|
1.Johnson, P.B. and R.-W. Christy, Optical constants of the noble metals. Physical review B, 1972. 6(12): p. 4370. 2.Kossoy, A., et al., Optical and Structural Properties of Ultra‐thin Gold Films. Advanced Optical Materials, 2015. 3(1): p. 71-77. 3.Harl, J., et al., Ab initio reflectance difference spectra of the bare and adsorbate covered Cu (110) surfaces. Physical Review B, 2007. 76(3): p. 035436. 4.Wang, L.-p., et al., Effects of thickness on the structural, electronic, and optical properties of MgF 2 thin films: the first-principles study. Computational Materials Science, 2013. 77: p. 281-285. 5.Sheverdyaeva, P., et al., Energy-momentum mapping of d-derived Au (111) states in a thin film. Physical Review B, 2016. 93(3): p. 035113. 6.Kohn, W. and L.J. Sham, Self-consistent equations including exchange and correlation effects. Physical review, 1965. 140(4A): p. A1133. 7.Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Physical review letters, 1996. 77(18): p. 3865. 8.Blöchl, P.E., Projector augmented-wave method. Physical Review B, 1994. 50(24): p. 17953. 9.Ehrenreich, H. and M.H. Cohen, Self-consistent field approach to the many-electron problem. Physical Review, 1959. 115(4): p. 786. 10.Adler, S.L., Quantum theory of the dielectric constant in real solids. Physical Review, 1962. 126(2): p. 413. 11.Wiser, N., Dielectric constant with local field effects included. Physical Review, 1963. 129(1): p. 62. 12.Gajdoš, M., et al., Linear optical properties in the projector-augmented wave methodology. Physical Review B, 2006. 73(4): p. 045112. 13.Kresse, G. and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996. 6(1): p. 15-50. 14.Kresse, G. and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical review B, 1996. 54(16): p. 11169. 15.Laref, S., et al., Size-dependent permittivity and intrinsic optical anisotropy of nanometric gold thin films: a density functional theory study. Optics express, 2013. 21(10): p. 11827-11838. 16.Monkhorst, H.J. and J.D. Pack, Special points for Brillouin-zone integrations. Physical review B, 1976. 13(12): p. 5188. 17.Lin, I.-B., T.W.-H. Sheu, and J.-H. Li, Effects of exchange correlation functional on optical permittivity of gold and electromagnetic responses. Optics express, 2014. 22(25): p. 30725-30734. 18.Ree, M., et al., Structure, chain orientation, and properties in thin films of aromatic polyimides with various chain rigidities. Journal of applied physics, 1997. 81(2): p. 698-708. 19.Hsiao, S.-H. and Y.-J. Chen, Structure–property study of polyimides derived from PMDA and BPDA dianhydrides with structurally different diamines. European polymer journal, 2002. 38(4): p. 815-828. 20.Matsumura, A., et al., Effects of structural isomerism and precursor structures on thermo-optic coefficients of BPDA/PDA polyimide films. Journal of Photopolymer Science and Technology, 2007. 20(2): p. 167-174. 21.Odegard, G.M., T.C. Clancy, and T.S. Gates. Prediction of mechanical properties of polymers with various force fields. in Struct Struct Dyn Mater Co-located Conf. 2005. 22.Li, C. and A. Strachan, Molecular dynamics predictions of thermal and mechanical properties of thermoset polymer EPON862/DETDA. Polymer, 2011. 52(13): p. 2920-2928. 23.Lyulin, S.V., et al., Thermal properties of bulk polyimides: insights from computer modeling versus experiment. Soft Matter, 2014. 10(8): p. 1224-1232. 24.Kang, J.W., et al., Structure–property relationships of polyimides: a molecular simulation approach. Polymer, 1998. 39(26): p. 7079-7087. 25.Swope, W.C., et al., A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. The Journal of Chemical Physics, 1982. 76(1): p. 637-649. 26.Allen, M.P. and D.J. Tildesley, Computer simulation of liquids. 1989: Oxford university press. 27.Cornell, W.D., et al., A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 1995. 117(19): p. 5179-5197. 28.Sun, H., COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. The Journal of Physical Chemistry B, 1998. 102(38): p. 7338-7364. 29.Sun, H., et al., An ab initio CFF93 all-atom force field for polycarbonates. Journal of the American Chemical Society, 1994. 116(7): p. 2978-2987. 30.Maple, J.R., U. Dinur, and A.T. Hagler, Derivation of force fields for molecular mechanics and dynamics from ab initio energy surfaces. Proceedings of the National Academy of Sciences, 1988. 85(15): p. 5350-5354. 31.Nosé, S., A unified formulation of the constant temperature molecular dynamics methods. The Journal of chemical physics, 1984. 81(1): p. 511-519. 32.Hoover, W.G., Canonical dynamics: equilibrium phase-space distributions. Physical review A, 1985. 31(3): p. 1695. 33.Chang, K.-S., et al., Free volume analysis and gas transport mechanisms of aromatic polyimide membranes: a molecular simulation study. The Journal of Physical Chemistry B, 2009. 113(29): p. 9821-9830. 34.Ragosta, G., et al., Effect of the chemical structure of aromatic polyimides on their thermal aging, relaxation behavior and mechanical properties. Journal of Materials Science, 2012. 47(6): p. 2637-2647. 35.Zhang, Q.-H., et al., Mechanical properties of BPDA–ODA polyimide fibers. European polymer journal, 2004. 40(11): p. 2487-2493.
|