跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 20:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙祐萱
研究生(外文):Yu-Hsuan Chao
論文名稱:研發一三維封閉不可壓縮黏性流體模型從事立體醫學影像套合
論文名稱(外文):Volumetric Medical Image Registration Using a Three Dimension Closed Incompressible Viscous Fluid Model
指導教授:張恆華
口試日期:2017-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:104
中文關鍵詞:三維影像套合非剛性轉換黏性流體模型加速
外文關鍵詞:three dimensional image registrationnon-rigid modelviscous fluid modelacceleration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
影像套合(Image registration)對於醫學工程的研究與醫療診斷是相當重要的,其目的是將兩張或多張醫學影像疊合,以呈現相同生理組織之程序。現存影像套合的方法相當多樣化,本論文敘述物理模型類中的黏性流體方法。我們提出一以處理腦部磁振影像為主的影像套合系統,並推導出三維封閉不可壓縮之黏性流場及研發其數值方法,發展成一立體影像套合架構。黏性流體模型的數值方法包含不易求解的非線性偏微分方程式,但三維偏微分方程式若用一般方法以離散二階微分近似,再利用Cholesky演算法解其線性方程組,相當耗時且記憶體需求極大,其時間複雜度為 ,其中N為像素點的數量。我們提出Alternating-direction implicit (ADI)及Hopscotch等兩種不同的數值方法,求解黏性流體方法中的偏微分方程式,解決傳統數值方法耗時及記憶體使用量大的問題,並將這個方法延伸至三維。另外,二維方法若碰到模板影像及基準影像有垂直方向形變就無法成功套合,發展成三維方法相較於二維方法可以處理有垂直方向形變的影像。我們使用了大量不同的模擬影像及臨床核磁共振影像來評估並比較此兩種方法。從實驗結果中得知,本論文所提出的兩種方法皆可有效解決影像套合的問題,且計算時間及記憶體使用量都達到可行的範圍,其套合結果也相當的準確。
Image registration is very important for a wide variety of image processing applications in engineering and medicine. It provides lots of precious information for further analysis in many fields. Image registration is the process of transforming different images into one coordinate system. We propose a three-dimensional closed incompressible viscous fluid image registration algorithm and develop its numerical methods. The core component of solving the viscous fluid model is the partial differential equations (PDEs). The common way to solve the PDF is approximating it using the finite second order differential followed by the Cholesky algorithm to solve the linear formulas. However, the computation complexity will be tremendous and the memory usage will be unbearable. In addition, if the template image has vertical-direction deformation, the two-dimensional method will not be able to handle this situation. We employ the alternating-direction implicit (ADI) and Hopscotch as the numerical methods to solve the PDE of the three-dimensional viscous fluid model. A wide variety of magnetic resonance images were used to evaluate this new method. Experimental results indicated that the proposed method not only successfully performed registration but also provided excellent accuracy. The computation time and the memory usage have been dramatically reduced as well.
致謝 ii
中文摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 viii
第1章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 論文大綱 3
第2章 文獻回顧 4
2.1 影像套合理論 4
2.2 影像套合分類 5
2.3 黏性流體影像套合法 7
2.4 濾波器 12
2.4.1 高斯濾波器 (Gaussian filter) 14
2.4.2 平均濾波器 (Mean filter) 15
2.4.3 雙邊濾波器 (Bilateral filter) 16
2.4.4 中值濾波器 (Median filter) 17
2.5 套合效能數量化 18
2.5.1 差方和(Sum of squared difference) 18
2.5.2 相關係數(Correlation coefficient) 18
第3章 方法 20
3.1 納維-史托克方程式(Navier-Stoke’s equation) 20
3.2 非線性項 23
3.3 黏滯項 28
3.3.1 Alternating-direction implicit (ADI) 30
3.3.1.1 Thomas 演算法 33
3.3.2 Hopscotch (HOP) 35
3.4 物體力 (Body force) 37
3.5 三維高斯濾波器 (3-D Gaussian filter) 39
3.6 系統架構流程圖 (Flow chart) 41
第4章 實驗結果與討論 43
4.1 模擬影像 43
4.1.1 二維橢圓形影像 43
4.1.2 二維棋盤影像 47
4.1.3 二維C字型影像 49
4.2 醫學影像 51
4.2.1 二維腦部影像 51
4.2.2 二維大形變腦部影像 53
4.2.3 二維膝蓋影像 55
4.2.4 大量二維影像套合 57
4.3 多重模態 (Multi-modal) 59
4.4 濾波器實驗 64
4.5 方法比較 68
4.6 三維影像套合 73
4.6.1 三維模擬影像 73
4.6.2 不同切片數三維腦部影像 76
4.6.3 三維腦部影像 83
第5章 結論與未來展望 85
5.1結論 85
5.2未來展望 86
附錄A 4.2.4節實驗影像 87
附錄B 4.2.4節實驗數據 89
附錄C 4.4節實驗數據 95
參考文獻 101
[1]張祐寧, "研發以紋理特徵為基礎的類神經網路以自動化去除腦部磁振影像雜訊," 2015.
[2]K. Kasiri, P. Fieguth, and D. A. Clausi, "Sorted self-similarity for multi-modal image registration," in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016, pp. 1151-1154.
[3]W. Sun, W. J. Niessen, and S. Klein, "Randomly Perturbed B-Splines for Nonrigid Image Registration," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, pp. 1401-1413, 2017.
[4]A. Daly, H. Yazid, N. E. B. Amara, and A. Zrig, "Multimodal image registration using multiresolution genetic optimization," in 2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT), 2016, pp. 557-562.
[5]J. Woo, M. Stone, and J. L. Prince, "Multimodal Registration via Mutual Information Incorporating Geometric and Spatial Context," IEEE Transactions on Image Processing, vol. 24, pp. 757-769, 2015.
[6]I. Reducindo, A. R. Mejia-Rodriguez, E. R. Arce-Santana, D. U. Campos-Delgado, F. Vigueras-Gomez, E. Scalco, et al., "Multimodal non-rigid registration methods based on local variability measures in computed tomography and magnetic resonance brain images," IET Image Processing, vol. 8, pp. 699-707, 2014.
[7]M. C. Chambers, C. Bhushan, J. P. Haldar, R. M. Leahy, and D. W. Shattuck, "CORRECTING INHOMOGENEITY-INDUCED DISTORTION IN FMRI USING NON-RIGID REGISTRATION," Proceedings / IEEE International Symposium on Biomedical Imaging: from nano to macro. IEEE International Symposium on Biomedical Imaging, vol. 2015, pp. 1364-1367, 2015.
[8]M. D. Roger P. Woods. (1995). AIR - Automated Image Registration. Available: http://bishopw.loni.ucla.edu/air5/
[9]X. Xu and R. D. Dony, "Fast fluid registration using inverse filtering for non-rigid image registration," in Biomedical Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium on, 2006, pp. 470-473.
[10]J. Zhang, J. Wang, X. Wang, X. Gao, and D. Feng, "Physical Constraint Finite Element Model for Medical Image Registration," PLoS ONE, vol. 10, p. e0140567, 2015.
[11]G. E. Christensen, "Deformable shape models for anatomy," Washington University Saint Louis, Mississippi, 1994.
[12]A. Sotiras, C. Davatzikos, and N. Paragios, "Deformable Medical Image Registration: A Survey," Medical Imaging, IEEE Transactions on, vol. 32, pp. 1153-1190, 2013.
[13]J.-P. Thirion, "Image matching as a diffusion process: an analogy with Maxwell''s demons," Medical Image Analysis, vol. 2, pp. 243-260, 1998.
[14]B. Fischer and J. Modersitzki, "Curvature Based Image Registration," Journal of Mathematical Imaging and Vision, vol. 18, pp. 81-85, 2003.
[15]A. Trouvé, "Diffeomorphisms Groups and Pattern Matching in Image Analysis," International Journal of Computer Vision, vol. 28, pp. 213-221, 1998.
[16]R. Bajcsy and S. Kovačič, "Multiresolution elastic matching," Computer Vision, Graphics, and Image Processing, vol. 46, pp. 1-21, 1989/04/01/.
[17]G. E. Christensen, R. D. Rabbitt, and M. I. Miller, "Deformable templates using large deformation kinematics," Trans. Img. Proc., vol. 5, pp. 1435-1447, 1996.
[18]J. Modersitzki, Numerical Methods For Image Registration. New York: Oxford University Press, 2004.
[19]M. Holden, "A review of geometric transformations for nonrigid body registration," IEEE TRANSANS ON IMAGE PROCESSING, 2007.
[20]G. E. Christensen, R. D. Rabbitt, and M. I. Miller, "Deformable templates using large deformation kinematics," IEEE TRANSANS ON IMAGE PROCESSING, vol. 5, pp. 1435-1447, 1996.
[21]G. E. Christense, "3D brain mapping using a deformable neuroanatomy " 1993.
[22]X. Xu, "Fast fluid registration using inverse filtering for non-rigid image registration," IEEE, 2006.
[23]M. Bro-Nielsen and C. Gramkow, "Fast Fluid Registration of medical images," in Visualization in Biomedical Computing: 4th International Conference, VBC''96 Hamburg, Germamy, September 22–25, 1996 Proceedings, K. H. Höhne and R. Kikinis, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 265-276.
[24]B. Seibold, "A compact and fast Matlab code solving the incompressible Navier-Stokes equations on rectangular domains," Massachusetts Institute of Technology, 2008.
[25]蔡知原, "結合封閉不可壓縮黏性流體模型與互資訊知識從事醫學影像之對位," 2010.
[26]G. Strang, Computational science and engineering: Wellesley-Cambridge Press Wellesley, 2007.
[27]R. C. Gonzalez and R. E. Woods, Digital image processing, 3rd ed.: Prentice Hall: Pearson Education, Inc, 2003.
[28]R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing using MATLAB vol. 2: Gatesmark Publishing Tennessee, 2009.
[29]C. Tomasi and R. Manduchi, "Bilateral filtering for gray and color images," in Computer Vision, 1998. Sixth International Conference on, 1998, pp. 839-846.
[30]B. D. d. Senneville, C. Zachiu, M. Ries, and C. Moonen, "EVolution: an edge-based variational method for non-rigid multi-modal image registration," Physics in Medicine & Biology, vol. 61, p. 7377, 2016.
[31]Y. Ou and C. Davatzikos, "DRAMMS: Deformable Registration via Attribute Matching and Mutual-Saliency Weighting," in Information Processing in Medical Imaging: 21st International Conference, IPMI 2009, Williamsburg, VA, USA, July 5-10, 2009. Proceedings, J. L. Prince, D. L. Pham, and K. J. Myers, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 50-62.
[32]D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J. Hawkes, "Nonrigid registration using free-form deformations: application to breast MR images," IEEE Transactions on Medical Imaging, vol. 18, pp. 712-721, 1999.
[33]J. Ashburner, "A fast diffeomorphic image registration algorithm," NeuroImage, vol. 38, pp. 95-113, 2007/10/15/ 2007.
[34]T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache, "Non-parametric Diffeomorphic Image Registration with the Demons Algorithm," in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2007: 10th International Conference, Brisbane, Australia, October 29 - November 2, 2007, Proceedings, Part II, N. Ayache, S. Ourselin, and A. Maeder, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 319-326.
[35]S. Dinggang and C. Davatzikos, "HAMMER: hierarchical attribute matching mechanism for elastic registration," IEEE Transactions on Medical Imaging, vol. 21, pp. 1421-1439, 2002.
[36]Z. Tang, P. Xue, P. Yang, D. Jia, and E. Dong, "An Effective Non-rigid Image Registration Method Based on Active Demons Algorithm," in 2016 IEEE 29th International Symposium on Computer-Based Medical Systems (CBMS), 2016, pp. 124-129.
[37]A. J. Chorin and J. E. Marsden, A mathematical introduction to fluid mechanics vol. 3: Springer, 1990.
[38]J. Jim Douglas and J. E. Gunn, "A general formulation of alternating direction methods," Numer. Math., vol. 6, pp. 428-453, 1964.
[39]J. C. Tannehill, Computational fluid mechanics and heat transfer, 2nd ed. ed. Washington, D.C.: Taylor & Francis, 1997.
[40]J. P. W. Pluim, J. B. A. Maintz, and M. A. Viergever, "Mutual Information Based Registration of Medical Images: A Survey," IEEE Trans. Med. Imaging, vol. 22, pp. 986-1004, 2003.
[41]Y. Lou, A. Irimia, P. A. Vela, M. C. Chambers, J. D. Van Horn, P. M. Vespa, et al., "Multimodal Deformable Registration of Traumatic Brain Injury MR Volumes via the Bhattacharyya Distance," IEEE transactions on bio-medical engineering, vol. 60, pp. 2511-2520, 2013.
[42]E. D''Agostino, F. Maes, D. Vandermeulen, and P. Suetens, "A viscous fluid model for multimodal non-rigid image registration using mutual information," Medical image analysis, vol. 7, pp. 565-575, 2003.
[43]McGill University, BrainWeb: Simulated Brain Database. http://www.bic.mni.mcgill.ca/brainweb/, 2014.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top