跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/12 20:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳政榮
研究生(外文):Jheng-Rong Chen
論文名稱:未破碎波浪自由液面邊界層之流場紊流結構分析
論文名稱(外文):The Analysis of the Coherent Turbulent Structures in Non-Breaking Surface Waves
指導教授:蔡武廷
指導教授(外文):Wu-Ting Tsai
口試委員:戴璽恆張恆華
口試委員(外文):Hsi-Heng DaiHerng-Hua Chang
口試日期:2016-12-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:233
中文關鍵詞:波浪表面溫度條痕相關紊流結構渦旋辨識條件平均法穩定性分析朗繆爾環流
外文關鍵詞:wavy surfacethermal streakscoherent turbulent structurevortex identificationconditional averagingstability analysisLangmuir circulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:329
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
觀察波浪表面發現存在沿流向之條痕結構,其結構與牆面紊流邊界層(wall turbulent boundary)相似,為探討其結構特性及其成因,故本研究應用前人於牆面紊流邊界層之研究方法,分析未破碎波浪之自由液面的數值模擬資料,發現低溫條痕之分布與沿流向高速條痕之分布相似,故為低溫高速條痕。透過沿流向平均發現條痕亦與渦度擾動有關,進而以渦度方向角度、渦旋結構辨識、條件平均法分析水面下之紊流流場,發現其具有成對沿流向之相關紊流結構(coherent turbulent structure),且其為反向旋轉,而該結構多分布於波背處,而隨時間發展逐漸朝沿流向延伸。針對上述之特性,可以透過渦度傳輸方程式說明,於波背處之沿流向渦度逐漸增大,於波前處逐漸減小,而其整體效應為隨時間逐漸增大,故使紊流結構朝沿流向延伸。比對Craik與Leibovich提出之理論,進行穩定性分析,其結果發現與數值模擬資料之流場吻合,故流場中成對沿流向之相關紊流結構即為朗繆爾環流(Langmuir circulation),並造成條痕結構。
Streaky structures along the streamwise direction can be observed on the wavy surface, and they are similar to what is found in the wall turbulent boundary layer. To study the properties of these structures, the research methods used in the wall turbulent boundary are applied to the analysis of the simulation data of the non-breaking surface wave in this thesis. It is found that the distribution of high-temperature resembles the distribution low-speed streaks, and are so called high-temperature low-speed streaks. By using streamwise averaging, it is found that the streaks also correlate closely with fluctuation vorticity. Further, the methods of vorticity inclination angle, vortex identification and condional averaging are used to analyze the underwater turbulent flow field, and show that there exist pairs of the streamwise coherent turbulent structures which are counter roation. The most of them are lain in the wave back and stretched along the streamwise over time. On the above properties, they can be illustrated with vorticity transprot equations. The streamwise vorticity grows gradually in the wave back, and decaies in the wave front. Then, the total effect is positive, and the streamwise vorticity is strected over time. Comparing with the theory which Craik and Leibovich proposed, and executing the stability analysis, the charterisitcs of simulation data fits in with the results of the stability analysis. It confirms that the pairs of the streamwise coherent turbulent structures are Langmuir circulations which lead to streaky structures.
致謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 xxx
第一章、 前言 1
1.1 研究背景 1
1.2 數值模擬數據之產生 3
1.3 論文架構 6
第二章、 流場結構分析 7
2.1 渦度剖面圖 44
2.2 相位平均 48
2.3 沿流向平均 67
2.4 渦度方向角度 105
2.5 渦旋結構辨識 126
2.5.1 速度梯度張量之第二不變量 (The second invariant of ∇u) 127
2.5.2 速度梯度張量之複數特徵值 (The complex eigenvalues of ∇u) 129
2.5.3 S2+Ω2 之第二特徵值 (The second eigenvalues λ2 of S2+Ω2) 131
2.5.4 速度梯度張量之複數根之虛數部分─渦流強度 (The image part σci of the complex eigenvalues of ∇u, swirling strength) 133
2.5.5 辨識結果 134
2.6 條件平均法 (conditional averaging methods) 172
2.7 渦度傳輸方程式 (Vorticity transport equations) 188
第三章、 流場穩定性分析 211
3.1 理論介紹 211
3.2 結果與討論 217
第四章、 結論 222
參考文獻 224
附錄一 相平面法 226
附錄二 契比雪夫多項式 232
[1]M. Head and P. Bandyopadhyay, "New aspects of turbulent boundary-layer structure," Journal of Fluid Mechanics, vol. 107, pp. 297-338, 1981.
[2]S. K. Robinson, "Coherent motions in the turbulent boundary layer," Annual Review of Fluid Mechanics, vol. 23, pp. 601-639, 1991.
[3]S. Kline, W. Reynolds, F. Schraub, and P. Runstadler, "The structure of turbulent boundary layers," Journal of Fluid Mechanics, vol. 30, pp. 741-773, 1967.
[4]T. Theodorsen, "Mechanism of turbulence," in Proceedings of the Second Midwestern Conference on Fluid Mechanics, 1952.
[5]C. Smith, "A synthesized model of the near-wall behavior in turbulent boundary layers," DTIC Document1984.
[6]P. Moin and J. Kim, "The structure of the vorticity field in turbulent channel flow. Part 1. Analysis of instantaneous fields and statistical correlations," Journal of Fluid Mechanics, vol. 155, pp. 441-464, 1985.
[7]R. Blackwelder and R. Kaplan, "On the wall structure of the turbulent boundary layer," Journal of Fluid Mechanics, vol. 76, pp. 89-112, 1976.
[8]J. Kim and P. Moin, "The structure of the vorticity field in turbulent channel flow. Part 2. Study of ensemble-averaged fields," Journal of Fluid Mechanics, vol. 162, pp. 339-363, 1986.
[9]J. C. Hunt, A. Wray, and P. Moin, "Eddies, streams, and convergence zones in turbulent flows," 1988.
[10]M. Chong, A. E. Perry, and B. Cantwell, "A general classification of three‐dimensional flow fields," Physics of Fluids A: Fluid Dynamics (1989-1993), vol. 2, pp. 765-777, 1990.
[11]J. Jeong and F. Hussain, "On the identification of a vortex," Journal of fluid mechanics, vol. 285, pp. 69-94, 1995.
[12]J. Zhou, R. J. Adrian, S. Balachandar, and T. Kendall, "Mechanisms for generating coherent packets of hairpin vortices in channel flow," Journal of Fluid Mechanics, vol. 387, pp. 353-396, 1999.
[13]W.-t. Tsai, S.-m. Chen, and G.-h. Lu, "Numerical evidence of turbulence generated by nonbreaking surface waves," Journal of Physical Oceanography, vol. 45, pp. 174-180, 2015.
[14]S. Leibovich, "The form and dynamics of Langmuir circulations," Annual Review of Fluid Mechanics, vol. 15, pp. 391-427, 1983.
[15]S. Leibovich and S. Paolucci, "The instability of the ocean to Langmuir circulations," Journal of Fluid Mechanics, vol. 102, pp. 141-167, 1981.
[16]A. Craik, "The generation of Langmuir circulations by an instability mechanism," Journal of Fluid Mechanics, vol. 81, pp. 209-223, 1977.
[17]S. Thorpe, "Langmuir circulation," Annu. Rev. Fluid Mech., vol. 36, pp. 55-79, 2004.
[18]H. J. Lugt, "Vortex flow in nature and technology," New York, Wiley-Interscience, 1983, 305 p. Translation., vol. 1, 1983.
[19]J. Kim, "On the structure of wall-bounded turbulent flows," 1983.
[20]W. Phillips, "On an instability to Langmuir circulations and the role of Prandtl and Richardson numbers," Journal of Fluid Mechanics, vol. 442, pp. 335-358, 2001.
[21]M. S. Longuet-Higgins, "Mass transport in water waves," Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 245, pp. 535-581, 1953.
[22]E. Kreyszig, Advanced engineering mathematics: John Wiley & Sons, 2010.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top