|
Adams, L. L. M. and Gale, D. (1982). Solving the quandary between questionnaire length and response rate in educational research. Research in Higher Education, 17(3):231– 240. Allenby, G. M., Arora, N., and Ginter, J. L. (1995). Incorporating prior knowledge into the analysis of conjoint studies. Journal of Marketing Research, pages 152–162. Allenby, G. M., Arora, N., and Ginter, J. L. (1998). On the heterogeneity of demand. Journal of Marketing Research, pages 384–389. Andrews, R. L., Ansari, A., and Currim, I. S. (2002). Hierarchical bayes versus finite mixture conjoint analysis models: A comparison of fit, prediction, and partworth recovery. Journal of Marketing Research, 39(1):87–98. Bean, A. G. and Roszkowski, M. J. (1995). The long and short of it. Marketing Research, 7(1):20. Berdie, D. R. (1989). Reassessing the value of high response rates to mail surveys. Marketing Research, 1(3). Brooks, S. P. and Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. Journal of computational and graphical statistics, 7(4):434–455. Chib, S. and Greenberg, E. (1995). Understanding the metropolis-hastings algorithm. The american statistician, 49(4):327–335. DeSarbo, W. S., Ramaswamy, V., and Cohen, S. H. (1995). Market segmentation with choice-based conjoint analysis. Marketing Letters, 6(2):137–147. Dillman, D. A., Sinclair, M. D., and Clark, J. R. (1993). Effects of questionnaire length, respondent-friendly design, and a difficult question on response rates for occupantaddressed census mail surveys. Public Opinion Quarterly, 57(3):289–304. Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical science, pages 457–472. Geman, S. and Geman, D. (1984). Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Transactions on pattern analysis and machine intelligence, (6):721–741. Green, P. E. and Rao, V. R. (1971). Conjoint measurement for quantifying judgmental data. Journal of Marketing research, pages 355–363. Green, P. E. and Srinivasan, V. (1978). Conjoint analysis in consumer research: issues and outlook. Journal of consumer research, 5(2):103–123. Hagerty, M. R. (1985). Improving the predictive power of conjoint analysis: The use of factor analysis and cluster analysis. Journal of Marketing Research, pages 168–184. Halme, M. and Kallio, M. (2014). Likelihood estimation of consumer preferences in choice-based conjoint analysis. European Journal of Operational Research, 239(2):556–564. Heberlein, T. A. and Baumgartner, R. (1978). Factors affecting response rates to mailed questionnaires: A quantitative analysis of the published literature. American Sociological Review, pages 447–462. Louviere, J. J. and Woodworth, G. (1983). Design and analysis of simulated consumer choice or allocation experiments: an approach based on aggregate data. Journal of marketing research, pages 350–367. Malhotra, N. K. (1986). An approach to the measurement of consumer preferences using limited information. Journal of Marketing Research, pages 33–40. Ogawa, K. (1987). An approach to simultaneous estimation and segmentation in conjoint analysis. Marketing Science, 6(1):66–81. Orme, B. K. (2010). Getting started with conjoint analysis: strategies for product design and pricing research. Research Publishers. Pekelman, D. and Sen, S. K. (1979a). Improving prediction in conjoint measurement. Journal of Marketing Research, pages 211–220. Pekelman, D. and Sen, S. K. (1979b). Measurement and estimation of conjoint utility functions. Journal of Consumer Research, 5(4):263–271. Rossi, P. E. and Allenby, G. M. (2003). Bayesian statistics and marketing. Marketing Science, 22(3):304–328. Sichtmann, C. and Wilken, R. (2015). Estimating willingness-to-pay by different utility functions: A comparison of individual and cluster solutions. In Revolution in Marketing: Market Driving Changes, pages 263–268. Springer. Spiegelhalter, D., Thomas, A., Best, N., and Lunn, D. (2007). Openbugs user manual, version 3.0. 2. MRC Biostatistics Unit, Cambridge. Sturtz, S., Ligges, U., and Gelman, A. (2010). R2openbugs: a package for running openbugs from r. URL http://cran. rproject.org/web/packages/R2OpenBUGS/vignettes/R2OpenBUGS. pdf. Voleti, S., Srinivasan, V., and Ghosh, P. (2016). An approach to improve the predictive power of choice-based conjoint analysis. International Journal of Research in Marketing.
|