跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/25 08:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林宣佑
研究生(外文):Hsuan-Yu Lin
論文名稱:靜態影像中樣式的發現與計數
論文名稱(外文):Image Pattern Mining and Counting
指導教授:黃乾綱黃乾綱引用關係
口試日期:2017-06-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:69
中文關鍵詞:重複樣式邊緣偵測物件識別特徵擷取
外文關鍵詞:Object countingRepeated patternObject clusteringObvious element
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
物件的計數一直是生活中很重要且常見的問題,現行也已有許多對於靜態影像中物件計數的相關研究,然而大部分的方法都是基於已知目標物的部分特徵,設定了相當程度的限制條件而進行偵測,適用的資料範圍及彈性不甚理想。本研究以重複及明顯為樣式的概念,發展一般化物件偵測與計數系統,不預先設定目標型態,而是以重複出現的明顯視覺性特徵,找出影像中的樣式,進行特徵描述並計算數量,進而達到物件計數的目的。本研究對於樣式( Pattern )的定義,即同時在形狀、顏色、尺寸三方面有相同特徵且與影像中相對明顯的封閉邊緣輪廓。本研究對靜態影像中的封閉邊緣進行特徵擷取並分群,保留相對明顯的,即為樣式。主要的內容議題分為兩個部分,第一部分為輪廓的分群,以邊緣資訊找出影像中的輪廓,再根據形狀、顏色以及尺寸將相似的輪廓分在同一群。第二部分則是篩選出相對明顯的輪廓分群,進行標示、外型特徵的描述以及數量計算。最後的結果即為已標示出樣式輪廓的影像及相應樣式的特徵描述。本研究以兩個不同面向的實驗進行成果探討,其一為系統找出的物件是否能符合人的期望,另一項則是不同物件的分群成效。實驗結果證明,基於本研究提出的特徵定義而實作的樣式偵測系統,確實能有效的找出達成靜態影像中的一般化物件偵測與計數。
Object counting is common and important in life. Currently there are many research about counting objects in an image, but most of them need to adjust parameters base on target profiles. It leads to some limits on data type which make these approaches inflexible. In this paper, we take repeat and obvious contours as pattern, describing their profiles and counting numbers without setting data conditions in advance. In this paper, the definition of pattern is the contours with similar features on shape, color and size simultaneously.We extracts contour features from image, divides contours into many groups and keeps obvious ones as patterns. The proposed approach include two parts. The first part is contour clustering. We get contours from edge information in image, then divide them into many groups referring to similar shape, color, and size. In second part, we make a filter to keep those comparatively obvious groups, then mark contours, describe their profiles and count. Final results are images with marked contours and pattern feature descriptions.This paper evaluates the performance from two aspect. One is the ability to find objects that matches human thoughts. The other one is the effect of clustering. The results show that the proposed approach can find most of object profiles and count numbers in general images.
致謝 I
摘要 II
ABSTRACT III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 、緒論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 研究貢獻 2
1.4 論文架構 3
第二章 、相關文獻及方法探討 4
2.1 物件辨識 4
2.2 物件計數 5
2.3 樣式偵測 8
2.4 邊緣偵測相關演算法 9
2.5 色彩空間模型 12
2.6 形狀特徵 16
2.7 聚類演算法 17
第三章 、問題定義及研究方法 22
3.1 問題定義及系統架構 22
3.2 邊緣偵測 24
3.3 輪廓偵測與篩選 27
3.4 輪廓特徵擷取及分群 32
3.5分群合併 39
3.6 明顯性篩選 41
第四章 、實驗結果與討論 47
4.1 實驗評估及參數說明 47
4.2 一般化樣式偵測實驗 49
4.3 本研究與菌落偵測的結果比較 57
第五章 、結論與未來展望 65
5.1 結論 65
5.2 未來展望 65
參考文獻 67
1.Xiaofeng, R. and L. Bo. Discriminatively trained sparse code gradients for contour detection. in Advances in neural information processing systems. 2012.
2.Geissmann, Q., OpenCFU, a new free and open-source software to count cell colonies and other circular objects. PloS one, 2013. 8(2): p. e54072.
3.陳雲濤, Automatically Count and Classify Multiple Colonies on Mobile Device Captured Images. 2016.
4.Girshick, R. Fast r-cnn. in Proceedings of the IEEE International Conference on Computer Vision. 2015.
5.Redmon, J., et al. You only look once: Unified, real-time object detection. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016.
6.Ballard, D.H., Generalizing the Hough transform to detect arbitrary shapes. Pattern recognition, 1981. 13(2): p. 111-122.
7.VC, H.P., Method and means for recognizing complex patterns. 1962, Google Patents.
8.Duda, R.O. and P.E. Hart, Use of the Hough transformation to detect lines and curves in pictures. Communications of the ACM, 1972. 15(1): p. 11-15.
9.Ioannou, D., W. Huda, and A.F. Laine, Circle recognition through a 2D Hough transform and radius histogramming. Image and vision computing, 1999. 17(1): p. 15-26.
10.Yuen, H., et al., Comparative study of Hough transform methods for circle finding. Image and vision computing, 1990. 8(1): p. 71-77.
11.Tsuji, S. and F. Matsumoto, Detection of ellipses by a modified Hough transformation. IEEE Trans. Computers, 1978. 27(8): p. 777-781.
12.Hansen, L.K. and P. Salamon, Neural network ensembles. IEEE transactions on pattern analysis and machine intelligence, 1990. 12(10): p. 993-1001.
13.Jifeng Dai, Y.L., Kaiming He, Jian Sun. {R-FCN}: Object Detection via Region-based Fully Convolutional Networks. in NIPS. 2016.
14.Dai, J., et al., Deformable Convolutional Networks. arXiv preprint arXiv:1703.06211, 2017.
15.Jung, C.R. and R. Schramm. Rectangle detection based on a windowed Hough transform. in Computer Graphics and Image Processing, 2004. Proceedings. 17th Brazilian Symposium on. 2004. IEEE.
16.team, o.d. OpenCV Tutorials , Hough Circle Transform. 2017; Available from: http://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/hough_circle/hough_circle.html.
17.Toh, Y., T. Ng, and B. Liew. Automated fish counting using image processing. in Computational Intelligence and Software Engineering, 2009. CiSE 2009. International Conference on. 2009. IEEE.
18.Masoud, O. and N.P. Papanikolopoulos, A novel method for tracking and counting pedestrians in real-time using a single camera. IEEE transactions on vehicular technology, 2001. 50(5): p. 1267-1278.
19.Leung, T. and J. Malik. Detecting, localizing and grouping repeated scene elements from an image. in European Conference on Computer Vision. 1996. Springer.
20.Pauly, M., et al. Discovering structural regularity in 3D geometry. in ACM transactions on graphics (TOG). 2008. ACM.
21.Lindeberg, T. Edge detection and ridge detection with automatic scale selection. in Computer Vision and Pattern Recognition, 1996. Proceedings CVPR''96, 1996 IEEE Computer Society Conference on. 1996. IEEE.
22.Canny, J., A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence, 1986(6): p. 679-698.
23.Dollár, P. and C.L. Zitnick. Structured forests for fast edge detection. in Proceedings of the IEEE International Conference on Computer Vision. 2013.
24.Doxygen. OpenCV Tutorial, Canny Edge Detection. 2017; Available from: http://docs.opencv.org/trunk/da/d22/tutorial_py_canny.html.
25.Quinlan, J.R., Induction of decision trees. Machine learning, 1986. 1(1): p. 81-106.
26.Shaker, M. Structured Forests for Fast Edge Detection Paper Presentation. 2014; Available from: https://www.slideshare.net/ZGTRZGTR/mc-cr-presentation
27.Wright, S., Digital compositing for film and video. Vol. 10. 2006: Taylor & Francis.
28.Everitt, B., Cluster analysis. 2011.
29.MacQueen, J. Some methods for classification and analysis of multivariate observations. in Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. 1967. Oakland, CA, USA.
30.Johnson, S.C., Hierarchical clustering schemes. Psychometrika, 1967. 32(3): p. 241-254.
31.Zou, K.H., A.J. O’Malley, and L. Mauri, Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation, 2007. 115(5): p. 654-657.
32.Rand, W.M., Objective criteria for the evaluation of clustering methods. Journal of the American Statistical association, 1971. 66(336): p. 846-850.
33.Jang, R., Hierarchical Clustering Introduction. 2005.
34.Ester, M., et al. A density-based algorithm for discovering clusters in large spatial databases with noise. in Kdd. 1996.
35.Agrawal, R., T. Imieliński, and A. Swami. Mining association rules between sets of items in large databases. in Acm sigmod record. 1993. ACM.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top