[1]Fredholm, E.I., “Sur une classe d''equations fonctionnelles”, Acta Math., 27, pp. 365–390, 1903.
[2]Kellogg, O. D., “Foundations of Potential Theory”, Springer, Berlin , 1900.
[3]Mikhlin, S. G., “Integral Equations”, Pergamon Press , London, 1957.
[4]Kupradze, V.D., “The method of potentials in elasticity theory”, Israel Program for Scientific Translations, Moscow, 1963.
[5]Jaswon, M. A., “Integral Equation Methods in Potential Theory─I” Proc. Roy. Soc. Lond., vol. A275, pp. 23-32, 1963.
[6]Symm, G. T., “Integral Equation Methods in Potential Theory─II” Proc. Roy. Soc. Lond., vol. A275, pp. 33-46, 1963.
[7]Lamb, H., “Hydrodynamics”, Dover, New York, 1945.
[8]Hess, J. L. and Smith, A. M., “Calculation of nonlifting potential flow about arbitrary three-dimensional smooth bodies”, J. Ship Research, vol. 7, pp. 22-44, 1964.
[9]Rizzo, F. J. “An integral equation approach to boundary value problems of classical elastostatics” Quart. Appl. Math., vol. 25, pp. 83-95, 1967.
[10]Cruse, T. A. “Numerical solutions in three dimensional elastostatics”, Int. J. Solids and Structures, vol. 5, pp. 1259-1274, 1969.
[11]Cruse, T. A. and Rizzo, F. J., Boundary Integral Equation Method, McGraw-Hill, New York, 1975.
[12]Lachat, J. C. and Watson, J. O. “A second generation boundary integral equation program for three-dimensional elastic analysis”, ASME Applied Mechanics Division National Conference, New York, 1975.
[13]Banerjee, P. K. and Butterfield R., “Boundary element method in geomechanics”, Chapter 16 in Finite element in geo-mechanics (Ed. G. Gudehus), John Wiley & Sons, New York, 1977.
[14]Brebbia, C. A., The Boundary Element Method for Engineers, Pentech Press, London, 1978.
[15]Brebbia, C. A. and Walker, S., Boundary Element Techniques in Engineering, Pentech Press, London, 1980.
[16]Brebbia, C. A., Progress in Boundary Element Method. vol. 1, Pentech Press, London, 1981.
[17]Brebbia, C. A., Progress in Boundary Element Method. vol. 2, Pentech Press, London, 1983.
[18]Brebbia, C. A., Progress in Boundary Element Method. vol. 3, Pentech Press, London, 1984.
[19]Brebbia, C. A., Progress in Boundary Element Method. vol. 4, Pentech Press, London, 1984.
[20]Brebbia, C. A., Telles, J. C. and Wrobel, L. C., “Boundary Element Techniques Theory and Applications in Engineering”, Springer Verlag, Berlin, 1984.
[21]Zang, Y. L. and Cheng Y. M., “A higher-order boundary element method for three-dimensional potential problems”, Int. J. Numer. Methods Fluid, vol. 21, pp. 321-331, 1995.
[22]Amini, S. and Wilton D. T., “An investigation of boundary element methods for the exterior acoustic problem”, Comput Methosd. Appl. Mech. Eng., vol. 54, pp. 49-65, 1986.
[23]Grilli, S. T. and Svendsen I. A., “Corner problems and global accuracy in the boundary element solution of nonlinear wave flows”, Engineering Analysis with Boundary Elements, vol. 7, pp. 178-195, 1990.
[24]Newman J. N., “Distributions od source and normal dipoles over a quadrilateral panel”, J. Eng. Math , vol. 20, pp. 113-126, 1986.
[25]Lachat, J. C. and Watson J. O., “A second generation boundary integral equation program for three-dimensional elastic analysis”, ASME Applied Mechanics Division National Conference, New York, 1975.
[26]Rizzo, F. J. and Shippy, D. J., “An advanced boundary integral equation method for three-dimensional thermo-elasticity”, Int. J. Numer. Methods Eng., vol. 11, pp. 1753-1768, 1977.
[27]Zang, Y. L. and Cheng Y. M., “A higher-order boundary element method for three-dimensional potential problems”, Int. J. Numer. Methods Fluid, vol. 21, pp. 321-331, 1995.
[28]Landweber, L. and Macagno M., “Irrotational Flow about Ship Forms”, IIHR Report, Iowa, No. 123, 1969.
[29]Webster, W. C., “The flow about arbitrary three-dimension smooth bodies”, J. Ship Research, vol. 19, pp. 206-218, 1975.
[30]Heise, U., “Numerical properties of integral equation in which the given boundary values and the solutions are defind on different curves”, Comput. Struct., vol. 8, pp. 199-205, 1978.
[31]Han, P. S. and Olson, M. S., “An adaptive boundary element method”, Int. J. Numer. Methods Eng., vol. 24, pp. 1187-1202, 1987.
[32]Johnson, R. L. and Fairweather, G., “The method of fundamental solutions for problem in potential flow”, Appl. Math Modeling, vol.8, pp. 265-270, 1984.
[33]Schulz, W. W. and Hong, S. W., “Solution of potential problems using an overdetermined complex boundary integral method”, J. Comput. Phys., vol. 84, pp. 414-440, 1989.
[34]Cao, Y. and Schultz, W. W. and Beck, R. F., “Three-dimension desingularized boundary integral methods for potential problems”, Int. J. Numer. Methods Fluid, vol. 12, pp. 785-803, 1991.
[35]Hwang, W. S., “Hypersingular boundary integral equations for exterior acoustic problems,” J. Acoust. Soc. Am., vol. 101, pp. 3336-3342, 1997.
[36]Hwang, W. S. and Huang Y. Y., “Non-singular direct formulation of boundary integral equations for potential flows,” Int. J. Numer. Mech Fluids, vol. 26, pp. 627-635, 1998.
[37]Hwang, Y. Y., “The study on potential flow by nonlinear boundary element methods,” 國立臺灣大學博士論文, 1998.
[38]Chang, J. M., “Numerical studies on desingularized Cauchy’s formula with applications to interior potential problems,” Int. J. Numer. Mech Eng., vol. 46, pp. 805-824, 1999.
[39]Yang, S. A., “On the singularities of Green’s formula and its normal derivative with an application to surface-wave-body interaction problems,” Int. J. Numer. Mech Eng., vol. 47, pp. 1841-1864, 2000.
[40]Hwang, W. S., “A boundary node method for airfoils based on the Dirichlet condition,” Comput. Methods Appl. Mech. Eng., vol. 190, pp. 1679-1688, 2000.
[41]Morino, L. and Bernardini, G., “Singularities in BIEs for the Laplace equation; Joukouski trailing-edge conjecture revisited”, Eng. Anal. Bound. Elm., vol. 25, pp. 805-818, 2001.
[42]Kerwin, J. E. and Kinnas, S. A. and Lee, J. T., and Shih, W.Z., “A surface panel method for the hydrodynamic analysis of ducted propellers”, Trans. SNAME, 95, pp. 93-112, 1987.
[43]Johnson, F.T. and Ehlers, F.E. and Rubbert, P.E., “A higher order panel method for general analysis and design applications in subsonic flow. In Proceedings of fifth International Conference on Numerical Methods in Fluid Dynamics”, Springer Verlag, 1976.
[44]Bristow, D. R. and Grose, G. G., “Modification of the douglas Neumann program to improve the efficiency of predicting component interference and high lift characteristics”, Technical Report NASA CR-3020, Langley Research Center, NASA, 1978.
[45]Morino, L. and Kuo, C. C., “Subsonic potential aerodynamic for complex configurations : A general theory”, AIAA Journal, vol 12(no.2), pp 191-197, 1974.
[46]Lee, J.T., “A potential Based Panel Method for the Analysis of Marine Propellers in Steady Flow”, PhD thesis, Massachusetts Institute of Technology, 1987.
[47]Hsin, C. Y. “Development and Analysis of Panel Methods for Propellers in Unsteady Flow”, PhD thesis, Massachusetts Institute of Technology, 1990.
[48]洪立萍,「應用邊界積分法求解二維勢流流場問題」,國立台灣大學碩士論文,2000。[49]黃盈翔,「非奇異性邊界積分法對二維矩形流場之數值模擬」,國立台灣大學碩士論文,2004。[50]廖健凱,「邊界元素法對二維翼型之流場分析」,國立台灣大學碩士論文,2011。[51]施育宏,「利用最小方差法對二維翼型之跡流定位」,國立台灣大學碩士論文,2012。[52]葉明學,「三維機翼尾端跡流之研究」,國立台灣大學碩士論文,2015。