跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/01/14 17:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝文記
研究生(外文):Bon-Kie Chia
論文名稱:船舶節能自動操船系統之實驗研究
論文名稱(外文):Experimental Study on the Ship Energy-Saving Autopilot System
指導教授:蔡進發蔡進發引用關係
口試日期:2017-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:92
中文關鍵詞:自航試驗PD控制模糊控制
外文關鍵詞:Free Running ModelPD ControlFuzzy Control
相關次數:
  • 被引用被引用:4
  • 點閱點閱:243
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的透過撰寫PD和模糊控制操舵系統程式與自航船模試驗硬體設備進行搭配進行自行船模自動操舵。自航船模於不同的自動操舵系統程式控制下,皆能自動控制使船模維持穩定船速和直線航行,同時透過程式蒐集航路資料與顯示介面提供數據即時顯示,從而判斷自航試驗數據之可靠性。
由靜穩海況自航試驗結果顯示,自航船模在相同船速下,模糊控制操舵系統操控船模航向直線性較PD控制操舵系統佳,其平擺角維持0.5°至-0.5°之間,平均平擺角為-0.06°;而PD控制操舵系統操控之平擺維持1.5°至-0.5°,平均平擺角為0.23°。模糊控制操舵系統輸出舵角變化較頻繁,其舵機馬達平均電流及功率消耗較PD控制操舵系統大;模糊操舵控制系統實驗整體能量消耗也比PD操舵控制系統高。
然而在規則波中自航試驗結果顯示,自航船模在相同船速下,模糊控制操舵系統操控船模航向直線性較PD控制操舵系統佳,其平擺角維持1°至-1.5°之間,平均平擺角為0.02°;而PD控制操舵系統操控之平擺維持2°至-4°,平均平擺角為0.04°。模糊控制操舵系統輸出舵角變化較頻繁,其舵機馬達平均電流及功率消耗較PD控制操舵系統大;相同的,模糊操舵控制系統實驗整體能量消耗也比PD操舵控制系統高。
The PD and fuzzy control autopilot system were tested on a free running model system to study the energy saving efficiency of the autopilot system. The free running model ship can automatically control and maintain a stable speed and straight route by these two automatic steering control system. The route information was collected by the designed program and can be displayed real-time to check the reliability of experimental data.
The test results show that the fuzzy control steering system has better direction heading keeping than that of the PD control steering system with the same speed in the calm sea condition. The heading angle of a model ship is maintaining between 0.5°and -0.5°, as well as the average heading angle is -0.06° controlled by the fuzzy control steering system. The heading angle of a model ship is maintaining between 1.5°and -0.5°, as well as the average heading angle is -0.23° controlled by the PD control steering system. However, the output rudder angle of the fuzzy control steering system was changed frequently, and the average current and power consumption of the steering gear is larger than that of the PD control steering system. The overall energy consumption of the fuzzy steering control system is larger than that of the PD steering control system.
The test results show that the fuzzy control steering system also has better direction heading keeping than that of the PD control steering system with the same speed in the regular wave condition. The heading angle of a model ship is maintaining between 1°and -1.5°, as well as the average heading angle is 0.02° controlled by the fuzzy control steering system. The heading angle of a model ship is maintaining between 2°and -4°, as well as the average heading angle is 0.04° controlled by the PD control steering system. However, the output rudder angle of the fuzzy control steering system was changed frequently, and the average current and power consumption of the steering gear is larger than that of the PD control steering system. The overall energy consumption of the fuzzy steering control system is also larger than that of the PD steering control system.
摘要 I
ABSTRACT II
目錄 IV
圖目錄 VII
表目錄 XII
符號說明 XIII
第一章、緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-2-1 自動操舵系統之發展 2
1-2-2 模糊控制理論與類神經網路之發展 3
1-3 研究動機 4
1-4 研究方法與目的 4
1-5 論文結構 5
第二章、PID及模糊理論與控制器架構 6
2-1 PID控制 6
2-1-1 PID控制器基本架構 6
2-1-2 PID操舵控制器架構及演算法 7
2-1-3 PD操舵控制器之設計 8
2-2 模糊控制 9
2-2-1 模糊集合與歸屬函數 9
2-2-2 模糊控制器基本架構 9
2-2-3 模糊操舵控制器之設計 10
第三章、自航試驗系統 14
3-1 船模資料 14
3-2 自航試驗系統之建立 14
3-2-1 自航試驗架構 14
3-2-2 螺槳馬達之選用 15
3-2-3 舵機馬達之選用 16
3-2-4 控制與資料擷取系統 17
第四章、試驗設備校正及試驗程序 19
4-1試驗設備之校正 19
4-1- 1 阻力計之校正 19
4-1-2 起伏計之校正 19
4-1-3 角度計之校正 19
4-1-4 動力儀之校正 20
4-1-5 雷射測距儀之校正 20
4-1-6 加速度計之校正 21
4-2 自航船模物理量之量測 21
4-2-1 船模縱向轉動慣量 21
4-2-1 傾斜試驗與橫搖自由衰減週期運動 22
4-2-3 ZIG-ZAG操縱試驗 23
4-3 試驗程序 24
4-3-1 船模含附屬物阻力試驗程序 24
4-3-2 螺槳單獨性能試驗程序 25
4-3-3自航試驗程序 26
第五章、實驗結果與討論 28
5-1 實驗結果 28
5-1-1 靜穩海況PD控制操舵系統測試結果 28
5-1-2 靜穩海況模糊控制操舵系統測試結果 29
5-1-3 規則波中PD控制操舵系統測試結果 30
5-1-4 規則中模糊控制操舵系統測試結果 31
5-2 結果討論 31
5-2-1 靜穩海況實驗結果討論 31
5-2-2 規則波中實驗結果討論 32
第六章、結論與建議 33
6-1 結論 33
6-2 建議 33
參考文獻 35
附圖 37
附表 91
1.Bennett, Stuart. "A brief history of automatic control." IEEE Control Systems 16.3 (1996): 17-25.
2.Bennett, Stuart. "Nicholas Minorsky and the automatic steering of ships." IEEE Control Systems Magazine 4.4 (1984): 10-15.
3.Fossen, Thor I., and Marit J. Paulsen. "Adaptive feedback linearization applied to steering of ships." Control Applications, 1992., First IEEE Conference on. IEEE, 1992.
4.Morari, Manfred, and Evanghelos Zafiriou. Robust process control. Vol. 488. Englewood Cliffs, NJ: Prentice hall, 1989
5.Roberts, G. N., Sutton, R., Zirilli, A., & Tiano, A. "Intelligent ship autopilots––A historical perspective." Mechatronics 13.10 (2003): 1091-1103.
6.Zadeh, Lotfi A. "Fuzzy sets." Information and control 8.3 (1965): 338-353.
7.Mamdani, Ebrahim H. "Application of fuzzy algorithms for control of simple dynamic plant." Proceedings of the Institution of Electrical Engineers. Vol. 121. No. 12. IET, 1974.
8.Van Amerongen, J., H. R. van Nauta Lemke, and J. C. T. Van der Veen. "An autopilot for ships designed with fuzzy sets." Digital computer applications to process control (1977).
9.Witt, N. A., and K. M. Miller. "A neural network autopilot for ship control." (1993).
10.Ren, Junsheng, and Xianku Zhang. "Ship course-keeping adaptive Fuzzy controller design using command filtering with minimal parametrization." Control and Decision Conference (CCDC), 2013 25th Chinese. IEEE, 2013.
11.Richter, Ralph. "A predictive fuzzy-neural autopilot for the guidance of small motorised marine craft." (2000).
12.Minghui, Wang, Yongquan, Y., Yimin, Y., & Fei, W. "Study on fuzzy-extension control system for marine steering." Cybernetics and Intelligent Systems, 2008 IEEE Conference on. IEEE, 2008.
13.Azzeri, M. N., F. A. Adnan, and M. Z. Zain. "Review of course keeping control system for unmanned surface vehicle." Jurnal Teknologi 74.5 (2015): 610-620.
14.Nomoto, Kensaku, and Kenshi Taguchi. "On steering qualities of ships (2)." Journal of Zosen Kiokai 1957.101 (1957): 57-66.
15.Fossen, Thor I. Handbook of marine craft hydrodynamics and motion control. John Wiley & Sons, 2011
16.王文俊,認識Fuzzy,全華圖書出版,第12-1至12-17頁,2005
17.Velagic, Jasmin, Zoran Vukic, and Edin Omerdic. "Adaptive fuzzy ship autopilot for track-keeping." Control engineering practice 11.4 (2003): 433-443.
18.Wang, Li-Xin. A course in fuzzy systems. Prentice-Hall press, USA, 1999.
19.王云珊(2012)。貨櫃船自推實驗之計算模擬。國立台灣大學工程科學及海洋工程研究所。
20.Ladson, Charles L. "Effects of independent variation of Mach and Reynolds numbers on the low-speed aerodynamic characteristics of the NACA 0012 airfoil section." (1988).
21.Goodwin, Graham C., Stefan F. Graebe, and Mario E. Salgado. "Control system design." Upper Saddle River (2001).
22.王川川, 赵锦成, and 齐晓慧. "模糊控制器设计中量化因子, 比例因子的选择." 四川兵工学报 30.1 (2009): 61-63.
23.The Special Committee on Wave, "Final Report and Recommendation of the 23rd ITTC." Proceeding of the 23rd, 2002
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top