跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.205) 您好!臺灣時間:2024/04/17 08:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:胡顯琮
研究生(外文):Hsien-Tsung Hu
論文名稱:應用細格化幾何探討定向粒片板之抗彎性質
論文名稱(外文):Using Fining Geometries to Study Flexure Properties of Oriented Strand Board
指導教授:張豐丞張豐丞引用關係
口試日期:2017-07-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:森林環境暨資源學研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:79
中文關鍵詞:定向粒片板蒙地卡羅法有限元素法
外文關鍵詞:Oriented strand boardMonte-Carlo methodFinite element method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:109
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係以柳杉薄片熱壓膠合製成定向粒片板為主要試驗材料,探討其抗彎性質。透過薄片拉伸試驗,取得縱向與橫向之楊氏模數分佈範圍與成板之配向度分佈,藉由蒙地卡羅法與Hankinson 等式,將全域下多層薄片疊加成一模擬單元體,簡化複雜多層之定向粒片板結構,並代入細格化幾何單元於有限元素模擬中計算其抗彎性質。試驗結果指出,縱向之薄片抗拉試驗時,其載重位移圖顯示木材於微小尺度拉伸下呈現一彈塑性材料性質,而此反應與大尺寸試材反應不同;另外蒙地卡羅法與理論式進行轉換後組成之單元體楊氏模數,其縱向拉伸楊氏模數平均值為2.18 GPa;而依據有限元素法模擬與實際值進行比較,結果顯示成板配向度與MOE 之趨勢相同,模擬與實際值之誤差為5 ~ 30 %,其中落差可用更多材料參數條件進行校正,另依據單元局部反應圖檢視之,其應力分佈圖亦可呈現不同配向度下成板之局部反應性質。透過本次研究模型建立與數值分析,可對於定向粒片板之微觀構造加以解析,並於有限元素模擬中有效展現其微觀性質。
In this study, we developed the oriented strand board (OSB) as the main test material, and discussed its bending properties. Through the tensile test, the distribution range of the Young''s modulus in the longitudinal and transverse directions and the distribution of orientation were obtained. The Monte Carlo method and the Hankinson equation were used to simplify multi-layered structure into an analog element, and replacing the fined geometric element in the finite element simulation to calculate the flexure properties. The results showed that the load displacement diagram exhibited the properties of an elastoplastic material under the small specimen, and the reaction was different from large size specimen. In addition, the average tensile Young’s modulus of element, transferred from Monte-Carlo simulation and theoretical equations was 2.18 GPa, and the simulation results of the finite element method are compared with the actual values. The results showed that the relationship of orientation and modulus of elasticity (MOE) was same with the experiment. The error was about 5 ~ 30%, of which can be corrected with more material parameters. Local stress response could also show difference of orientation by the local stress diagram. Through the establishment of this model and numerical analysis method, we could analyze the microstructure of OSB, and effectively present its microscope properties in finite element simulation.
摘要................................ ................................ ................................ ................................ I
ABSTRACT ................................ ................................ ................................ .................. II
目錄................................ ................................ ................................ .............................. III
表目 錄................................ ................................ ................................ ........................... V
圖目 錄................................ ................................ ................................ .......................... VI
壹、前言 ................................ ................................ ................................ ........................ 1
貳、文獻回顧 ................................ ................................ ................................ ................ 3
2.1. 定向粒片板性質文獻 ................................ ................................ ........................ 3
2.2. 預測模型文獻回顧 ................................ ................................ ............................ 7
2.3. 有限元素法 ................................ ................................ ................................ ...... 11
參、模型與理論背景 ................................ ................................ ................................ .. 15
3.1. 試驗資料 ................................ ................................ ................................ .......... 17
3.2. 蒙地卡羅模擬 ................................ ................................ ................................ .. 18
3.3. 理論模型 ................................ ................................ ................................ .......... 19
3.4. 有限元素模擬 ................................ ................................ ................................ .. 20
肆、材料與方法 ................................ ................................ ................................ .......... 22
4.1. 試驗流程圖 ................................ ................................ ................................ ...... 22
4.2. 試驗材料與方法 ................................ ................................ .............................. 23
4.3. 定向粒片板與方薄型試材製備 ................................ ...................... 26
4.4. 有限元素模擬試驗 ................................ ................................ .......................... 33
伍、結果與討論 ................................ ................................ ................................ .......... 35
5.1. 長薄片抗拉試驗結果分析 ................................ ................................ .............. 35
5.2. 成板性質 ................................ ................................ ................................ .......... 42
5.3. 蒙地卡羅模擬分 析 ................................ ................................ .......................... 47
5.4. 有限元素模擬 ................................ ................................ ................................ .. 53
陸、結論與建議 ................................ ................................ ................................ .......... 59
柒、參考文獻 ................................ ................................ ................................ .............. 61
捌、附錄 ................................ ................................ ................................ ...................... 67
[1] Youngs RL (2009) History, nature, and products of wood. In: Forests and forest plants. EOLSS 2: pp 131-157
[2] Falk RH (2010) Chapter 1: Wood as a sustainable building material. In: Wood handbook Centinnial (ed). USDA Forest Service. pp 1-6
[3] American Panel Association (2002) Regional production and market outlook for structural panels and engineered wood products, 2002-2007. APA economics report E68. Tacoma, Washington. p 57
[4] Elemendorf A (1965) Oriented strand board. 3, 164, 511. United States Patent Office, USA.p 9
[5] Bohannan B (1966) Effect of size on bending strength of wood members. USDA For Serv 56: 1-30
[6] Arzt E (1998) Size effects in materials due to microstructural and dimensional constraints: A comparative review. Acta Mater 46(16): 5611-5626
[7] Schneeweiß G, Felber S (2013) Review on the bending strength of wood and influencing factors. Am J Mater Sci 3(3): 41-54
[8] Zhang M, Wong ED, Kawai S, Kwon JH (1998) Manufacture and properties of high-performance oriented strand board composite using thin strands. J Wood Sci 44: 191-197
[9] Suzuki S, Takeda K (2000) Production and properties of Japanese oriented strand board I: Effect of strand length and orientation on strength properties of sugi oriented strand board. J Wood Sci 46: 289-295
[10] Sackey EK, Semple KE, Oh SW, Smith GD (2007) Improving core bond strength of particleboard through particle size redistribution. Wood Sci Technol 40(2): 214-224
[11] Wang S, Winistorfer PM (2001) The effect of species and species distribution on the layer characteristics of OSB. Forest Prod J 50(4): 37-44
[12] EGGER (2014) Frequently asked questions about OSB. Österreich, Fritz Egger GmbH & Co. OG Holzwerkstoffe. pp 1-20
[13] Lam F (2001) Modern structural wood products. Prog Struct Eng Mat 3(3): 238-245
[14] Pizzi A, Mittal KL (2003) Handbook of adhesive technology, revised and expand. CRC Press, Taylor & Francis Group. pp 688-689
[15] Pilato L (2010) Phenolic resins: A century of progress. Springer Berlin Heidelberg. pp 182-183
[16] Hoover W, Hunt MO, Lattanzi RC, Bateman JH, Youngquist JA (1992) Modeling mechanical properties of single-layer, aligned, mixed-hardwood strand panels. Forest Prod J 42(5): 12-18
[17] Barnes D (2000) An integrated model of the effect of processing parameters on the strength properties of oriented strand wood products. Forest Prod J 50(11/12): 33-42
[18] Barnes D (2002) A model of the effect of fines content on the strength properties of oriented strand wood composites. Forest Prod J 52(5): 55-60
[19] Han G, Wu Q, Lu JZ (2007) The influence of fines content and panel density on properties of mixed hardwood oriented strandboard. Wood Fiber Sci 39(1): 2-15
[20] Shaler SM, Blankenhorn PR (1990) Composite model prediction of elastic module for flakeboard. Wood Fiber Sci 22(3): 246-261
[21] Mundy JS, Bonfield PW (1998) Predicting the short-term properties of chipboard using composite theory. Wood Sci Technol 32: 237-245
[22] Xu W, Suchsland O (1998) Modulus of elasticity of wood composite panels with a uniform vertical density profile: A model. Wood Fiber Sci 30(3): 293-300
[23] Xu W (1999) Influence of vertical density distribution on bending modulus of elasticity of wood composite panels: A theoretical consideration. Wood Fiber Sci 31(3): 277-282
[24] Painter G, Budman H, Pritzker M (2006) Prediction of oriented strand board properties from mat formation and compression operating conditions. Part 1. Horizontal density distribution and vertical density profile. Wood Sci Technol 40: 139-158
[25] Painter G, Budman H, Pritzker M (2006) Prediction of oriented strand board properties from mat formation and compression operating conditions. Part 2. MOE Prediction and process optimization. Wood Sci Technol 40: 291-307
[26] Stürzenbecher R, Hofstetter K, Schickhofer G, Eberhardsteiner J (2010) Development of high-performance strand boards: Multiscale modeling of anisotropic elasticity. Wood Sci Technol 44: 205-223
[27] Geimer RL, Montrey HM, Lehmann WF (1975) Effects of layer characteristics on the properties of three-layer particleboards. Forest Prod J 25(9): 19-29
[28] Suo S, Bowyer JL (1995) Modeling of strength properties of structural particleboard. Wood Fiber Sci 27(1): 84-94
[29] Heebink BG, Lehmann WF, Hefty FV (1972) Reducing particleboard pressing time: Exploratory study. Forest Serv Res Rap. No. FPL180, USDA Forest Products Lab., Madison, WI. p 14
[30] Lee JN, Wu Q (2003) Continuum modeling of engineering constants of oriented strandboard. Wood Fiber Sci 35(1): 24-40
[31] Benabou L, Duchanois G (2007) Modelling of the hygroelastic behavior of a wood-based composite for construction. Compos Sci Technol 67(1): 45-53
[32] Moya L, Tze WTY, Winandy JE (2010) Predicting bending stiffness of randomly oriented hybrid panels. Wood Fiber Sci 42(4): 536-549
[33] Ozsahin S (2013) Optimization of process parameters in oriented strand board manufacturing with artificial neural network analysis. Eur J Wood Prod 71: 769-777
[34] Wong ED, Yang P, Zhang M, Wang Q, Nakao T, Li KF, Kawai S (2003) Analysis of the effects of density profile on the bending properties of particleboard using finite element method (FEM). Holz Roh Werkst 61: 66-72
[35] Wu Q, Lee JN, Han G (2004) The influence of voids on the engineering constants of oriented strandboard: A finite element model. Wood Fiber Sci 36(1): 71-83
[36] Pan Y, Iorga L, Pelegri AA (2008) Numerical generation of a random chopped fiber composite RVE and its elastic properties. Compos Sci Technol 68: 2792-2798
[37] Malekmohammadi S, Zobeiry N (2015) A comprehensive multi-scale analytical modelling framework for predicting the mechanical properties of strand-based composites. Wood Sci Technol 49: 59-81
[38] Bai X, Lee WC, Thompson LL, Rosowsky DV (1999) Finite element analysis of Moso bamboo-reinforced Southern pine OSB composite beams. Wood Fiber Sci 31(4): 403-415
[39] Thomas WH (2002) Shear and flexural deflection equations for OSB floor decking with point load. Holz Roh Werkst 60: 175-180
[40] Mohamed M, Hussein R, Abutunis A, Huo Z, Chandrashekhara K, Sneed LH (2016) Manufacturing and evaluation of polyurethane composite structural insulated panels. J Sandw Struct Mater 0(00): 1-21
[41] ASTM D3043-00 (2015) Standard Test Methods for Structural Panels in Flexure. American Section of International Association for Testing Materials, West Conshohocken, USA. p 13
[42] Bodig J, Jayne BA (1982) Mechanics of wood and wood composite. Van Nostrand Reinhold Company Inc., USA. pp 297-302
[43] Navi P, Rastogi PK, Gresse V, Tolou A (1995) Micromechanics of wood subjected to axial tension. Wood Sci Technol 29: 411-429
[44] Bergander A, Salmen L (2002) Cell wall properties and their effects on the mechanical properties of fibers. J Mat Sci 37: 151-156
[45] Sedighi-Gilani M and Navi P (2007) Experimental observations and micromechanical modeling of successive-damaging phenomenon in wood cells’ tensile behavior. Wood Sci Technol 41(1): 69-85
[46] APA (2011) PS 2-10 Performance standard for wood-based structural-use panels. National Institute of Standards and Technology, USA p 66
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top