跳到主要內容

臺灣博碩士論文加值系統

(98.84.25.165) 您好!臺灣時間:2024/11/10 00:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝宇傑
研究生(外文):Yu-Chieh Hsieh
論文名稱:適用於壓電能量擷取系統的同步電荷擷取整流器與脈衝頻率調變直流降壓轉換器
論文名稱(外文):Synchronous electric charge extraction rectifier and pulse frequency modulation buck convertor for piezoelectric energy harvesting system
指導教授:吳文中
指導教授(外文):Wen-Jong Wu
口試日期:2017-07-12
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:86
中文關鍵詞:物聯網壓電能量擷取同步電荷擷取整流器直流降壓轉換器
外文關鍵詞:Internet of ThingsPiezoelectric energy harvestingSECEBuck convertor
相關次數:
  • 被引用被引用:2
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著物聯網時代的來臨,人類身邊將會有無數個無線感測器,幫助人們掌控週遭環境的狀況。這些感測器的供電將是一項重要的議題,若使用電池供電,除了會使這些感測器的運作受限於電池壽命外,廢棄電池也可能對環境造成汙染。為了解決這些問題,我們可以將壓電元件安裝在如馬達、引擎等振動源周遭,以擷取環境中振動的能量,為這些感測器裝置供電。
壓電元件的輸出為交流形式,因此需要透過介面電路作適當的電能處理才能為負載供電。介面電路通常包含一個整流器與一個直流轉換器。整流器負責將元件輸出的能量整流並暫存至儲能電容中,直流轉換器負責將儲能電容中的能量轉換為穩定的直流電源。
本論文將針對不同整流介面電路進行分析、提出同步電壓反轉與電荷擷取整流架構(SICE),並設計一個整流器晶片與一個直流降壓轉換器晶片。晶片皆使用台積電0.25 μm高壓CMOS製程製作。
整流器晶片使用同步電荷擷取整流架構(SECE),做到提升系統輸出功率、使輸出功率與負載無關、能利用高電壓輸出之微型壓電元件組成自供電系統以及具有緩啟動功能等四個設計目標。根據模擬結果,本電路在使用電流振幅為30 μA、頻率120 Hz、寄生電容為6.7 nF之壓電元件做為輸入時,輸出功率可達53 μW。與標準界面電路相比,本整流器晶片提供261 %之輸出功率增益。
直流降壓轉換器晶片設計操作於電感電流不連續模式,並使用數位脈衝頻率調變控制,達到低控制功耗與高輕載效率的目標。根據量測結果,此轉換器在輸入電壓為5 V時的最高效率為82.8 %,而輕載(負載電流10 μA)時的效率大於75 %,輸出電壓在1.8 V至1.92 V間,可用來為感測器模組等負載供電。
With the advent of “Internet of Things (IoT)”, there will be numerous wireless sensors around human kinds to help us monitor different status of the environment. Powering these wireless devices is an important issue. If the wireless sensors are powered by batteries, the reliability and performances of the device will be limited by battery lifetime. Furthermore, batteries can cause serious pollution if they are not recycled properly. To overcome these issues, piezoelectric energy harvesters can be installed around vibration sources to harvest energy from ambient vibrations and power IoT devices.
The output from a piezoelectric energy harvester is in alternating current (AC) form, and needs to be transformed into direct current (DC) form to supply electronic devices by an interface circuit. An interface circuit usually consists of a rectifier and a DC/DC convertor. The rectifier is used for rectifying the output from the harvester from AC to DC form and storing output energy into a buffer capacitor. The DC/DC convertor is used for converting the energy in the buffer capacitor into a stable DC power supply with proper voltage level to power electronic devices.
In this thesis, we analyze different kinds of rectifying interface circuit, propose a synchronous inversion and charge extraction (SICE) rectifier topology, and design a rectifier chip and a DC/DC buck convertor chip. Both chips are implemented in a TSMC 0.25 μm HV CMOS process.
The rectifier adopts synchronous electric charge extraction (SECE) technique to boost output power and being load independent. It can be powered solely by a piezoelectric harvester and has cold start-up function. According to simulation results, this chip has an output power of 53 μW when operating with a piezoelectric harvester with current amplitude 30 μA, operating frequency 120 Hz and internal static capacitance 6.7 nF. Compared to the standard interface circuit, this chip provides 261% output power gain.
The DC/DC buck convertor adopts digital pulse frequency modulation (PFM) control and operates in discontinued current mode (DCM) operation to achieve the design goals of low control power and good light load efficiency. According to the measurement results, this chip has a peak efficiency of 82.8 % with 5 V input voltage, and the light load (output current 10μA) efficiency is over 75 %. The chip has an output voltage of 1.8 V ~ 1.92 V, and can be used to power sensor modules and other IoT electronic devices required 1.8 V power supply.
致謝 i
中文摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 xii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.3 論文架構 4
第二章 壓電能量擷取系統與介面電路 5
2.1 壓電元件與等效電路模型 5
2.1.1 壓電效應簡介 5
2.1.2 壓電能量擷取器 6
2.1.3 等效電路模型 8
2.2 標準能量擷取介面電路 10
2.2.1 電路架構與操作 10
2.2.2 輸出功率計算 11
2.2.3 最佳功率點追蹤 15
2.3 同步電感式能量擷取電路 15
2.3.1 電路架構與操作 16
2.3.2 輸出功率計算 17
2.4 同步電荷擷取電路 21
2.4.1 電路架構與操作 21
2.4.2 輸出功率計算 22
2.5 同步電壓反轉與電荷擷取電路 24
2.5.1 電路架構與操作 24
2.5.2 輸出功率計算 26
2.6 介面電路比較與討論 29
第三章 同步電荷擷取整流器 31
3.1 電路設計目標與考量 31
3.2 整體電路架構 32
3.3 控制電路架構 34
3.4 子電路設計 36
3.4.1 基板偏壓電路/高電壓選擇器 36
3.4.2 訊號位準移位器 37
3.4.3 功率開關與開關驅動電路 38
3.4.4 動態比較器 40
3.4.5 峰值檢測器 40
3.4.6 重置訊號產生器 41
3.4.7 脈波產生器/可調脈波產生器 42
3.4.8 逆電流感測器 43
3.4.9 高電壓隔離電路 44
3.4.10 啟動電路與被動充電路徑 44
3.4.11 振盪器 46
3.4.12 與供應電源無關之偏壓電路 47
3.5 模擬結果與量測考量 49
3.5.1 模擬結果 49
3.5.2 晶片效能比較 56
3.5.3 晶片佈局與量測考量 57
3.6 總結與討論 60
第四章 脈衝頻率調變降壓直流轉換器 61
4.1 切換式降壓直流轉換器簡介 61
4.2 電路設計目標與考量 63
4.3 整體電路架構 63
4.4 控制電路架構 65
4.5 子電路設計 66
4.5.1 功率開關與開關驅動電路 66
4.5.2 停滯時間產生器 66
4.5.3 脈衝頻率調變控制電路 67
4.5.4 零電流檢測電路 68
4.5.5 輸入電壓偵測電路 68
4.5.6 振盪器與偏壓 69
4.6 模擬結果 69
4.7 量測結果 74
4.7.1 晶片佈局 74
4.7.2 實驗設置與電路板設計 75
4.7.3 量測結果 77
4.8 總結與討論 81
第五章 結論與未來展望 82
5.1 結論 82
5.2 未來展望 82
參考文獻 84
[1]L. Atzori, A. Iera, and G. Morabito, "The Internet of Things: A survey," Computer Networks, vol. 54, pp. 2787-2805, 2010.
[2]S. Roundy, P. K. Wright, and J. Rabaey, "A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes," Computer communications, vol. 26, pp. 1131-1144, 2003.
[3]S. Roundy and P. K. Wright, "A Piezoelectric Vibration Based Generator for Wireless Electronics," Smart Materials and structures, vol. 13, p. 1131, 2004.
[4]D. Guyomar and M. Lallart, "Recent Progress in Piezoelectric Conversion and Energy Harvesting Using Nonlinear Electronic Interfaces and Issues in Small Scale Implementation," Micromachines, vol. 2, pp. 274-294, 2011.
[5]G. K. Ottman, H. F. Hofmann, and G. A. Lesieutre, "Optimized Piezoelectric Energy Harvesting Circuit Using Step-down Converter in Discontinuous Conduction Mode," IEEE Transactions on Power Electronics, vol. 18, pp. 696-703, 2003.
[6]D. Guyomar, A. Badel, E. Lefeuvre, and C. Richard, "Toward Energy Harvesting Using Active Materials and Conversion Improvement by Nonlinear Processing," IEEE Transactions on Ultrasonic, Ferroelectrics and Frequency Control, vol. 52, pp. 584-595, 2005.
[7]E. Lefeuvre, "Piezoelectric Energy Harvesting Device Optimization by Synchronous Electric Charge Extraction," Journal of Intelligent Material Systems and Structures, vol. 16, pp. 865-876, 2005.
[8]W. J. Wu, A. M. Wickenheiser, T. Reissman, and E. Garcia, "Modeling and Experimental Verification of Synchronized Discharging Techniques for Boosting Power Harvesting from Piezoelectric Transducers," Smart Materials and Structures, vol. 18, p. 055012, 2009.
[9]M. Lallart and D. Guyomar, "An Optimized Self-Powered Switching Circuit for Non-Linear Energy Harvesting with Low Voltage Output," Smart Materials and Structures, vol. 17, p. 035030, 2008.
[10]Y. K. Ramadass and A. P. Chandrakasan, "An Efficient Piezoelectric Energy Harvesting Interface Circuit Using a Bias-Flip Rectifier and Shared Inductor," IEEE Journal of Solid-State Circuits, vol. 45, pp. 189-204, 2010.
[11]T. Hehn, F. Hagedorn, D. Maurath, D. Marinkovic, I. Kuehne, A. Frey, et al., "A Fully Autonomous Integrated Interface Circuit for Piezoelectric Harvesters," IEEE Journal of Solid-State Circuits, vol. 47, pp. 2185-2198, 2012.
[12]D. A. Sanchez, J. Leicht, E. Jodka, E. Fazel, and Y. Manoli, "A 4μW-to-1mW Parallel-SSHI Rectifier for Piezoelectric Energy Harvesting of Periodic and Shock Excitations with Inductor Sharing, Cold Start-up and up to 681% Power Extraction Improvement," IEEE International Solid-State Circuits Conference (ISSCC), pp. 366-367, 2016.
[13]Z. Chen, M.-K. Law, P.-I. Mak, W.-H. Ki, and R. P. Martins, "A 1.7mm2 Inductorless Fully Integrated Flipping-Capacitor Rectifier (FCR) for Piezoelectric Energy Harvesting with 483% Power-Extraction Enhancement," IEEE International Solid-State Circuits Conference (ISSCC), pp. 372-373, 2017.
[14]G. Gautschi, "Piezoelectric Sensors," in Piezoelectric Sensorics: Force Strain Pressure Acceleration and Acoustic Emission Sensors Materials and Amplifiers, ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 73-91.
[15]S.-C. Lin, "High Performance Piezoelectric MEMS Generators based on Stainless Steel Substrate," Doctoral dissertation, National Taiwan University, 2014.
[16]S.-C. Lin and W.-J. Wu, "Piezoelectric Micro Energy Harvesters based on Stainless-Steel Substrates," Smart Materials and Structures, vol. 22, p. 045016, 2013.
[17]H. A. C. Tilmans, "Equivalent Circuit Representation of Electromechanical Transducers: I. Lumped-parameter systems," Journal of Micromechanics and Microengineering, vol. 6, 1996.
[18]M. Shim, J. Kim, J. Jeong, S. Park, and C. Kim, "Self-Powered 30μW to 10 mW Piezoelectric Energy Harvesting System with 9.09 ms/V Maximum Power Point Tracking Time," IEEE Journal of Solid-State Circuits, vol. 50, pp. 2367-2379, 2015.
[19]J. Liang, "Synchronized Bias-Flip Interface Circuits for Piezoelectric Energy Harvesting Enhancement: A General Model and Prospects," Journal of Intelligent Material Systems and Structures, vol. 28, pp. 339-356, 2017.
[20]J. Liang and W.-H. Liao, "Improved Design and Analysis of Self-Powered Synchronized Switch Interface Circuit for Piezoelectric Energy Harvesting Systems," IEEE Transactions on Industrial Electronics, vol. 59, pp. 1950-1960, 2012.
[21]B. Razavi, Design of Analog CMOS Integrated Circuits: McGraw-Hill Series in Electrical and Computer Engineering, 2001.
[22]T. Hehn and Y. Manoli, CMOS Circuits for Piezoelectric Energy Harvesters: Springer, 2015.
[23]S. Suman, K. G. Sharma, and P. K. Ghosh, "Analysis and Design of Current Starved Ring VCO," International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), 2016.
[24]U. Sengupta, "PWM and PFM Operation of DC/DC Converters for Portable Applications," Texas Instruments.
[25]RaytacCorporation, "MDBT40 Series & MDBT40-P Series Datasheet," 2015.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top