跳到主要內容

臺灣博碩士論文加值系統

(44.192.26.226) 您好!臺灣時間:2024/09/13 09:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱閔學
研究生(外文):MIN-HSUEH CHIU
論文名稱:微觀尺度模擬計算金屬薄層與聚酰亞胺材料特性
論文名稱(外文):Studies of Material Properties on Metal Thin Film and Polyimide by Microscopic Simulations
指導教授:李佳翰李佳翰引用關係
指導教授(外文):Jia-Han Lee
口試委員:許文翰薛承輝李玟頡王耀群
口試委員(外文):Wen-Hann SheuChun-Hway HsuehWen-Jay LeeYao-Chun Wang
口試日期:2017-01-06
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:52
中文關鍵詞:密度泛涵理論介電常數分子動力學聚酰亞胺玻璃轉換溫度熱膨脹係數楊氏係數
外文關鍵詞:density functional theorypermittivitymolecular dynamicspolyimideglass transition temperaturethermal expansion coefficientmodulus
相關次數:
  • 被引用被引用:0
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技的發展,計算機擁有更強大的運算能力以及更快速準確的演算法,因此,利用計算機模擬材料特性日益重要也具有可靠性。本論文利用密度泛函理論及分子動力學探討微米及奈米尺度下材料特性。利用密度泛函理論,可以得到金與銀塊材與薄膜的光學特性,其中發現並了解隨著尺寸改變的非等向性光學特性。利用分子動力學,可以計算聚酰亞胺的熱力學與機械材料特性,秩序度參數在材料模擬上具有非常大的影響,並且從中了解結構與材料特性關係。
Due to the development of the powerful computation algorithm and device, the material modeling is getting more important and reliable. In this thesis, the density functional theory and molecular dynamics are used to study the microscale and nanoscale material properties. By using the density functional theory, the optical properties of gold and silver in bulk and thin film phases are demonstrated. The size-dependent and anisotropic permittivity of thin film are found. By using the molecular dynamics, it is found that the order parameter is an important issue to simulate the material properties due to the strongly orientation-dependent phenomena of properties. Furthermore, the relation of the structure and properties is discussed.
致謝 i
中文摘要 ii
Abstract iii
LIST OF FIGURE vi
LIST OF TABLE ix
Part I. Thin film size effect on anisotropic optical property of gold and silver 1
Chapter I-1 Introduction 1
Chapter I-2 Density functional theory 3
I-2.1 Kohn-Sham equation 3
I-2.2 Generalized gradient approximation 4
I-2.3 Linear density response function 5
Chapter I-3 Methodology and simulation setup 7
Chapter I-4 Result and discussion 9
I-4.1 difference of the bulk and thin film 9
I-4.2 size effect on anisotropic optical properties of thin film 18
Chapter I-5 Application 21
Chapter I-6 Conclusions 25
Part II. Relation of structure and material properties by molecular dynamics 26
II-1 Introduction 26
II-2 Molecular dynamics 29
II-2.1 Newton’s equation of motion 29
II-2.2.2 Force field 30
II-2.3 Ensembles 32
II-2.4 Material properties 33
II-2.5 order parameter (OP) 34
Chapter II-3 Methodology and simulation model 36
Chapter II-4 Results and discussion 38
II-4.1 Original result 38
II-4.2 Modify result 45
II-4.2.1 Coefficient of thermal expansion 45
II-4.2.2 Glass transition temperature 46
II-4.2.3 Young’s modulus 46
Chapter II-5 Conclusion 49
Reference 50
1.Johnson, P.B. and R.-W. Christy, Optical constants of the noble metals. Physical review B, 1972. 6(12): p. 4370.
2.Kossoy, A., et al., Optical and Structural Properties of Ultra‐thin Gold Films. Advanced Optical Materials, 2015. 3(1): p. 71-77.
3.Harl, J., et al., Ab initio reflectance difference spectra of the bare and adsorbate covered Cu (110) surfaces. Physical Review B, 2007. 76(3): p. 035436.
4.Wang, L.-p., et al., Effects of thickness on the structural, electronic, and optical properties of MgF 2 thin films: the first-principles study. Computational Materials Science, 2013. 77: p. 281-285.
5.Sheverdyaeva, P., et al., Energy-momentum mapping of d-derived Au (111) states in a thin film. Physical Review B, 2016. 93(3): p. 035113.
6.Kohn, W. and L.J. Sham, Self-consistent equations including exchange and correlation effects. Physical review, 1965. 140(4A): p. A1133.
7.Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Physical review letters, 1996. 77(18): p. 3865.
8.Blöchl, P.E., Projector augmented-wave method. Physical Review B, 1994. 50(24): p. 17953.
9.Ehrenreich, H. and M.H. Cohen, Self-consistent field approach to the many-electron problem. Physical Review, 1959. 115(4): p. 786.
10.Adler, S.L., Quantum theory of the dielectric constant in real solids. Physical Review, 1962. 126(2): p. 413.
11.Wiser, N., Dielectric constant with local field effects included. Physical Review, 1963. 129(1): p. 62.
12.Gajdoš, M., et al., Linear optical properties in the projector-augmented wave methodology. Physical Review B, 2006. 73(4): p. 045112.
13.Kresse, G. and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996. 6(1): p. 15-50.
14.Kresse, G. and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical review B, 1996. 54(16): p. 11169.
15.Laref, S., et al., Size-dependent permittivity and intrinsic optical anisotropy of nanometric gold thin films: a density functional theory study. Optics express, 2013. 21(10): p. 11827-11838.
16.Monkhorst, H.J. and J.D. Pack, Special points for Brillouin-zone integrations. Physical review B, 1976. 13(12): p. 5188.
17.Lin, I.-B., T.W.-H. Sheu, and J.-H. Li, Effects of exchange correlation functional on optical permittivity of gold and electromagnetic responses. Optics express, 2014. 22(25): p. 30725-30734.
18.Ree, M., et al., Structure, chain orientation, and properties in thin films of aromatic polyimides with various chain rigidities. Journal of applied physics, 1997. 81(2): p. 698-708.
19.Hsiao, S.-H. and Y.-J. Chen, Structure–property study of polyimides derived from PMDA and BPDA dianhydrides with structurally different diamines. European polymer journal, 2002. 38(4): p. 815-828.
20.Matsumura, A., et al., Effects of structural isomerism and precursor structures on thermo-optic coefficients of BPDA/PDA polyimide films. Journal of Photopolymer Science and Technology, 2007. 20(2): p. 167-174.
21.Odegard, G.M., T.C. Clancy, and T.S. Gates. Prediction of mechanical properties of polymers with various force fields. in Struct Struct Dyn Mater Co-located Conf. 2005.
22.Li, C. and A. Strachan, Molecular dynamics predictions of thermal and mechanical properties of thermoset polymer EPON862/DETDA. Polymer, 2011. 52(13): p. 2920-2928.
23.Lyulin, S.V., et al., Thermal properties of bulk polyimides: insights from computer modeling versus experiment. Soft Matter, 2014. 10(8): p. 1224-1232.
24.Kang, J.W., et al., Structure–property relationships of polyimides: a molecular simulation approach. Polymer, 1998. 39(26): p. 7079-7087.
25.Swope, W.C., et al., A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. The Journal of Chemical Physics, 1982. 76(1): p. 637-649.
26.Allen, M.P. and D.J. Tildesley, Computer simulation of liquids. 1989: Oxford university press.
27.Cornell, W.D., et al., A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 1995. 117(19): p. 5179-5197.
28.Sun, H., COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. The Journal of Physical Chemistry B, 1998. 102(38): p. 7338-7364.
29.Sun, H., et al., An ab initio CFF93 all-atom force field for polycarbonates. Journal of the American Chemical Society, 1994. 116(7): p. 2978-2987.
30.Maple, J.R., U. Dinur, and A.T. Hagler, Derivation of force fields for molecular mechanics and dynamics from ab initio energy surfaces. Proceedings of the National Academy of Sciences, 1988. 85(15): p. 5350-5354.
31.Nosé, S., A unified formulation of the constant temperature molecular dynamics methods. The Journal of chemical physics, 1984. 81(1): p. 511-519.
32.Hoover, W.G., Canonical dynamics: equilibrium phase-space distributions. Physical review A, 1985. 31(3): p. 1695.
33.Chang, K.-S., et al., Free volume analysis and gas transport mechanisms of aromatic polyimide membranes: a molecular simulation study. The Journal of Physical Chemistry B, 2009. 113(29): p. 9821-9830.
34.Ragosta, G., et al., Effect of the chemical structure of aromatic polyimides on their thermal aging, relaxation behavior and mechanical properties. Journal of Materials Science, 2012. 47(6): p. 2637-2647.
35.Zhang, Q.-H., et al., Mechanical properties of BPDA–ODA polyimide fibers. European polymer journal, 2004. 40(11): p. 2487-2493.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊