|
[1]中華民國內政部消防署 (2016)。101-105年全國火災次數、起火原因及火災損失統計表。取自 http://www.nfa.gov.tw/main/List.aspx?ID=&MenuID=342 [2]Syarif, I., Prugel-Bennett, A., & Wills, G. (2012). Unsupervised clustering approach for network anomaly detection. Networked Digital Technologies, 135-145. [3]Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM computing surveys (CSUR), 41(3), 15. [4]Goldstein, M., & Uchida, S. (2016). A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data. PloS one, 11(4). [5]Chou, J. S., & Telaga, A. S. (2014). Real-time detection of anomalous power consumption. Renewable and Sustainable Energy Reviews, 33, 400-411. [6]Peña, M., Biscarri, F., Guerrero, J. I., Monedero, I., & León, C. (2016). Rule-based system to detect energy efficiency anomalies in smart buildings, a data mining approach. Expert Systems with Applications, 56, 242-255. [7]Settles, B. (2010). Active learning literature survey. University of Wisconsin, Madison, 52(55-66), 11. [8]Abe, N., Zadrozny, B., & Langford, J. (2006). Outlier detection by active learning. Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD 06, 504-509. [9]Barnabe-Lortie, V., Bellinger, C., & Japkowicz, N. (2015). Active Learning for One-Class Classification. 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), 390-395. [10]Schölkopf, B., & Smola, A. J. (2002). Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press. [11]Yan, Y., Xu, Z., Tsang, I. W., Long, G., & Yang, Y. (2016, January). Robust Semi-Supervised Learning through Label Aggregation. AAAI, 2244-2250. [12]Araya, D. B., Grolinger, K., Elyamany, H. F., Capretz, M. A., & Bitsuamlak, G. (2016). Collective contextual anomaly detection framework for smart buildings. 2016 International Joint Conference on Neural Networks (IJCNN), 511-518. [13]王佑鈞、莊棨椉、張瑞益(2016)。低解析度電器特徵值評估及其在電器狀態辨識的應用。資訊與管理科學,9.2,52-63。 [14]Khan, S. S., & Madden, M. G. (2014). One-class classification: taxonomy of study and review of techniques. The Knowledge Engineering Review, 29(3), 345-374. [15]Hawkins, S., He, H., Williams, G., & Baxter, R. (2002, September). Outlier detection using replicator neural networks. In DaWaK (Vol. 2454, pp. 170-180). [16]He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on knowledge and data engineering, 21(9), 1263-1284. [17]Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357. [18]Wang, B. X., & Japkowicz, N. (2004, June). Imbalanced data set learning with synthetic samples. In Proc. IRIS Machine Learning Workshop (Vol. 19). [19]Liu, X. Y., Wu, J., & Zhou, Z. H. (2009). Exploratory undersampling for class-imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(2), 539-550. [20]Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. [21]Fawcett, T. (2016, August). Learning from Imbalanced Classes. Silicon Valley Data Science. Retrieved from https://svds.com/learning-imbalanced-classes/ [22]Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79. [23]Liu, F. T., Ting, K. M., & Zhou, Z. (2008). Isolation Forest. 2008 Eighth IEEE International Conference on Data Mining, 413-422. [24]Lai, L. B., Chang, R. I., & Kouh, J. S. (2008). Detecting network intrusions using signal processing with query-based sampling filter. EURASIP Journal on Advances in Signal Processing, 2009(1), 735283. [25]UC Irvine Machine Learning Repository. (n.d.). Retrieved from http://archive.ics.uci.edu/ml/index.php
|