(3.237.234.213) 您好!臺灣時間:2021/03/09 12:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:潘柏勳
研究生(外文):Bo-Hsun Pan
論文名稱:壓電陣列激發圓管導波之設計及環境條件監測
論文名稱(外文):Design of piezoelectric array on excitation pipe guided wave and environmental condition monitoring.
指導教授:宋家驥宋家驥引用關係
口試日期:2016-06-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:56
中文關鍵詞:導波縱向模態衰減率壓電雙環狀陣列埋地圓管健康監測
外文關鍵詞:Guided waveLongitudinal waveAttenuation ratioPiezoelectric double rings transducer arraysBuried pipeHealth monitor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:28
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
超音波導波檢測是非破壞檢測的一種,時常應用於結構的缺陷檢測。在離岸風力發電機系統中,因樁柱結構深埋於海床中,一般傳統的超音波非破壞檢測法無法直接對結構進行檢測,需藉由導波法才能檢測深埋於海床中的包覆狀況。由於海床中的土壤具有黏滯力與高含水量的特性,容易使導波在傳遞時產生洩漏而造成能量衰減,隨樁柱在海床中的深度和土壤的含水量,其能量衰減情形亦會有不同的情形。因此,本研究在探討導波L(0,1)縱向模態檢測圓管結構時,於不同的土壤包覆壓力與含水飽和度的情況之下,土壤特性對導波之波傳行為、回波訊號的衰減影響為主要目標。
本論文成功利用PZT壓電片設計出雙環換能器陣列,透過陣列的對稱性和梳狀結構抑制導波中大部分的非軸對稱模態,並成功激發L(0,1)模態在圓管中傳遞且用於檢測表面包覆情形。同時,也嘗試了不同壓電片數量的換能器陣列,其結果以雙環八顆換能器能夠激發出最好的L(0,1)模態。利用超音波陣列系統激發的縱向模態在不同的包覆壓力和土壤含水飽和度的情況之下,因導波的洩漏程度不同,所產生的波傳特性與回波訊號的改變,來判定圓管結構在海床中不同的包覆情形與健康度狀況。
由實驗結果顯示,導波會因為洩漏而產生衰減。衰減率會受到土壤含水量和土壤包覆力的不同而改變。當土壤含水量增加時,導波衰減率會跟著增加。而當土壤包覆力增加時,導波衰減率也會跟著增加。而土壤含水度和包覆力都是離岸風力發電機的樁柱健康指標,以此論文的定量分析,提供樁柱即時監控的參考指標,判定樁柱的健康度,達到定期維修、降低損壞機率與維修成本等目的。
Ultrasonic detection is a general type of nondestructive testing. It always be used to detect defects in the structure. As offshore wind turbines based structures are located in the ocean, the traditional ultrasonic non-destructive testing can’t be used in offshore wind turbines power system. Guided wave method is a faster and more effective method to detect wind turbine pile surface condition buried in the sea floor. Due to the sand in the sea floor have high viscosity and high water content, guide wave leakage into the sand and lost energy with propagation distance. With the pile buried depth and water content different in the sand, guide wave will have different attenuation. Therefore, we plan to detect different pile surface condition by using guide wave L(0,1) modes. By measuring the attenuation of L(0,1) echo signal from the pile and realize the propagation characteristic, we can monitor the health of pile buried in the sea floor.
The thesis successfully build a double rings transducer array by PZT piezoelectric. We can excite L(0,1) mode propagating over four meter and suppress non-axisymmetric mode on the pipe by using axisymmetric transducer arrays and comb structure. At the same time, we know that sixteen transducers double rings structure is the best method to excite L(0,1) mode from the experiment. We can use this propagating mode excited by transducer array system to know the different pipe surface condition and health situation.
From the experiment result, the guided wave will attenuate by leakage into surround. Attenuation of guide wave will change by the water content and cover force on the pipe surface. When water content increase in the sand, the attenuation will increase. Same as the cover force on the pipe, attenuation will increase with the cover force. The water content and cover force is the health critical point in the offshore wind turbines pile. The thesis provide a reference for the health monitor on the pile.
誌謝 II
摘要 III
Abstract IV
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 2
1.3文獻回顧 3
1.4研究方法 4
1.5論文結構 7
第二章 基本理論 8
2.1導波於圓管中傳遞之波動方程式 8
2.1.1縱向模態 12
2.1.2扭矩模態 13
2.1.3撓曲模態 14
2.2頻散曲線 16
2.3波形結構 20
2.4壓電原理 23
2.5短時傅立葉轉換法[27] 24
第三章 實驗架構與量測結果 26
3.1導波激發與接收系統 26
3.1.1壓電陣列激發方式 31
3.1.2實驗管線 32
3.2實驗步驟 33
3.3實驗結果與討論 36
3.3.1壓電陣列裸管回波之訊號 36
3.3.2短時傅立葉轉換時頻分析 40
3.3.3包覆管線之回波訊號 41
3.3.4實際埋地情況實驗 47
第四章 結論與未來展望 49
4.1結論 49
4.2未來展望 50
附錄A 51
參考文獻 53
1.McFadden, J. A., Radial Vibrations of Thick-Walled Hollow Cylinders. The Journal of the Acoustical Society of America, 1954. 26(5): p. 714.
2.Naghdi, P. M. and Cooper, R. M., Propagation of Elastic Waves in Cylindrical Shells, Including the Effects of Transverse Shear and Rotatory Inertia. The Journal of the Acoustical Society of America, 1956. 28(1): p. 56.
3.Gazis, D. C., Three-Dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. I. Analytical Foundation. The Journal of the Acoustical Society of America, 1959. 31(5): p. 568.
4.Gazis, D. C., Three-Dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. II. Numerical Results. The Journal of the Acoustical Society of America, 1959. 31(5): p. 573.
5.Fitch, A. H., Observation of Elastic‐Pulse Propagation in Axially Symmetric and Nonaxially Symmetric Longitudinal Modes of Hollow Cylinders. The Journal of the Acoustical Society of America, 1963. 35(5): p. 706-708.
6.Mohr, W. and Holler, P., On Inspection of Thin-Walled Tubes for Transverse and Longitudinal Flaws by Guided Ultrasonic Waves. IEEE Transactions on Sonics and Ultrasonics, 1976. 23(5): p. 369-373.
7.Li, J. and Rose, J. L., Excitation and propagation of non-axisymmetric guided waves in a hollow cylinder. The Journal of the Acoustical Society of America, 2001. 109(2): p. 457-464.
8.Pelts, S. P., Jiao, D., and Rose, J. L. A comb transducer for guided wave generation and mode selection. in 1996 IEEE Ultrasonics Symposium. Proceedings. 1996.
9.Rose, J. L., Avioli, M. J., Mudge, P., and Sanderson, R., Guided wave inspection potential of defects in rail. NDT & E International, 2004. 37(2): p. 153-161.
10.Rose, J. L., Pelts, S. P., and Quarry, M. J., A comb transducer model for guided wave NDE. Ultrasonics, 1998. 36(1–5): p. 163-169.
11.Shin, H. J. and Rose, J. L., Guided Wave Tuning Principles for Defect Detection in Tubing. Journal of Nondestructive Evaluation, 1998. 17(1): p. 27-36.
12.Shin, H. J. and Rose, J. L., Guided waves by axisymmetric and non-axisymmetric surface loading on hollow cylinders. Ultrasonics, 1999. 37(5): p. 355-363.
13.Beard, M. D. and Lowe, M. J. S., Non-destructive testing of rock bolts using guided ultrasonic waves. International Journal of Rock Mechanics and Mining Sciences, 2003. 40(4): p. 527-536.
14.Beard, M. D., Lowe, M. J. S., and Cawley, P., Ultrasonic Guided Waves for Inspection of Grouted Tendons and Bolts. Journal of Materials in Civil Engineering, 2003. 15(3): p. 212-218.
15.Kwun, H., Kim, S. Y., Choi, M. S., and Walker, S. M., Torsional guided-wave attenuation in coal-tar-enamel-coated, buried piping. NDT & E International, 2004. 37(8): p. 663-665.
16.Chati, F., Léon, F., El Moussaoui, M., Klauson, A., and Maze, G., Longitudinal mode L(0,4) used for the determination of the deposit width on the wall of a pipe. NDT & E International, 2011. 44(2): p. 188-194.
17.Leinov, E., Lowe, M. J. S., and Cawley, P., Investigation of guided wave propagation and attenuation in pipe buried in sand. Journal of Sound and Vibration, 2015. 347: p. 96-114.
18.Cheng, J. w. and Yang, S. k., The Attenuation of Guided Wave Propagation on the Pipelines, in Department of Mechanical and Electro-Mechanical Engineering. 2006, National Sun Yat-sen university.
19.Yeh, C. C. and Yang, S. K., The Guided Wave Inspection of Buried Pipe, in Department of Mechanical and Electro-Mechanical Engineering. 2012, National Sun Yat-sen university.
20.Miñambres, Ó. Y., Assessment of Current Offshore Wind Support Structures Concepts – Challenges and Technological Requirements by 2020, in Department de Ingeniería Eléctrica. 2012, Karlshochschule International University.
21.Morse, P. M. and Feshbach, H., Methods of theoretical physics. 1953, New York: McGraw-Hill.
22.Watson, G. N., A Treatise on the Theory of Bessel Functions. 1966: Cambridge University Press.
23.Silk, M. G. and Bainton, K. F., The propagation in metal tubing of ultrasonic wave modes equivalent to Lamb waves. Ultrasonics, 1979. 17(1): p. 11-19.
24.Seco, F. and Jiménez, A. R., Modelling the Generation and Propagation of Ultrasonic Signals in Cylindrical Waveguides. 2012, Dr Santos (Ed.).
25.Rose, J. L., Ultrasonic waves in solid media. 1999, Cambridge ; New York: Cambridge University Press. xvi, 454 p.
26.Qin, Q., Advanced Mechanics of Piezoelectricity. 2013, Berlin Heidelberg: Springer-Verlag. 332.
27.Quatieri, T. F., Nawab, S. H., and Lim, J. S., Frequency sampling of the short-time Fourier-transform magnitude for signal reconstruction. Journal of the Optical Society of America, 1983. 73(11): p. 1523-1526.
28.Alleyne, D. N. and Cawley, P., The excitation of Lamb waves in pipes using dry-coupled piezoelectric transducers. Journal of Nondestructive Evaluation, 1996. 15(1): p. 11-20.
29.Fengbin, T., The research on the pipe ultrasonic guided wave detection system construction and signal processing method in science and technology. 2012, Hebei university.
30.Hay, T. R. and Rose, J. L., Flexible PVDF comb transducers for excitation of axisymmetric guided waves in pipe. Sensors and Actuators A: Physical, 2002. 100(1): p. 18-23.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔