislovaityte, E.; Simokaitiene, J.; Raisys, S.; Al-Attar, H.; Grazulevicius, J. V.; Monkman, A. P.; Jankus, V., Carbazole based polymers as hosts for blue iridium emitters: synthesis, photophysics and high efficiency PLEDs. J. Mater. Chem. C 2013, 1, 8209-8221.
170.Yoon, S. H.; Shin, J.; Um, H. A.; Lee, T. W.; Cho, M. J.; Kim, Y. J.; Son, Y. H.; Yang, J. H.; Chae, G.; Kwon, J. H.; Choi, D. H., Novel 9,9′-(1,3-phenylene)bis-9H-carbazole-containing copolymers as hole-transporting and host materials for blue phosphorescent polymer light-emitting diodes. J. Polym. Sci. Part A: Polym. Chem. 2014, 52, 707-718.
171.Chen, B.; Yu, L.; Liu, B.; Feng, J.; Liu, Z.; Ying, L.; Li, Y.; Yang, W., Efficient π-conjugated interrupted host polymer by metal-free polymerization for blue/green phosphorescent light-emitting diodes. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 1037-1046.
172.Hu, D.; Liu, H.; Lu, P.; Shen, F.; Lv, Y.; Ma, Y., Wide bandgap materials design toward tunable bandgap and increased carries injection property: silane interrupting [small pi]-conjugation together with peripheralcarbazolyl substituents. RSC Adv. 2015, 5, 21596-21603.
173.Fan, Z.-X.; Bai, Y.; Chu, Z.-W.; Zhang, X.-W.; Zhao, Q.-H., Synthesis and device performance of an oxygen-interrupted bipolar polymer host with carbazole and triphenylphosphine oxide in the main chain. J. Appl. Polym. Sci. 2017, 134, n/a-n/a.
174.Jiang, H.-j.; Zhang, Q.-w.; He, X.; Zhang, X.-l.; Zhang, X.-w., Triphenyl phosphine oxide and carbazole-based polymer host materials for green phosphorescent organic light-emitting diodes. Chin. J. Polym. Sci. 2017, 35, 611-622.
175.Wang, J.; Xu, X.; Peng, J.; Yao, C., High triplet, bipolar polymeric hosts for highly efficient solution-processed blue phosphorescent polymer light-emitting diodes. Org. Electron. 2017, 43, 1-8.
176.Jiang, C.; Yang, W.; Peng, J.; Xiao, S.; Cao, Y., High-Efficiency, Saturated Red-Phosphorescent Polymer Light-Emitting Diodes Based on Conjugated and Non-Conjugated Polymers Doped with an Ir Complex. Adv. Mater. 2004, 16, 537-541.
177.Wu, F.-I.; Shih, P.-I.; Tseng, Y.-H.; Chen, G.-Y.; Chien, C.-H.; Shu, C.-F.; Tung, Y.-L.; Chi, Y.; Jen, A. K. Y., Highly Efficient Red-Electrophosphorescent Devices Based on Polyfluorene Copolymers Containing Charge-Transporting Pendant Units. J Phys. Chem. B 2005, 109, 14000-14005.
178.Jiang, J.; Jiang, C.; Yang, W.; Zhen, H.; Huang, F.; Cao, Y., High-Efficiency Electrophosphorescent Fluorene-alt-carbazole Copolymers N-Grafted with Cyclometalated Ir Complexes. Macromolecules 2005, 38, 4072-4080.
179.Zhen, H.; Luo, C.; Yang, W.; Song, W.; Du, B.; Jiang, J.; Jiang, C.; Zhang, Y.; Cao, Y., Electrophosphorescent Chelating Copolymers Based on Linkage Isomers of Naphthylpyridine−Iridium Complexes with Fluorene. Macromolecules 2006, 39, 1693-1700.
180.Chen, L.; Zhang, B.; Cheng, Y.; Xie, Z.; Wang, L.; Jing, X.; Wang, F., Pure and Saturated Red Electroluminescent Polyfluorenes with Dopant/Host System and PLED Efficiency/Color Purity Trade-Offs. Adv. Funct. Mater. 2010, 20, 3143-3153.
181.Komatsu, R.; Sasabe, H.; Inomata, S.; Pu, Y.-J.; Kido, J., High efficiency solution processed OLEDs using a thermally activated delayed fluorescence emitter. Synth. Met. 2015, 202, 165-168.
182.Kim, O. Y.; Kim, B. S.; Lee, J. Y., High efficiency thermally activated delayed fluorescent devices using a mixed host of carbazole and phosphine oxide derived host materials. Synth. Met. 2015, 201, 49-53.
183.Pina, J.; Seixas de Melo, J.; Burrows, H. D.; Monkman, A. P.; Navaratnam, S., On the triplet state of poly(N-vinylcarbazole). Chem. Phys. Lett. 2004, 400, 441-445.
184.Moon-Jae, Y.; Tetsuo, T., Use of Poly(9-vinylcarbazole) as Host Material for Iridium Complexes in High-Efficiency Organic Light-Emitting Devices. Jpn. J. Appl. Phys. Part 2 2000, 39, L828.
185.Lee, C.-L.; Lee, K. B.; Kim, J.-J., Polymer phosphorescent light-emitting devices doped with tris(2-phenylpyridine) iridium as a triplet emitter. Appl. Phys. Lett. 2000, 77, 2280-2282.
186.Gong, X.; Robinson, M. R.; Ostrowski, J. C.; Moses, D.; Bazan, G. C.; Heeger, A. J., High-Efficiency Polymer-Based Electrophosphorescent Devices. Adv. Mater. 2002, 14, 581-585.
187.Kawamura, Y.; Yanagida, S.; Forrest, S. R., Energy transfer in polymer electrophosphorescent light emitting devices with single and multiple doped luminescent layers. J. Appl. Phys. 2002, 92, 87-93.
188.Vaeth, K. M.; Tang, C. W., Light-emitting diodes based on phosphorescent guest/polymeric host systems. J. Appl. Phys. 2002, 92, 3447-3453.
189.Gong, X.; Ostrowski, J. C.; Moses, D.; Bazan, G. C.; Heeger, A. J., Electrophosphorescence from a Polymer Guest–Host System with an Iridium Complex as Guest: Förster Energy Transfer and Charge Trapping. Adv. Funct. Mater. 2003, 13, 439-444.
190.Shu, C.-F.; Dodda, R.; Wu, F.-I.; Liu, M. S.; Jen, A. K. Y., Highly Efficient Blue-Light-Emitting Diodes from Polyfluorene Containing Bipolar Pendant Groups. Macromolecules 2003, 36, 6698-6703.
191.Yang, X. H.; Neher, D., Polymer electrophosphorescence devices with high power conversion efficiencies. Appl. Phys. Lett. 2004, 84, 2476-2478.
192.Yang, X.; Neher, D.; Hertel, D.; Däubler, T. K., Highly Efficient Single-Layer Polymer Electrophosphorescent Devices. Adv. Mater. 2004, 16, 161-166.
193.Chen, Z.; Jiang, C.; Niu, Q.; Peng, J.; Cao, Y., Enhanced green electrophosphorescence by using polyfluorene host via interfacial energy transfer from polyvinylcarbazole. Org. Electron. 2008, 9, 1002-1009.
194.Yoon, S. H.; Shin, J.; Um, H. A.; Lee, T. W.; Cho, M. J.; Kim, Y. J.; Son, Y. H.; Yang, J. H.; Chae, G.; Kwon, J. H.; Choi, D. H., Novel 9,9′-(1,3-phenylene)bis-9H-carbazole-containing copolymers as hole-transporting and host materials for blue phosphorescent polymer light-emitting diodes. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 707-718.
195.Peng, Z.; Bao, Z.; Galvin, M. E., Polymers with Bipolar Carrier Transport Abilities for Light Emitting Diodes. Chem. Mater. 1998, 10, 2086-2090.
196.Chan, W. K.; Ng, P. K.; Gong, X.; Hou, S., Light-emitting multifunctional rhenium (I) and ruthenium (II) 2,2′-bipyridyl complexes with bipolar character. Appl. Phys. Lett. 1999, 75, 3920-3922.
197.Kim, T. H.; Lee, H. K.; Park, O. O.; Chin, B. D.; Lee, S. H.; Kim, J. K., White-Light-Emitting Diodes Based on Iridium Complexes via Efficient Energy Transfer from a Conjugated Polymer. Adv. Funct. Mater. 2006, 16, 611-617.
198.Noh, Y.-Y.; Lee, C.-L.; Kim, J.-J.; Yase, K., Energy transfer and device performance in phosphorescent dye doped polymer light emitting diodes. J. Chem. Phys. 2003, 118, 2853-2864.
199.Sudhakar, M.; Djurovich, P. I.; Hogen-Esch, T. E.; Thompson, M. E., Phosphorescence Quenching by Conjugated Polymers. J. Am. Chem. Soc. 2003, 125, 7796-7797.
200.Tsuchiya, K.; Sakaguchi, K.; Kasuga, H.; Kawakami, A.; Taka, H.; Kita, H.; Ogino, K., Synthesis of charge transporting block copolymers containing 2,7-dimethoxycarbazole units for light emitting device. Polymer 2010, 51, 616-622.
201.Yeh, K.-M.; Lee, C.-C.; Chen, Y., Host copolymers containing pendant carbazole and oxadiazole groups: Synthesis, characterization and optoelectronic applications for efficient green phosphorescent OLEDs. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 5180-5193.
202.Leung, M.-k.; Hsieh, Y.-H.; Kuo, T.-Y.; Chou, P.-T.; Lee, J.-H.; Chiu, T.-L.; Chen, H.-J., Novel Ambipolar Orthogonal Donor–Acceptor Host for Blue Organic Light Emitting Diodes. Org. Lett. 2013, 15, 4694-4697.
203.Huang, J.-J.; Hung, Y.-H.; Ting, P.-L.; Tsai, Y.-N.; Gao, H.-J.; Chiu, T.-L.; Lee, J.-H.; Chen, C.-L.; Chou, P.-T.; Leung, M.-k., Orthogonally Substituted Benzimidazole-Carbazole Benzene As Universal Hosts for Phosphorescent Organic Light-Emitting Diodes. Org. Lett. 2016, 18, 672-675.
204.Cai, S.; Hu, X.; Zhang, Z.; Su, J.; Li, X.; Islam, A.; Han, L.; Tian, H., Rigid triarylamine-based efficient DSSC sensitizers with high molar extinction coefficients. J. Mater. Chem. A 2013, 1, 4763-4772.
205.Isobe, T.; Ishikawa, T., 2-Chloro-1,3-dimethylimidazolinium Chloride. 1. A Powerful Dehydrating Equivalent to DCC. J. Org. Chem. 1999, 64, 6984-6988.
206.Chiriac, C. I.; Tanasa, F.; Nechifor, M., A novel synthesis of 3, 4, 5-triaryl-1, 2, 4-4h-triazoles from 2, 5-diaryl-1, 3, 4-oxadiazoles and aluminium anilides. Rev. Roum. Chim. 2010, 55, 175-7.
207.Chen, L.-A.; Tang, X.; Xi, J.; Xu, W.; Gong, L.; Meggers, E., Chiral-at-Metal Octahedral Iridium Catalyst for the Asymmetric Construction of an All-Carbon Quaternary Stereocenter. Angew. Chem. Int. Ed. 2013, 52, 14021-14025.
208.Zhang, D.; Lu, Y.; Liu, K.; Liu, B.; Wang, J.; Zhang, G.; Zhang, H.; Liu, Y.; Wang, B.; Zheng, M.; Fu, L.; Hou, Y.; Gong, N.; Lv, Y.; Li, C.; Cooper, C. B.; Upton, A. M.; Yin, D.; Ma, Z.; Huang, H., Identification of Less Lipophilic Riminophenazine Derivatives for the Treatment of Drug-Resistant Tuberculosis. J. Med. Chem. 2012, 55, 8409-8417.
209.Secci, D.; Bolasco, A.; D''Ascenzio, M.; della Sala, F.; Yáñez, M.; Carradori, S., Conventional and Microwave-Assisted Synthesis of Benzimidazole Derivatives and Their In Vitro Inhibition of Human Cyclooxygenase. J. Heterocycl. Chem. 2012, 49, 1187-1195.
210.Evstratova, S. I.; Antrim, D.; Fillingane, C.; Pojman, J. A., Isothermal frontal polymerization: Confirmation of the isothermal nature of the process and the effect of oxygen and polymer seed molecular weight on front propagation. Polym. Sci. Part A: Polym. Chem. 2006, 44, 3601-3608.
211.Lee, C.-C.; Leung, M.-k.; Lee, P.-Y.; Chiu, T.-L.; Lee, J.-H.; Liu, C.; Chou, P.-T., Synthesis and Properties of Oxygen-Linked N-Phenylcarbazole Dendrimers. Macromolecules 2012, 45, 751-765.
212.Brunner, K.; van Dijken, A.; Börner, H.; Bastiaansen, J. J. A. M.; Kiggen, N. M. M.; Langeveld, B. M. W., Carbazole Compounds as Host Materials for Triplet Emitters in Organic Light-Emitting Diodes:  Tuning the HOMO Level without Influencing the Triplet Energy in Small Molecules. J. Am. Chem. Soc. 2004, 126, 6035-6042.
213.Chen, F.-C.; Chang, S.-C.; He, G.; Pyo, S.; Yang, Y.; Kurotaki, M.; Kido, J., Energy transfer and triplet exciton confinement in polymeric electrophosphorescent devices. J. Polym. Sci., Part B: Polym. Phys 2003, 41, 2681-2690.
214.Jones, G.; Jackson, W. R.; Choi, C. Y.; Bergmark, W. R., Solvent effects on emission yield and lifetime for coumarin laser dyes. Requirements for a rotatory decay mechanism. J. Phys. Chem. 1985, 89, 294-300.
215.D’Andrade, B. W.; Datta, S.; Forrest, S. R.; Djurovich, P.; Polikarpov, E.; Thompson, M. E., Relationship between the ionization and oxidation potentials of molecular organic semiconductors. Org. Electron. 2005, 6, 11-20.
216.Djurovich, P. I.; Mayo, E. I.; Forrest, S. R.; Thompson, M. E., Measurement of the lowest unoccupied molecular orbital energies of molecular organic semiconductors. Org. Electron. 2009, 10, 515-520.
217.Cook, J. H.; Al-Attar, H. A.; Monkman, A. P., Effect of PEDOT–PSS resistivity and work function on PLED performance. Org. Electron. 2014, 15, 245-250.
218.Baranoff, E.; Curchod, B. F. E., FIrpic: archetypal blue phosphorescent emitter for electroluminescence. Dalton Transactions 2015, 44, 8318-8329.
219.Adachi, C.; Kwong, R.; Forrest, S. R., Efficient electrophosphorescence using a doped ambipolar conductive molecular organic thin film. Org. Electron. 2001, 2, 37-43.
220.Chang, S.-C.; He, G.; Chen, F.-C.; Guo, T.-F.; Yang, Y., Degradation mechanism of phosphorescent-dye-doped polymer light-emitting diodes. Appl. Phys. Lett. 2001, 79, 2088-2090.
221.Jang, S. E.; Joo, C. W.; Lee, J. Y., High quantum efficiency in simple blue phosphorescent organic light-emitting diodes without any electron injection layer. Thin Solid Films 2010, 519, 906-910.
222.Kawamura, Y.; Yanagida, S.; Forrest, S. R., Energy transfer in polymer electrophosphorescent light emitting devices with single and multiple doped luminescent layers. J. Appl. Phys. 2002, 92, 87-93.
223.Lamansky, S.; Djurovich, P. I.; Abdel-Razzaq, F.; Garon, S.; Murphy, D. L.; Thompson, M. E., Cyclometalated Ir complexes in polymer organic light-emitting devices. J. Appl. Phys. 2002, 92, 1570-1575.
224.Vaeth, K. M.; Tang, C. W., Light-emitting diodes based on phosphorescent guest/polymeric host systems. J. Appl. Phys. 2002, 92, 3447-3453.
225.Yook, K. S.; Jang, S. E.; Jeon, S. O.; Lee, J. Y., Fabrication and Efficiency Improvement of Soluble Blue Phosphorescent Organic Light-Emitting Diodes Using a Multilayer Structure Based on an Alcohol-Soluble Blue Phosphorescent Emitting Layer. Adv. Mater. 2010, 22, 4479-4483.
226.Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C., Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492, 234-238.
227.Tsuboi, T.; Tanigawa, M., Optical characteristics of PtOEP and Ir(ppy)3 triplet-exciton materials for organic electroluminescence devices. Thin Solid Films 2003, 438, 301-307.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊