(3.238.186.43) 您好!臺灣時間:2021/03/05 21:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳至威
研究生(外文):Zhi-Wei Chen
論文名稱:利用掃描器法調查臺灣中部孟宗竹林及柳杉林之細根動態
論文名稱(外文):Measurements of Fine Root Dynamics with Optical Scanner Method in a Moso Bamboo and a Japanese Cedar Forests, Central Taiwan
指導教授:久米朋宣
口試日期:2017-07-13
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:森林環境暨資源學研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:84
中文關鍵詞:細根孟宗竹柳杉季節變異空間變異土壤呼吸影響因子
外文關鍵詞:fine rootMoso bambooJapanese cedarseasonal variationspatial variationsoil respirationcontrolling factor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:75
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
細根是植物吸收水分、養分的重要構造,扮演著碳在植物與土壤間流動的重要路徑。細根生物量、生長量及死亡量具有時間與空間變異的特性並容易受到環境與生物因子的影響,在各種森林中的研究有助於瞭解地下碳循環對於周圍環境改變的反應。近年來孟宗竹林擴張至周圍森林(例如:柳杉林)的現象可能會影響區域碳循環,已受到亞洲國家關注。但過往研究多僅侷限於地上部,尚缺乏對於細根動態的研究,可歸因於野外調查困難度高。近年亦發展出掃描器法,能夠以較大的視野觀察細根,因此被認為具有潛力能夠應用在野外調查,但仍缺少研究以證實其適用性。
本研究目的為發展掃描器觀測細根動態的方法,並調查臺灣中部孟宗竹林及柳杉林的細根生物量、生長量、死亡分解量的時間與空間變異特性及其影響因子,以瞭解這兩種森林地下碳循環的差異。此研究分別討論:一、發展掃描器法於孟宗竹林及柳杉林的應用方法;二、瞭解孟宗竹林及柳杉林細根生物量、生長量、死亡分解量的時間變異與空間變異特性;三、檢測細根生物量、生長量、死亡分解量的時間變異與空間變異影響因子;四、推估細根生物量、年生長量、年死亡分解量及置換速率;五、瞭解細根動態對地下碳動態(例如:土壤呼吸速率) 於時間變異上的影響。
此研究於2015年12月在溪頭實驗林的孟宗竹林長期樣區埋設六個壓克力觀察箱,此樣區會於每年5月進行竹桿位置的量測。2016年1月和2月沿著兩棵柳杉的兩個不同方向分別在距離樹幹1公尺及2公尺處共埋設八個壓克力觀察箱。在壓克力觀察箱埋設後開始至2017年3月,每個月一至二次以掃描器法收集影像並同時測量相關的影響因子(土壤溫度、土壤濕度、葉面積指數)及土壤呼吸速率。在進行野外試驗之前,透過標準化影像分析過程,八位人員分析同組影像以評量人員的影像分析能力差異;結果顯示人為誤差僅約10 %。亦透過影像中的像素數量與細根乾重的關係建立迴歸式,可將掃描器獲得的影像資料由2-D資訊轉換成根生物量。
在測量期間,孟宗竹林、柳杉林細根生物量約在壓克力箱埋設後7個月趨於穩定。孟宗竹林細根生長量及死亡分解量高峰時間較柳杉林早發生,相對高的時期也持續較久;而柳杉林中地被植物細根動態與柳杉的細根動態相似。此外,兩種森林的細根生長量與死亡分解量的高峰時間及相對高的時期於各地點不太一致,且細根並非均勻地分布在各個測量地點。兩種森林的垂直空間分布,細根生物量、年生長及死亡分解量在上層土壤 (0-10公分深處) 及下層土壤 (10-20公分深處) 的分布皆無明顯差異。在柳杉林中,距離柳杉樹幹的遠近對細根生物量、年生長量及年死亡分解量的分布沒有影響。
時間變異上,土壤溫度與孟宗竹林細根生物量、年生長及死亡分解量呈現顯著正相關,但與柳杉林細根生物量則是顯著負相關。土壤濕度與葉面積指數並無發現明顯關係。林分結構在特定距離與細根生物量的空間分布負相關性雖然不高,但細根生物量與細根生長、死亡分解量有顯著正相關,因此仍可能對細根生物量的空間變異產生影響。
本研究中細根生物量與細根年生長、死亡分解量及置換速率分別為孟宗竹林 (290 g m-2, 429 g m-2 yr-1, 147 g m-2 yr-1, 1.48 times yr-1);柳杉林 (126 g m-2, 151 g m-2 yr-1, 25 g m-2 yr-1, 1.20 times yr-1),地被植物細根生物量、年生長及死亡分解量的貢獻約佔50%。孟宗竹林細根生物量與細根年生長、死亡分解量及置換速率都高於柳杉林,此種趨勢與前人研究之結果相符。
孟宗竹林細根生物量與土壤呼吸速率在時間變異上顯著正相關,因此細根生物量上升暗示著可能會對土壤呼吸速率有一定程度影響,但此趨勢在柳杉林中較不明顯。
總體來說,孟宗竹林相對於柳杉林輸入更多碳至細根中,此獨特的特性可能使其細根動態對土壤呼吸速率在時間變異上有顯著的影響。
Fine roots are responsible for resource acquisition (water, nutrients) in plants, which play important role in belowground carbon (C) cycle. As fine roots baiomass, production, and decompositon vary with season and locations, studying fine root dynamics in various vegetation types is crucial to know how belowground C cycle responsed to local environment. In recent years, invasion of Moso bamboo to surrounding forests (e.x., Japanese cedar) had been noticed in Asian countries, which might change belowground C cycle. However, few studies investigated fine root dynbamics in Moso bamboos resulting from difficulty of measurements. Recently, a new method, optical scanner method had been developed, which might have high applicability with larg viewing area. On the other hand, still few studies tested the method in forests.
Hence, the aims of this study were 1) to develop methodology of scanner method in Moso bamboo (MBF) and Japanese cedar (JCF) forests, 2) to clarify the temporal and spatial variation of fine root dynamics, 3) to examine factors determining temporal and spatial variation of fine root dynamics, 4) to estimate fine root biomass (FRB), annual fine root production (AFRP), annual fine root decomposition (AFRD), and turnover (FTR), and 5) to understand the effect of fine root dynamics on belowground C cycle such as soil respiration (Rs).
The 6 scan boxes were installed at December 2015 in a long-term study plot of MBF, in which each culm position was recorded every year. The 8 scan boxes were installed at January and February 2016 around two Japanese cedar trees with the distance of 1 and 2 m from each target tree along the two directions. After the box installation, fine root measurements with the scanner method were conducted immediatedly in both stands until March 2017. The controlling factors including soil temperature, soil water content, and leaf area indices were measured concurrently with scan image acquisition; soil respiration rate was also measured concurrently.
Before the field measurements, the degree of human error in manual root extraction from scan images were tested by conducting the manual root tracking by 8 observers based on a standardized image processing procedure. This study confirmed human error of root extraction could be around 10 %. Also, to transform scanned pixel data to root biomass, the relationships were derived from projected root area and the corresponding dry biomass.
During this study period, FRB had been stabilized approximately 7 months later at both stands since the box installation. FRP and FRD of MBF peaked earlier than those of JCF. Besides, the durations of high FRP and FRD values in MBF was longer than those of JCF. In JCF, the temporal variations in fine root dynamics of understory plant was almost same as that of tree roots. Moreover, we found the significant spatial variation of fine root dynamics at both stands, indicating the peak timing and duration with high values were not similar among locations. The vertical distribution of FRB, AFRP and AFRD were not distinctive in the comparisons between the upper (0-10 cm) and lower (10-20 cm) soil layer in MBF and JCF. In JCF, distances from the target trees did not affect FRB, AFRP, and AFRD.
Ts was the main controlling factor of fine root dynamics which was positively correlated with temporal variations in FRB, FRP and FRD of MBF, although Ts was negatively correlated with FRB of JCF. Mostly, we found no relationships between SWC, LAI, and fine root dynamics. In the spatial variations, stand structure within specific distance and FRB in MBF showed weak negative correlation. Further, FRB in MBF was spatially correlated with FRP and FRD, suggesting the stand structure might affect the spatial variation of FRB, FRP and FRD in MBF.
FRB, AFRP, AFRD and FTR were 290 g m-2, 429 g m-2yr-1, 147 g m-2 yr-1, 1.48 times yr-1 in MBF, respectively. In contrast, FRB, AFRP, AFRD and FTR were 126 g m-2, 151 g m-2 yr-1, 25 g m-2 yr-1, 1.20 times yr-1 in JCF. Understory plant roots accounted for about 50% of FRB, AFRP, AFRD in JCF. MBF had larger FRB, AFRP, AFRD and FTR than those of JCF in this study. The tendency was also confirmed in previous studies.
This study also indicated Rs was positively correlated with the temporal variation of FRB in MBF but not found obvious relationship in JCF. Therefore, it seems that fine root dynamics may affect the temporal pattern of Rs in MBF with large FRB, AFRP, and AFRD than JCF. MBF invested much C to root biomass than that of JCF. The unique characteristics might lead to strong impact of fine root dynamics on the temporal variation of Rs.
口試委員會審定書......................................................................................................... i
誌謝................................................................................................................................ ii
摘要.............................................................................................................................. iii
Abstract .......................................................................................................................... v
Abbreviations ................................................................................................................. 5
Chapter 1 Introduction ................................................................................................... 6
Chapter 2 Literature review ......................................................................................... 10
2.1 Fine root dynamics and turnover in carbon cycle......................................... 10
2.2 Methodologies of investigating fine root dynamics ..................................... 10
2.2.1 Sequential core ................................................................................. 10
2.2.2 Ingrowth core ................................................................................... 10
2.2.3 Minirhizotrons .................................................................................. 11
2.2.4 Optical scanner ................................................................................. 11
2.3 Temporal and spatial variation in fine root dynamics .................................. 12
2.4 Factors of fine root dynamics ....................................................................... 14
2.4.1 Environmental factors ...................................................................... 14
2.4.2 Phonological factors ......................................................................... 16
2.5 Fine Root Dynamics and Soil Respiration ................................................... 17
2.6 Moso bamboo (Phyllostachys pubescens) and adjacent Japanese cedar forests (Cryptomeria japonica) ...................................................................................... 18
Chapter 3 Material and Method ................................................................................... 21
3.1 Site description ............................................................................................. 21
3.2 Fine root dynamics measurement ................................................................. 22
3.2.1 Optical scanner system ..................................................................... 22
3.2.2 Image processing .............................................................................. 24
3.2.3 Analysis ability of different observers ............................................. 26
3.3 Conversion of projected root area to biomass .............................................. 26
3.4 Measurement of environmental factors ........................................................ 29
3.4.1 Soil temperature (Ts) ........................................................................ 29
3.4.2 Soil volumetric water content (SWC) .............................................. 29
3.5 Phenological factors ..................................................................................... 29
3.5.1 LAI measurement ............................................................................. 29
3.5.2 Stand structure .................................................................................. 30
3.6 Statistics analysis .......................................................................................... 30
3.7 Soil respiration measurement ....................................................................... 31
Chapter 4 Results and Discussion ................................................................................ 33
4.1 Development of methodology for the optical scanner method ..................... 33
4.1.1 Analysis ability of different observers ............................................. 33
4.1.2 Conversion of projected root area to dry-weight based biomass ..... 33
4.2 Seasonal pattern of environmental factors (Ts, SWC) and LAI ................... 34
4.3.2 Vertical distribution of fine root biomass, production and decomposition of Moso bamboo and Japanese cedar forest ..................... 38
4.3.3 Spatial distribution of fine root biomass, annual fine root production and decomposition in different distances far from trees ........................... 39
4.4 Controlling factors of temporal and spatioal variations in fine roots ........... 40
4.4.1 Controlling factors of temporal variation in fine root biomass, production, and decomposition ................................................................. 40
4.4.2 Controlling factors of spatial variation in fine root biomass, annual production and decomposition .................................................................. 41
4.5 Fine root biomass, annual fine root production, annual decomposition and turnover rate ........................................................................................................ 43
4.6 Impact of fine root dynamic on soil respiration in Moso bamboo and Japanese cedar forests ........................................................................................................ 46
Chapter 5 Conclusions ................................................................................................. 47
References .................................................................................................................... 50
Figures.......................................................................................................................... 56
Tables ........................................................................................................................... 75
Appendix ...................................................................................................................... 81
Abramoff, R. Z., & Finzi, A. C. (2015). Are above‐and below‐ground phenology in sync. New Phytologist, 205(3), 1054-1061.
Barbhuiya, A. R., Arunachalam, A., Pandey, H. N., Khan, M. L., & Arunachalam, K. (2012). Fine root dynamics in undisturbed and disturbed stands of a tropical wet evergreen forest in northeast India. Tropical ecology, 53(1), 69-79.
Bellamy, P. H., Loveland, P. J., Bradley, R. I., Lark, R. M., & Kirk, G. J. (2005). Carbon losses from all soils across England and Wales 1978–2003. Nature, 437(7056), 245-248.
Boone, R. D., Nadelhoffer, K. J., Canary, J. D., & Kaye, J. P. (1998). Roots exert a strong influence on the temperature sensitivityof soil respiration. Nature, 396(6711), 570-572.
Bond-Lamberty, B., & Thomson, A. (2010). Temperature-associated increases in the global soil respiration record. Nature, 464(7288), 579-582.
Cannell, M. G. (1982). World forest biomass and primary production data.
Cheng, S.S., Chen, S.Y. Meteorological data in the experimental forest of college of bioresources and agriculture of National Taiwan University from 1941 to 2005. (2009). Experimental forest of college of bioresources and agriculture national Taiwan university., 26, 51-75.
Chiou, C.R., Chen, T.H., Lin, Y., Yang, Y. and Lin, S. (2009) Distribution and Change Analysis of Bamboo Forest in Northern Taiwan. Quarterly Journal of Chinese Forestry, 42 (1), 89-105.
Chen, T.H., Chiu, C.Y., Xie, Z.Y. and Wang, S. (2014) Growth characteristics of Moso bamboo (Phyllostachys pubescens) plantations at various altitudes- for instance in Daan area, Nantou county. Quarterly Journal of Chinese Forestry, 47(2), 181-192. (in Chinese)
Chen, T.H., Liu, C.P. and Chung, H.Y. (2011) Growth and biomass of Moso bamboo in FengHuang mountain, Nantou county. Quarterly Journal of Chinese Forestry, 44(1), 19-28. (in Chinese)
Dannoura, M., Kominami, Y., Oguma, H., & Kanazawa, Y. (2008). The development of an optical scanner method for observation of plant root dynamics. Plant Root, 2, 14-18.
DAY, F. P., WEBER, E. P., Hinkle, C., & DRAKE, B. G. (1996). Effects of elevated atmospheric CO2 on fine root length and distribution in an oak‐palmetto scrub ecosystem in central Florida. Global Change Biology, 2(2), 143-148.
Dixon, R., Brown, S., Houghton, R. E. A., Solomon, A. M., Trexler, M. C., & Wisniewski, J. (1994). Carbon pools and flux of global forest ecosystems. Science(Washington), 263(5144), 185-189.
Duh, C.T., Chiu, C.M., Lin, K.C., 2011. Estimate of above- and below- ground biomass of a Cryptomeria japonica plantation in Renluen area of Taiwan. Quarterly Journal of Chinese Forestry 44, 401-412. (in Chinese)
Fu, J. (2001). Chinese moso bamboo: its importance. Bamboo, 22(5), 5-7.
Fahey, T. J., & Hughes, J. W. (1994). Fine root dynamics in a northern hardwood forest ecosystem, Hubbard Brook Experimental Forest, NH. Journal of ecology, 533-548.
Fan, S.H., Xiao, F.M., Wang S.L., Su, W.H., Yu, X.J., Shen, Z.Q. (2009) Fine Root Biomass and Turnover in Moso Bamboo Plantation in Huitong Forest Station, Hunan Province. Scientia Silvae Sinicae, 45(7), 1-6. (in Chinese)
Finér, L., Helmisaari, H. S., Lõhmus, K., Majdi, H., Brunner, I., Børja, I., ... & Kraigher, H. (2007). Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosystems, 141(3), 394-405.
Finér, L., Ohashi, M., Noguchi, K., & Hirano, Y. (2011). Fine root production and turnover in forest ecosystems in relation to stand and environmental characteristics. Forest Ecology and Management, 262(11), 2008-2023.
Fierer, N., Schimel, J. P., & Holden, P. A. (2003). Variations in microbial community composition through two soil depth profiles. Soil Biology and Biochemistry, 35(1), 167-176.
Fujimaki, R., Tateno, R., & Tokuchi, N. (2007). Root development across a chronosequence in a Japanese cedar (Cryptomeria japonica D. Don) plantation. Journal of Forest Research, 12(2), 96-102.
Fukuzawa, K., Shibata, H., Takagi, K., Satoh, F., Koike, T., & Sasa, K. (2013). Temporal variation in fine-root biomass, production and mortality in a cool temperate forest covered with dense understory vegetation in northern Japan. Forest ecology and management, 310, 700-710.
Giardina, C. P., Binkley, D., Ryan, M. G., Fownes, J. H., & Senock, R. S. (2004). Belowground carbon cycling in a humid tropical forest decreases with fertilization. Oecologia, 139(4), 545-550.
Gill, R. A., & Jackson, R. B. (2000). Global patterns of root turnover for terrestrial ecosystems. New phytologist, 147(1), 13-31.
Hashimoto, S., Carvalhais, N., Ito, A., Migliavacca, M., Nishina, K., & Reichstein, M. (2015). Global spatiotemporal distribution of soil respiration modeled using a global database. Biogeosciences, 12, 4121-4132.
Hanson, P. J., Edwards, N. T., Garten, C. T., & Andrews, J. A. (2000). Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry, 48(1), 115-146.
Hertel, D., & Leuschner, C. (2002). A comparison of four different fine root production estimates with ecosystem carbon balance data in a Fagus–Quercus mixed forest. Plant and soil, 239(2), 237-251.
Helmisaari, H. S., Makkonen, K., Kellomäki, S., Valtonen, E., & Mälkönen, E. (2002). Below-and above-ground biomass, production and nitrogen use in Scots pine stands in eastern Finland. Forest Ecology and Management, 165(1), 317-326.
Hendrick, R. L., & Pregitzer, K. S. (1993). The dynamics of fine root length, biomass, and nitrogen content in two northern hardwood ecosystems. Canadian Journal of Forest Research, 23(12), 2507-2520.
Hendricks, J. J., Hendrick, R. L., Wilson, C. A., Mitchell, R. J., Pecot, S. D., & Guo, D. (2006). Assessing the patterns and controls of fine root dynamics: an empirical test and methodological review. Journal of Ecology, 94(1), 40-57.
Hodge, A. (2004). The plastic plant: root responses to heterogeneous supplies of nutrients. New phytologist, 162(1), 9-24.
Hung, C.Y. (2012) Assessment of ecosystem carbon stock and net ecosystem productivity of old-aged, Japanese cedar plantation in Xitou, National Taiwan University.
Isagi, Y., Kawahara, T., Kamo, K., & Ito, H. (1997). Net production and carbon cycling in a bamboo Phyllostachys pubescens stand. Plant Ecology, 130(1), 41-52.
Jackson, R., Mooney, H. A., & Schulze, E. D. (1997). A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences, 94(14), 7362-7366.
Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E., & Schulze, E. D. (1996). A global analysis of root distributions for terrestrial biomes. Oecologia, 108(3), 389-411.
Jobbágy, E. G., & Jackson, R. B. (2001). The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry, 53(1), 51-77.
Johnson, M. G., Tingey, D. T., Phillips, D. L., & Storm, M. J. (2001). Advancing fine root research with minirhizotrons. Environmental and Experimental Botany, 45(3), 263-289.
Joslin, J. D., Wolfe, M. H., & Hanson, P. J. (2000). Effects of altered water regimes on forest root systems. New Phytologist, 147(1), 117-129.
Kuzyakov, Y. (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biology and Biochemistry, 38 (3), 425-448.
Keyes, M. R., & Grier, C. C. (1981). Above-and below-ground net production in 40-year-old Douglas-fir stands on low and high productivity sites. Canadian Journal of Forest Research, 11(3), 599-605.
Katayama, A., Kume, T., Komatsu, H., Ohashi, M., Nakagawa, M., Yamashita, M., ... & Kumagai, T. O. (2009). Effect of forest structure on the spatial variation in soil respiration in a Bornean tropical rainforest. Agricultural and Forest Meteorology, 149(10), 1666-1673.
King, J. S., Pregitzer, K. S., & Zak, D. R. (1999). Clonal variation in above-and below-ground growth responses of Populus tremuloides Michaux: influence of soil warming and nutrient availability. Plant and Soil, 217(1-2), 119-130.
Komatsu, H., Onozawa, Y., Kume, T., Tsuruta, K., Shinohara, Y., & Otsuki, K. (2012). Canopy conductance for a Moso bamboo (Phyllostachys pubescens) forest in western Japan. Agricultural and Forest Meteorology, 156, 111-120.
Kozlowski, T. T., & Pallardy, S. G. (1997). Growth control in woody plants. Elsevier.
Konôpka, B., Noguchi, K., Sakata, T., Takahashi, M., & Konôpková, Z. (2007). Effects of simulated drought stress on the fine roots of Japanese cedar (Cryptomeria japonica) in a plantation forest on the Kanto Plain, eastern Japan. Journal of forest research, 12(2), 143-151.
Konôpka, B., Yuste, J. C., Janssens, I. A., & Ceulemans, R. (2005). Comparison of fine root dynamics in Scots pine and Pedunculate oak in sandy soil. Plant and Soil, 276(1), 33-45.
Lahti, M., Aphalo, P. J., Finér, L., Ryyppö, A., Lehto, T., & Mannerkoski, H. (2005). Effects of soil temperature on shoot and root growth and nutrient uptake of 5-year-old Norway spruce seedlings. Tree Physiol, 25(1), 115-122.
Leuschner, C., & Hertel, D. (2003). Fine root biomass of temperate forests in relation to soil acidity and fertility, climate, age and species. Progress in botany, 405-438.
Lin, P. H. (2014) Soil Carbon Cycling of a Moso Bamboo Forest in Xitou, Central Taiwan. Master thesis in Natinal Taiwan University.
Lin, P. H. (2015) Root Respiration and Its Temperature Sensitivity in Moso Bamboo Forest, Central Taiwan. Master thesis in Natinal Taiwan University.
Liu, J., Yang, Q. P., Song, Q. N., Yu, D. K., Yang, G. Y., Qi, H. Y., & Shi, J. M. (2013). Strategy of fine root expansion of Phyllostachys pubescens population into evergreen broad-leaved forest. Chinese Journal of Plant Ecology, 37(3), 230-238.
López, B., Sabaté, S., & Gracia, C. (1998). Fine roots dynamics in a Mediterranean forest: effects of drought and stem density. Tree physiology, 18(8-9), 601-606.
Majdi, H. (2005). Fine root turnover in forest ecosystems. Plant and soil, 276(1-2), vii-viii.
Majdi, H., & Andersson, P. (2005). Fine root production and turnover in a Norway spruce stand in northern Sweden: effects of nitrogen and water manipulation. Ecosystems, 8(2), 191-199.
McCormack, M. L., Adams, T. S., Smithwick, E. A., & Eissenstat, D. M. (2014). Variability in root production, phenology, and turnover rate among 12 temperate tree species. Ecology, 95(8), 2224-2235.
McCormack, M. L., Gaines, K. P., Pastore, M., & Eissenstat, D. M. (2015). Early season root production in relation to leaf production among six diverse temperate tree species. Plant and Soil, 389(1-2), 121-129.
Mao, Z., Saint-André, L., Bourrier, F., Stokes, A., & Cordonnier, T. (2015). Modelling and predicting the spatial distribution of tree root density in heterogeneous forest ecosystems. Annals of botany, 116(2), 261-277.
Nakano, A., Ikeno, H., Kimura, T., Sakamoto, H., Dannoura, M., Hirano, Y., ... & Ohashi, M. (2012). Automated analysis of fine‐root dynamics using a series of digital images. Journal of Plant Nutrition and Soil Science, 175(5), 775-783.
Noguchi, K., Konôpka, B., Satomura, T., Kaneko, S., & Takahashi, M. (2007). Biomass and production of fine roots in Japanese forests. Journal of Forest Research, 12(2), 83-95.
Noguchi, K., Sakata, T., Mizoguchi, T., & Takahashi, M. (2005). Estimating the production and mortality of fine roots in a Japanese cedar (Cryptomeria japonica D. Don) plantation using a minirhizotron technique. Journal of Forest Research, 10(6), 435-441.
North, G. B., & Nobel, P. S. (1997). Root‐soil contact for the desert succulent Agave deserti in wet and drying soil. New phytologist, 135(1), 21-29.
Okutomi, K., Shinoda, S., & Fukuda, H. (1996). Causal analysis of the invasion of broad‐leaved forest by bamboo in Japan. Journal of Vegetation Science, 7(5), 723-728.
Pregitzer, K. S., King, J. S., Burton, A. J., & Brown, S. E. (2000). Responses of tree fine roots to temperature. New Phytologist, 147(1), 105-115.
Pregitzer, K. S., Laskowski, M. J., Burton, A. J., Lessard, V. C., & Zak, D. R. (1998). Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiology, 18(10), 665-670.
Persson, H. Å., & Stadenberg, I. (2009). Spatial distribution of fine-roots in boreal forests in eastern Sweden. Plant and soil, 318(1-2), 1.
Persson, H. Å., & Stadenberg, I. (2010). Fine root dynamics in a Norway spruce forest (Picea abies (L.) Karst) in eastern Sweden. Plant and Soil, 330(1-2), 329-344.
Schenk, H. J. (2005). Vertical vegetation structure below ground: scaling from root to globe. In Progress in Botany (pp. 341-373). Springer Berlin Heidelberg.
Schenk, H. J., & Jackson, R. B. (2002). Rooting depths, lateral root spreads and below‐ground/above‐ground allometries of plants in water‐limited ecosystems. Journal of Ecology, 90(3), 480-494.
Søe, A. R., & Buchmann, N. (2005). Spatial and temporal variations in soil respiration in relation to stand structure and soil parameters in an unmanaged beech forest. Tree physiology, 25(11), 1427-1436.
Sun, B.K., Chen, Y.T., Yen, T.M. and Li, L.E. (2013) Stand characteristics, aboveground biomass and carbon storage of moso bamboo (Phyllostachys pubescens) stands under different management levels in central Taiwan. Quarterly Journal of Forest Research, 35 (1), 23-32. (in Chinese)
Seiffert, S., Kaselowsky, J., Jungk, A., & Claassen, N. (1995). Observed and calculated potassium uptake by maize as affected by soil water content and bulk density. Agronomy Journal, 87(6), 1070-1077.
Suzuki, S., & Nakagoshi, N. (2008). Expansion of bamboo forests caused by reduced bamboo-shoot harvest under different natural and artificial conditions. Ecological Research, 23(4), 641-647.
Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., ... & Thonicke, K. (2003). Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9(2), 161-185.
Steinaker, D. F., Wilson, S. D., & Peltzer, D. A. (2010). Asynchronicity in root and shoot phenology in grasses and woody plants. Global Change Biology, 16(8), 2241-2251.
Taiwan Forestry Bureau. (2015) The Fourth National Forest Resources and Land Use in Taiwan, 50. (in Chinese)
Terada M (1985) Relationship between root tip elongation and soil temperature in Quercus spp. (in Japanese). Trans Jpn For Soc 96, 341–343
Tierney, G. L., Fahey, T. J., Groffman, P. M., Hardy, J. P., Fitzhugh, R. D., & Driscoll, C. T. (2001). Soil freezing alters fine root dynamics in a northern hardwood forest. Biogeochemistry, 56(2), 175-190.
Tierney, G. L., Fahey, T. J., Groffman, P. M., Hardy, J. P., Fitzhugh, R. D., Driscoll, C. T., & Yavitt, J. B. (2003). Environmental control of fine root dynamics in a northern hardwood forest. Global Change Biology, 9(5), 670-679.
Tingey, D. T., Phillips, D. L., Johnson, M. G., Rygiewicz, P. T., Beedlow, P. A., & Hogsett, W. E. (2005). Estimates of Douglas-fir fine root production and mortality from minirhizotrons. Forest Ecology and Management, 204(2), 359-370.
Vargas, R., & Allen, M. F. (2008). Environmental controls and the influence of vegetation type, fine roots and rhizomorphs on diel and seasonal variation in soil respiration. New Phytologist, 179(2), 460-471.
Van Do, T., Sato, T., & Kozan, O. (2016). A new approach for estimating fine root production in forests: a combination of ingrowth core and scanner. Trees, 30(2), 545-554.
Vogt, K. A., Moore, E. E., Vogt, D. J., Redlin, M. J., & Edmonds, R. L. (1983). Conifer fine root and mycorrhizal root biomass within the forest floors of Douglas-fir stands of different ages and site productivities. Canadian Journal of Forest Research, 13(3), 429-437.
Vogt, K. A., Vogt, D. J., Palmiotto, P. A., Boon, P., O''Hara, J., & Asbjornsen, H. (1995). Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant and soil, 187(2), 159-219.
Vogt, K. A., Vogt, D. J., & Bloomfield, J. (1998). Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant and Soil, 200(1), 71-89.
Wang, J., Chen, T.H., Chang, H.C., Chung, H.Y., Li, T.I. and Liu, C.P. (2009) The structures, aboveground biomass, carbon storage of Phyllostachys pubescens stands in Huisun experiment forest station and Shi-Zhuo. Quarterly Journal of Forest Research, 31 (4), 17-26. (in Chinese)
Yen, T.M., Hu, H.L., and Li, J.S. (2003) The shoots of Moso bamboo (Phyllostachys heterocycla) Management in Chu-Shan area. Quarterly Journal of Forest Research, 25(2), 43-54. (in Chinese)
Yen, T. M., Ji, Y. J., & Lee, J. S. (2010). Estimating biomass production and carbon storage for a fast-growing makino bamboo (Phyllostachys makinoi) plant based on the diameter distribution model. Forest Ecology and Management, 260(3), 339-344.
Zhou, G., Meng, C., Jiang, P., & Xu, Q. (2011). Review of carbon fixation in bamboo forests in China. The botanical review, 77(3), 262.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔