跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/24 20:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林莛凱
研究生(外文):Ting-Kai Lin
論文名稱:提升氣膠沉積法製作之鋯鈦酸鉛(PZT)微型壓電能量擷取器元件效能之研究與實作
論文名稱(外文):Performance improvement of PZT micro piezoelectric energy harvester fabricated by Aerosol deposition method
指導教授:吳文中
指導教授(外文):Wen-Jong Wu
口試日期:2017-07-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:104
中文關鍵詞:鋯鈦酸鉛壓電材料氣膠沉積法能量擷取微機電製程
外文關鍵詞:PZTpiezoelectric materialaerosol depositionenergy harvesterMEMS
相關次數:
  • 被引用被引用:1
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著物聯網的概念逐漸普及,在物聯網中不可獲缺的低功耗感測器需求也快速的增加,然而這些感測器如果使用電線供電有安裝的不方便以及隨著距離增加的成本問題,以電池做為能量供給的手段又會有環保疑慮和維護的不便,為最大化低功耗感測器的適用範圍與增加使用年限,近期研究逐漸轉向發展"自供電技術",意即將環境所潛藏的各式能量轉換為電能並供應後端裝置使用,希望以此技術解決上述問題。
本篇論文建立在振動能量擷取技術,原理為透過擷取環境中的振動能量轉化為電能供給後端應用,此技術相比目前普遍應用的太陽能能量擷取發電,其優勢為在室內或無光的環境下此裝置亦能持續供應電力,並且擁有極高的能量密度可供使用。本論文使用機械-電能轉換效率最高的壓電材料做能量擷取元件,並以在市面上擁有良好的壓電特性被普遍應用的鋯鈦酸鉛(PZT)做為研究之基礎,製作出懸臂樑結構的壓電能量擷取器、提供複合材料之懸臂樑靜力模型,計算出壓電常數值d31,以克服薄膜壓電元件在量測d31時所遇到的困難。同時改進本團隊的氣膠沉積製程,輔以後續的優化退火與極化參數,使氣膠沉積製成之壓電薄膜的壓電特性可以再一步提升。在使用結合上述研究以微機電製程完成的壓電能量擷取元件,其在0.5g的共振頻下可以達到300μw以上的輸出表現,其單位體積能量密度的表現遠高於過去所有本團隊所製成的能量擷取器,達到接近實際應用的階段。


關鍵字:鋯鈦酸鉛、壓電材料、氣膠沉積法、能量擷取、微機電製程
For past years the idea of "Internet of Things(IoT)" has become more expanding, which makes the demand of low power consumption sensors increased rapidly. In generally we use power lines or battery to drive these sensors. However, powering the sensors in remote areas with power lines is costly no matter in installation or maintenance. On the other hand, using battery can solve the problems, but the maintenance issue and risk of environmental pollution will emerge. Summing up the above reasons, scavenging energy from varying ambient energy sources and transferring them into electricity to drive the end devices, or called "Self-powered technology", seems to be a better solution to completely solve the problems, maximize the application scope and lifetime for IoT sensors.
This thesis is based on scavenging the environmental vibration energy. Comparing to solar power, vibration energy is capable to provide energy no matter indoor or not. The power density of ambient vibration is also high enough to be exploited due to the past researches. By utilizing the piezoelectric material PZT we successfully fabricated cantilever structure piezoelectric energy harvester. A static force analysis for cantilever structure to evaluate effective piezoelectric constant d31 of thin film piezoelectric material is also presented. Combining the study for improving Aerosol deposition method (ADM) efficiency, the optimization of annealing and poling process, and metal micro electro-mechanical system (MEMS) process, we accomplished the stainless-based cantilever structure piezoelectric energy harvesters. The output performance could reach more than 300μW at 0.5g resonant frequency. The power density was better than all studies made before. The results show that our device is very close to practical application.
Keyword: PZT, piezoelectric material, aerosol deposition, energy harvester, MEMS
誌謝 ii
中文摘要 iii
Abstract iv
圖目錄 vii
符號表 xii
第一章 緒論 1
1-1 研究背景與動機 1
1-2 應用與目標 5
1-3 文獻回顧 7
1-4 論文架構 10
第二章 壓電原理 12
2-1 壓電效應及歷史 12
2-2 壓電材料 16
2-3 線性壓電與本構方程式 17
第三章 懸臂樑式能量擷取器模型 21
3-1 尤拉-伯努利樑介紹 21
3-2 懸臂樑式壓電能量擷取器輸出-動態輸出分析 23
3-2-1 懸臂樑應變分析 23
3-2-2 壓電能量擷取器等效電路模型 24
3-3 懸臂樑式壓電能量擷取器-靜態分析 26
3-3-1 三種形狀函數之推導 27
3-3-2 三種形狀函數之模擬結果 30
3-4 靜態分析應變與d31值計算 31
第四章 壓電能量擷取元件製作 34
4-1 鋯鈦酸鉛介紹 34
4-2氣膠沉積製程 37
4-2-1 氣膠沉積製程簡介 37
4-2-2 氣膠沉積製程分析 40
4-3 壓電微機電製程 46
4-4 退火過程 49
4-5 極化過程 50
4-5-1極化電極材料測試 51
4-5-2極化步驟 52
第五章 實驗結果與討論 54
5-1 材料實驗分析 55
5-1-1 X光繞射晶相分析 55
5-1-2 PZT膜表面分析 57
5-1-3 PZT膜EDS元素分析 60
5-1-4 鐵電分析 64
5-2 製程輸出實驗分析 69
5-2-1 輸出量測架設 69
5-2-2 極化之輸出分析 71
5-2-3 退火之輸出分析 73
5-3 元件參數分析 77
5-3-1 單層元件輸出分析 79
5-3-2 雙層元件輸出分析 81
5-3-3 阻抗分析 84
5-3-4 d31有效值計算 86
5-3-5 元件參數表 91
5-4 能量密度比較 92
第六章 結論與展望 94
6-1 結論 94
6-2 未來展望 95
參考文獻 98
[1]Zanella, Andrea, et al. "Internet of things for smart cities." IEEE Internet of Things journal 1.1 (2014): 22-32.
[2]資策會FIND(2010);IBM Blue Viewpoint
[3]Amirtharajah, Rajeevan. Design of a low power VLSI systems powered by ambient mechanical vibration. Diss. Massachusetts Institute of Technology, 1999.
[4]Roundy, Shad, Paul K. Wright, and Jan Rabaey. "A study of low level vibrations as a power source for wireless sensor nodes." Computer communications 26.11 (2003): 1131-1144.
[5]Lin, Shun-Chiu, and Wen-Jong Wu. "Piezoelectric micro energy harvesters based on stainless-steel substrates." Smart Materials and Structures 22.4 (2013): 045016.
[6]Williams, C. B., and Rob B. Yates. "Analysis of a micro-electric generator for microsystems." Sensors and Actuators A: Physical 52.1-3 (1996): 8-11.
[7]Jeon, Y. B., et al. "MEMS power generator with transverse mode thin film PZT." Sensors and Actuators A: Physical 122.1 (2005): 16-22.
[8]Marzencki, Marcin, Yasser Ammar, and Skandar Basrour. "Integrated power harvesting system including a MEMS generator and a power management circuit." Sensors and Actuators A: Physical 145 (2008): 363-370.
[9]Marzencki, Marcin, et al. "A MEMS piezoelectric vibration energy harvesting device." TIMA-Grenoble-France Powermems conference-Japan. 2005.
[10]Hajati, Arman, and Sang-Gook Kim. "Ultra-wide bandwidth piezoelectric energy harvesting." Applied Physics Letters 99.8 (2011): 083105.
[11]Lee, B. S., et al. "Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film." Journal of Micromechanics and Microengineering 19.6 (2009): 065014.
[12] Aktakka, Ethem Erkan, Rebecca L. Peterson, and Khalil Najafi. "Thinned-PZT on SOI process and design optimization for piezoelectric inertial energy harvesting." Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International. IEEE, 2011.
[13] Kanno, Isaku, et al. "Power-generation performance of lead-free (K, Na) NbO 3 piezoelectric thin-film energy harvesters." Sensors and Actuators A: Physical 179 (2012): 132-136.
[14]Arroyo, Emmanuelle, et al. "High temperature performance of a piezoelectric micro cantilever for vibration energy harvesting." Journal of Physics: Conference Series. Vol. 773. No. 1. IOP Publishing, 2016.
[15]Van Minh, L., et al. "Vibrational micro-energy harvesters utilizing Nb-doped Pb (Zr, Ti) O3 films on stainless steel substrates." Journal of Physics: Conference Series. Vol. 773. No. 1. IOP Publishing, 2016.
[16]Aktakka, Ethem Erkan, and Khalil Najafi. "A six-axis micro platform for in situ calibration of MEMS inertial sensors." Micro Electro Mechanical Systems (MEMS), 2016 IEEE 29th International Conference on. IEEE, 2016.
[17]CuRie, Jacques. "CuRie p. development, via compression, of electric polarization in hemihedral crystals with inclined faces." Bull soc min france 3 (1880): 90-3.
[18]Lippmann, G. "Principe de la conservation de l''électricité" [Principle of the conservation of electricity]. Annales de chimie et de physique (in French). 24: 145, 1881.
[19]Voigt, Woldemar. Lehrbuch der Kristallphysik. Berlin: B. G. Teubner, 1910.
[20]176-1987 - IEEE Standard on Piezoelectricity
[21]Wang, Gang. "Analysis of bimorph piezoelectric beam energy harvesters using Timoshenko and Euler–Bernoulli beam theory." Journal of Intelligent Material Systems and Structures 24.2 (2013): 226-239.
[22]陳昭廷. "高效能微型能量擷取器之研製與工作模態最佳化研究." 臺灣大學工程科學及海洋工程學研究所學位論文 (2016): 1-90.
[23]Williams, C. B., and Rob B. Yates. "Analysis of a micro-electric generator for microsystems." Sensors and Actuators A: Physical 52.1-3 (1996): 8-11.
[24]黃亭瑋. "微壓電振動子應用於能量擷取之理論與實驗驗證." 臺灣大學應用力學研究所學位論文 (2014): 1-84.
[25]王昱程. "受強激振下懸臂樑式壓電振動子之非線性研究." 臺灣大學應用力學研究所學位論文 (2016): 1-100.
[26]Kim, Jae Eun, and Yoon Young Kim. "Analysis of piezoelectric energy harvesters of a moderate aspect ratio with a distributed tip mass." Journal of Vibration and Acoustics 133.4 (2011): 041010.
[27]Kim, Miso, et al. "Modeling and experimental verification of proof mass effects on vibration energy harvester performance." Smart Materials and Structures 19.4 (2010): 045023.
[28]Akedo, Jun, and Maxim Lebedev. "Microstructure and electrical properties of lead zirconate titanate (Pb (Zr52/Ti48) O3) thick films deposited by aerosol deposition method." Japanese journal of applied physics 38.9S (1999): 5397.
[29]王宣又. "以氣膠沈積法建立鋯鈦酸鉛厚膜低溫微製程技術." 臺灣大學應用力學研究所學位論文 (2008): 1-124.
[30]Akedo, Jun. "Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices." Journal of Thermal Spray Technology 17.2 (2008): 181-198.
[31]Lin, Shun-Chiu. "利用不鏽鋼基板製作壓電懸臂樑式微型能量擷取元件之研究." 臺灣大學工程科學及海洋工程學研究所學位論文 (2014): 1-145.
[32]Dalakoti, Abhishek, Amit Bandyopadhyay, and Susmita Bose. "Effect of Zn, Sr, and Y addition on electrical properties of PZT thin films." Journal of the American Ceramic Society 89.3 (2006): 1140-1143.
[33]Palmer, A. W., A. C. Lynch, and A. T. Parish. "Measurement of piezoelectric coefficients and permittivity with small specimens." IEE Proceedings A (Physical Science, Measurement and Instrumentation, Management and Education, Reviews) 130.3 (1983): 129-133.
[34]陳世春. 基本壓電材料學. 復漢出版社. 2001
[35]Cao, Z., et al. "High output power AlN vibration-driven energy harvesters." Journal of Physics: Conference Series. Vol. 476. No. 1. IOP Publishing, 2013.
[36]Defosseux, M., et al. "Highly efficient piezoelectric micro harvester for low level of acceleration fabricated with a CMOS compatible process." Sensors and Actuators A: Physical 188 (2012): 489-494.
[37]Elfrink, R., et al. "Vibration energy harvesting with aluminum nitride-based piezoelectric devices." Journal of Micromechanics and Microengineering 19.9 (2009): 094005.
[38]Fang, Hua-Bin, et al. "Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting." Microelectronics Journal 37.11 (2006): 1280-1284.
[39]Hara, Motoaki, et al. "Highly piezoelectric MgZr co-doped aluminum nitride-based vibrational energy harvesters [Correspondence]." IEEE transactions on ultrasonics, ferroelectrics, and frequency control 62.11 (2015): 2005-2008.
[40]Lei, Anders, et al. "MEMS-based thick film PZT vibrational energy harvester." Micro electro mechanical systems (MEMS), 2011 IEEE 24th international conference on. IEEE, 2011.
[41]Morimoto, Keiji, et al. "High-efficiency piezoelectric energy harvesters of c-axis-oriented epitaxial PZT films transferred onto stainless steel cantilevers." Sensors and Actuators A: Physical 163.1 (2010): 428-432.
[42]Muralt, P., et al. "Vibration energy harvesting with PZT micro device." Procedia Chemistry 1.1 (2009): 1191-1194.
[43]Shen, Dongna, et al. "The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting." Journal of Micromechanics and Microengineering 18.5 (2008): 055017.
[44]Tang, Gang, et al. "Fabrication and analysis of high-performance piezoelectric MEMS generators." Journal of Micromechanics and Microengineering 22.6 (2012): 065017.
[45]Xu, Ruichao, et al. "Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting." Sensors and Actuators A: Physical 188 (2012): 383-388.
[46]Yen, Ting-Ta, et al. "Corrugated aluminum nitride energy harvesters for high energy conversion effectiveness." Journal of Micromechanics and Microengineering 21.8 (2011): 085037.
[47]Okada, Akira. "Some electrical and optical properties of ferroelectric lead‐zirconate–lead‐titanate thin films." Journal of Applied Physics 48.7 (1977): 2905-2909.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊