跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/18 22:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭家榮
研究生(外文):Jia-Rong Jheng
論文名稱:退火製程影響硫化鎘緩衝層/銅銦鎵硒吸收層介面性質之研究
論文名稱(外文):Application of Rapid Thermal Annealing on CdS Buffer layer/CIGS absorber layer Interface Properties Improvement
指導教授:宋家驥宋家驥引用關係
指導教授(外文):Chia-Chi Sung
口試日期:2017-07-05
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:68
中文關鍵詞:薄膜太陽能電池退火硫化鎘緩衝層銅銦鎵硒吸收層異質接面
外文關鍵詞:CIGS solar cellannealing processCdS buffer layerCIGS absorber layerheterojunction structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:327
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要的目的為研究退火製程對於CIGS太陽能電池CIGS吸收層與CdS緩衝層介面性質的影響,由於CdS緩衝層/CIGS吸收層介面為異質接面結構,異質結構會造成許多缺陷問題例如:孔洞、晶界、差排等等,這些缺陷會使載子收集困難,降低元件的短路電流,讓元件效能降低。為了改善CdS緩衝層與CIGS吸收層介面的缺陷問題,吾人將CdS/CIGS/Mo/Glass結構進行退火處理,並且利用儀器分析退火製程對於CdS緩衝層/CIGS吸收層介面的影響。
首先,先將Mo背電極濺鍍在蘇打玻璃基板上,接著以濺鍍硒化法成長CIGS吸收層、化學水浴法成長CdS緩衝層,硫化鎘緩衝層成長後將CdS/CIGS/Mo/Glass結構退火,固定升溫速率(1oC/s)、持溫時間(180s),改變不同退火溫度:150、200、250、300、350oC。當CdS/CIGS/Mo/Glass結構退火之後,以SEM觀察表面形貌、XRD分析晶體結構、XPS檢測CdS緩衝層/CIGS吸收層介面Cd2+、S2-離子擴散情形、PL光致發光影像探討CIGS吸收層發光性質的變化、拉曼光譜分析CdS緩衝層/CIGS吸收層表面分子振動模式。最後,將經過退火及未經過退火的CdS/CIGS/Mo/Glass結構濺鍍ZnO、AZO、Al電極,完成CIGS電池元件的製作,並以太陽光模擬器量測元件之效率參數,比較退火及未經退火的的CIGS元件效率。量測結果顯示,經過退火的CIGS電池結構效率得到改善,當退火溫度為300oC時有最佳之效率,在退火溫度300oC下元件有最大的短路電流,相較於未經退火CIGS元件,改善了4.7%的效率。
The purpose of this research is to investigate the influences of thermal annealing on CIGS absorber layer and CdS Buffer layer interface properties. Since the CdS Buffer/CIGS Absorber is heterojunction structure, there are some defects at CdS Buffer/CIGS Absorber interface. These defects could make the collection of carriers be difficult, and decrease the efficiency of CIGS solar cell. In order to improve the CdS Buffer/CIGS Absorber interface’s defect, we used annealing process on CdS/CIGS/Mo/Glass structure. Then we used instruments to analyze CdS Buffer/CIGS Absorber interface properties.
First, we deposited Mo back contact layer on soda lime glass substrate. Then we deposited CIGS absorber layer by using Sputtering Selenization process; deposited CdS buffer layer by Chemical Bath Deposition. Then annealing process was conducted to anneal CdS/CIGS/Mo/Glass structure. We changed annealing temperatures:150, 200, 250, 300, 350oC and fixed heating rate(1oC/s), holding time(180s). After annealing process, we used SEM to observe the morphology;used XRD to analyze the crystal structure;used XPS to detect the interface diffusion;used PL image and Raman spectroscopy to detect the defect improvement;used Solar Simulator to measure the efficiency of the devices. The results reveals that the annealed CIGS devices had higher efficiency. At annealing temperature 300oC, the CIGS device had most high efficiency. The most high efficiency at this annealing temperature is 9.3%. Compared with no annealing CIGS device, annealed CIGS devices got 4.7% efficiency improvement.
口試委員會審定書 #
誌謝 i
摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vii
表目錄 x
第1章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 文獻回顧 3
1.4 論文架構 4
第2章 實驗理論 5
2.1 太陽能電池簡介 5
2.1.1 太陽能電池的發展 5
2.1.2 太陽能電池分類介紹 7
2.2 太陽能電池工作原理 8
2.2.1 太陽光譜 8
2.2.2 半導體材料之P-N 接面特性 10
2.2.3 太陽能電池等效電路 11
2.2.4 太陽能電池轉換效率 14
2.3 CIGS太陽能電池結構 15
2.3.1 鈉玻璃基板 15
2.3.2 鉬金屬背電極 16
2.3.3 CIGS主吸收層 16
2.3.4 硫化鎘緩衝層 20
2.3.5 純質氧化鋅層與氧化鋅摻鋁層 21
2.3.6 Al金屬前電極 21
第3章 實驗設計與步驟 22
3.1 實驗設計方法 22
3.2 實驗材料與藥品規格 23
3.3 鍍膜設備 24
3.3.1 真空濺鍍設備 24
3.3.2 真空蒸鍍設備 25
3.3.3 熱退火爐 26
3.4 實驗流程 27
3.4.1 基板清洗 27
3.4.2 濺鍍Mo金屬背電極 28
3.4.3 濺鍍硒化CIGS吸收層 29
3.4.4 水浴法沉積CdS緩衝層 31
3.4.5 退火參數設置 32
3.4.6 濺鍍ZnO/AZO/Al 32
3.5 薄膜分析儀器 33
3.5.1 場發射掃描式電子顯微鏡(FE-SEM) 33
3.5.2 紫外光-可見光光譜分析儀(UV-Vis spectroscopy) 33
3.5.3 X光繞射儀(X-ray diffraction, XRD) 34
3.5.4 X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 36
3.5.5 外部量子效率量測儀 37
3.5.6 拉曼光譜儀(Raman spectroscopy) 38
3.5.7 PL光致發光影像量測系統 39
3.5.8 太陽光模擬器(Solar Simulator) 40
第4章 結果與討論 41
4.1 CdS緩衝層薄膜厚度效應研究 41
4.1.1 CdS薄膜沉積速率量測 41
4.1.2 CdS緩衝層沉積時間對覆蓋率的影響 43
4.1.3 CdS緩衝層厚度對元件效率的影響 45
4.2 CdS緩衝層沉積於玻璃基板之退火分析 47
4.3 CdS/CIGS/Mo/Glass結構退火分析 49
4.3.1 SEM分析 49
4.3.2 XRD分析 52
4.3.3 XPS縱深元素分析 53
4.4 退火製程對於CdS緩衝層/CIGS吸收層介面缺陷改善探討 58
4.4.1 PL光致發光影像量測 58
4.4.2 拉曼光譜分析 59
4.5 CIGS元件效率量測結果 60
第5章 結論 64
參考文獻 65
[1]P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, and M. Powalla, "Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%", physica status solidi (RRL)-Rapid Research Letters, 2016. 10(8): p. 583-586.
[2]S. Jung, S. Ahn, J. H. Yun, J. Gwak, D. Kim, and K. Yoon, "Effects of Ga contents on properties of CIGS thin films and solar cells fabricated by co-evaporation technique", Current Applied Physics, 2010. 10(4): p. 990-996.
[3]J. C. Chang, C. C. Chuang, J. W. Guo, S. C. Hsu, H. R. Hsu, C. S. Wu, T. P. Hsieh, "An investigation of CuInGaSe2 thin film solar cells by using CuInGa precursor", Nanoscience and Nanotechnology Letters, 2016. 3(2): p. 200-203.
[4]I. Repins, M. Contreras, M, Romero, Y. Yan, W. Metzger, "Improved Efficiency of Cu(In,Ga)Se2 Thin Film Solar Cells with Chemically Deposited ZnS Buffer Layers by Air Annealing Formation of Homojunction by Solid Phase Diffusion", In 33rd IEEE Photovoltaic Specialist Conference, 2008. p. 11-16.
[5]T. Nakada and A. Kunioka, "Direct evidence of Cd diffusion into Cu(In,Ga)Se2 thin films during chemical-bath deposition process of CdS films", Applied Physics Letters, 1999. 74(17): p. 2444-2446.
[6]X. Wang, S. S. Li, W. K. Kim, S. Yoon, V. Craciun, J. M. Howard, S. Easwaran, O. Manasreh, O. D. Crisalle, T. J. Anderson, "Investigation of rapid thermal annealing on Cu(In,Ga)Se2 films and solar cells", Solar energy materials and solar cells, 2006. 90(17): p. 2855-2866.
[7]S. Y. Park, E. W. Lee, S. H. Lee, S. W. Park, W. K. Kim, S. H. Lee, W. G. Lee, B. J. Lee, H. K. Bae, J. H. Yoo, C. W. Jeon, "Investigation of ZnO/CdS/CuInxGa 1− xSe2 interface reaction by using hot-stage TEM", Current Applied Physics, 2010. 10(3): p. 399-401.
[8]D. S. Chen, J. Yang, F. Xu, P. Zhou, H. W. Du, J. W. Shi, Z. S. Yu, Y. H. Zhang, B. Bartholomeusz, Z. Q. Ma, "Effect of rapid thermal annealing on the compositional ratio and interface of Cu(In,Ga)Se2 solar cells by XPS", Applied Surface Science, 2013. 264(1): p. 459-463.
[9]林明獻,”太陽電池技術入門”,全華圖書股份有限公司,2016,9-13頁。
[10]Diode curve: showing knee at 0.7 V forward bias for Si, and reverse breakdown. Available: https://www.ibiblio.org/kuphaldt/electricCircuits/Semi/SEMI_3.html
[11](2008). Solar cell I-V curve as a function of specific series resistance. Available: https://commons.wikimedia.org/wiki/File:I-V_Curve_RS.PNG
[12](2008). Solar cell I-V curve as a function of specific shunt resistance. Available: https://commons.wikimedia.org/wiki/File:I-V_Curve_RSH.PNG?uselang=zh-tw
[13]A. Rockett, J. Britt, T. Gillespie, C. Marshall, M. Al Jassim, F. Hasoon, R. Matson, B. Basol, "Na in selenized Cu(In,Ga)Se2 on Na-containing and Na-free glasses: distribution, grain structure, and device performances", Thin Solid Films, 2000. 372(1): p. 212-217.
[14]D. Rudmann, A. F. D. Cunha, M. Kaelin, F. J. Haug, H. Zogg, and A. N. Tiwari, "Effects of Na on the growth of Cu(In,Ga)Se2 thin films and solar cells", MRS Online Proceedings, 2003. p. 763.
[15]N. Kohara, S. Nishiwaki, Y. Hashimoto, T. Negami, and T. Wada, "Electrical properties of the Cu(In,Ga)Se2/MoSe2/Mo structure", Solar Energy Materials and Solar Cells, 2001. 67(1): p. 209-215.
[16]B. J. Stanbery, "Copper indium selenides and related materials for photovoltaic devices", Critical reviews in solid state and materials sciences, 2002. 27(2): p. 73-117.
[17]B. Peace, J. Claypoole, N. Sun, D. Dwyer, M. D. Eisaman, P. Haldar, H. Efstathiadis, "Characterization of Cu(In,Ga)Se2 (CIGS) films with varying gallium ratios", Journal of Alloys and Compounds, 2016. 657: p. 873-877.
[18]D. A. Ras, G. Kostorz, A. Romeo, D. Rudmann, and A. Tiwari, "Structural and chemical investigations of CBD-and PVD-CdS buffer layers and interfaces in Cu (In,Ga)Se2-based thin film solar cells", Thin Solid Films, 2005. 480: p. 118-123.
[19]I. Repins, M. Contreras, M. Romero, Y. Yan, W. Metzger, J. Li, S. Johnston, B. Egaas, C. Dehart, J. Scharf, B. E. Mccandless, R. Noufi, "Characterization of 19.9%-efficient CIGS absorbers", In Photovoltaic Specialists Conference, PVSC''08. 33rd IEEE, 2008. p. 1-6.
[20]J. Dona and J. Herrero, "Chemical bath deposition of CdS thin films: An approach to the chemical mechanism through study of the film microstructure", Journal of the Electrochemical Society, 1997. 144(11): p. 4081-4091.
[21]R. Ortega‐Borges and D. Lincot, "Mechanism of Chemical Bath Deposition of Cadmium Sulfide Thin Films in the Ammonia‐Thiourea System In Situ Kinetic Study and Modelization", Journal of the Electrochemical Society, 1993. 140(12): p. 3464-3473.
[22]X. Zi-qiang, D. Hong, L. Yan, and C. Hang, "Al-doping effects on structure, electrical and optical properties of c-axis-orientated ZnO:Al thin films", Materials Science in Semiconductor Processing, 2006. 9(1): p. 132-135.
[23]J. N. Alexander, S. Higashiya, D. Caskey, H. Efstathiadis, and P. Haldar, "Deposition and characterization of cadmium sulfide (CdS) by chemical bath deposition using an alternative chemistry cadmium precursor", Solar Energy Materials and Solar Cells, 2014. 125: p. 47-53.
[24]M. S. R. Robin and M. M. Rahaman, "A comparative performance analysis of CdS and In2S3 buffer layer in CIGS solar cell", In Electrical, Computer & Telecommunication Engineering (ICECTE), International Conference, 2016, p. 1-4.
[25]Z. Rizwan, A. Zakaria, M. S. M. Ghazali, A. Jafari, F. U. Din, and R. Zamiri, "Effect of Annealing Temperature on the Optical Spectra of CdS Thin Films Deposited at Low Solution Concentrations by Chemical Bath Deposition (CBD) Technique", International journal of molecular sciences, 2011. 12(2): p. 1293-1305.
[26]Z. Wei, S. Senthilarasu, M. V. Yakushev, R. W. Martin, and H. M. Upadhyaya, "Effect of mechanical compression on Cu(In,Ga)Se2 films: micro-structural and photoluminescence analysis", RSC Advances, 2014. 4(10): p. 5141-5147.
[27]M. Elsharkawy, G. Kanda, M. Yakushev, E. Abdel-Hady, and D. Keeble, "Characterization of vacancy defects in Cu(In,Ga)Se2 by positron annihilation spectroscopy", AIP Advances, 2016. 6(12): p. 125031.
[28]S. Shirakata and T. Nakada, "Photoluminescence and time‐resolved photoluminescence in Cu(In,Ga)Se2 thin films and solar cells", physica status solidi (c), 6(5): p. 1059-1062.
[29]J. Liu, D.-M. Zhuang, M.-J. Cao, C.-Y. Wang, M. Xie, and X.-L. Li, "Preparation and characterization of Cu(In,Ga)Se2 thin films by selenization of Cu0.8Ga0.2 and In2Se3 precursor films", International Journal of Photoenergy, 2012. 2012(2012): p. 7-14.
[30] D. S. Chuu, C. M. Dai, W. F. Hsieh, and C. T. Tsai, "Raman investigations of the surface modes of the crystallites in CdS thin films grown by pulsed laser and thermal evaporation", Journal of applied physics, 1991. 69(12): p. 8402-8404.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top