跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/19 22:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐子凡
研究生(外文):Tzu-Fang Hsu
論文名稱:臺灣杉Tc-βFar/Lin、Tc-Lin、Tc-Zin/βOci、Tc-βFar/Ger、Tc-αFar/Ger萜類合成酶之基因選殖、活性分析與大腸桿菌生產系統之建立
論文名稱(外文):Gene Cloning and Characterization of Tc-βFar/Lin, Tc-Lin, Tc-Zin/βOci, Tc-βFar/Ger and Tc-αFar/Ger Terpene Synthases from Taiwania cryptomerioides and Establishment of Production System in E. coli
指導教授:曲芳華
口試日期:2017-06-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:森林環境暨資源學研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:101
中文關鍵詞:金合歡烯芳樟醇臺灣杉萜類化合物揮發性萜類合成酶薑烯
外文關鍵詞:β-farnesenelinaloolTaiwania cryptomerioides Hayataterpenoidsvolatile terpene synthasezingiberene
相關次數:
  • 被引用被引用:1
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
臺灣杉(Taiwania cryptomerioides Hayata)是臺灣特有種植物,因其木質特性與含有精油成分中的萜類化合物,為臺灣相當重要的針葉樹種。過去已有相當多的研究是針對臺灣杉生成產物的辨認及應用,對生合成的途徑的研究相對較少;本研究的目標是從臺灣杉選殖出重要功能的基因,瞭解各基因的生合成功能,且針對各基因做演化與生產相關的探討,透過氣相層析質譜儀分析,依各基因之主產物進行命名,依序為:Tc-βFar/Lin、Tc-Lin、Tc-Zin/βOci、Tc-βFar/Ger、Tc-αFar/Ger、Tc-Lin為單一產物的單萜合成酶,其餘四者皆屬於倍半萜合成酶,除Tc-Zin/βOci能夠生產出單環的zingiberene外,Tc-βFar/Lin、Tc-βFar/Ger、Tc-αFar/Ger所生成的單萜產物與倍半萜產物皆為線型萜類;在臺灣杉各部位的反轉錄聚合酶連鎖反應(RT-PCR)結果中,五個基因皆會在幼葉與雌毬果中表現,唯一亦會在木材中表現的基因為Tc-βFar/Ger。從親緣樹關係圖的分析結果中,發現Tc-βFar/Lin與臺灣杉中目前已知且親緣較近的倍半萜合成酶基因都有運輸胜肽遺失的現象,表示這群基因在演化的過程中可能先經歷了γ-domain遺失,最後才造成運輸生肽的遺失。透過大腸桿菌代謝工程生產系統,Tc-Zin/βOci能夠大量產生出zingiberene,Tc-βFar/Ger能夠產生出大量的β-farnesene,顯示未來可利用微生物系統來大量生產有效成分。
Taiwania cryptomerioides Hayata is an endemic species in Taiwan. It is an important coniferous species in Taiwan, because of its timber properties and its terpenoids in the essential oil. Most previous researches about the products and applications of T. cryptomerioides Hayata have been discussed, however, the biosynthesis pathway of T. cryptomerioides Hayata has rarely been discussed in the past. This study focuses on cloning the genes and their characteristic. Through using gas chromatography mass spectrometry (GC/MS) analysis, we identified the product of the five terpene synthases. According to the main product that synthase synthesize, they are called Tc-βFar/Lin, Tc-Lin, Tc-Zin/βOci, Tc-βFar/Ger, and Tc-αFar/Ger. Tc-Lin is a monoterpene synthase, the others are sesquiterpene synthases. Except Tc-Zin/βOci synthesizes the single ring zingiberene, all of Tc-βFar/Lin, Tc-βFar/Ger, and Tc-αFar/Ger synthesize the linear monoterpenes or sesquiterpenes; the results of reverse transcription polymerase chain reaction (RT-PCR) demonstrate that these five genes can express in the young leaf and female cone, and only Tc-βFar/Ger can also express in the wood. From the analysis of the phylogenetic tree, we can find that Tc-βFar/Lin and other closer genes of sesquiterpene synthases which are known in Taiwania are all lost the trainsit peptides. This result represents that these genes may have the process which has lost γ-domain at first and lost trainsit peptides finally. Using heterologous expression of diverse synthases in the E. coli, Tc-Zin/βOci can produce large amounts of zingiberene, and Tc-βFar/Ger can produce large amounts of β-farnesene. Thus, large amounts of these sesquiterpenes production system by using microorganism were established in this study.
誌謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VII
表目錄 XII
第一章、前言 1
第二章、文獻回顧 3
2-1 萜類化合物 3
2-2揮發性萜類化合物之生合成途徑(volatile terpenoid biosynthesis pathway) 4
2-3 揮發性萜類合成酶之分類群(volatile terpene synthase subfamily) 8
2-4 揮發性萜類合成酶之多受質(substrate)特性 10
2-5 揮發性萜類合成酶之保守性功能區域與演化過程 10
2-6 利用大腸桿菌系統提高揮發性萜類化合物之產量 13
2-7 萜類合成酶之基因組分布狀況及演化(terpene synthase genome and evolution) 15
第三章、材料與方法 17
3-1 實驗材料 17
3-2 臺灣杉RNA之萃取 17
3-3 臺灣杉萜類合成酶之基因選殖 17
3-4 各萜類合成酶基因全長之比對及親緣關係樹狀圖之分析 19
3-5 蛋白質分子量(MW)、等電點(pI)與ChloroP 1.1 Server運輸胜肽(transit peptide)之預測 20
3-6 蛋白質表現質體之建構(construction) 20
3-7 西方墨點法(western blotting) 21
3-8 誘導目標蛋白質大量表現(induction) 23
3-9 目標蛋白質之純化(purification) 23
3-10 目標蛋白質之活性反應 24
3-11 氣相層析質譜儀之分析(GC/MS) 25
3-12 臺灣杉五基因於各部位之表現量 26
3-13 大腸桿菌異源基因生產系統之建立 27
3-14 核磁共振(nuclear magnetic resonance, NMR)之分析 28
3-15 Genomic DNA之選殖 28
第四章、結果 29
4-1 臺灣杉揮發性萜類合成酶之選殖 29
4-2 臺灣杉揮發性萜類合成酶基因序列之比對及保守性功能區域之預測 30
4-3 五基因與其他萜類合成酶基因親緣樹關係之分析 32
4-4 臺灣杉萜類合成酶之質體建構 33
4-5 臺灣杉萜類合成酶重組蛋白質之表現 34
4-6 臺灣杉萜類合成酶重組蛋白質之純化 40
4-7 五萜類合成酶之產物以GC/MS分析之結果 44
4-8 Tc-Zin/βOci、Tc-βFar/Ger、Tc-βFar/Lin透過NMR之功能鑑定 58
4-9 五基因小量生產與大量生產之狀況 64
4-10 五基因於臺灣杉各部位基因表現狀況 66
4-11 五基因之genomic DNA分布狀況 67
第五章、討論 69
5-1 五基因序列與臺灣杉已知序列親緣樹關係圖分析 69
5-2 Tc-βFar/Lin、Tc-Zin/βOci、Tc-βFar/Ger功能鑑定之探討 72
5-3 線型單萜的生合成過程 74
5-4 genomic DNA分布狀況之探討 75
5-5 萜類合成酶各產物之生物活性探討與應用 76
第六章、結論 80
附錄 91
附錄表.1 各基因片段增幅引子序列 91
附錄表.2 各基因3’RACE引子序列 92
附錄表.3 各基因5’RACE引子序列 93
附錄表.4 各基因全長引子序列 94
附錄表.5 蛋白質質體建構引子序列 95
附錄表.6 各基因之RT-PCR引子序列 96
附錄圖1 pET-21a(+)載體示意圖 97
附錄圖2 pET-28a(+)載體示意圖 98
附錄圖3 pCOLADurt-1載體示意圖(Zverev and Khmel, 1985) 99
劉璧綾(2015)五個臺灣杉揮發性萜類合成酶基因選殖與性狀分析。國立臺灣大學生農學院森林環境暨資源學系碩士論文:1-97。
鄭森松、莊閔傑、林群雅、張上鎮、王亞男(2010)臺灣杉不同部位精油及抽出物抗褐根病菌之評估。臺灣大學生物資源暨農學院實驗林研究報告,24(2):85-95。
蘇鴻傑(2007)臺灣杉的前世今生:植群變遷與生活史。臺灣杉命名滿一百週年國際學術研討會論文集:99-117。
Adriana, G.G., Mairim, R.S., Lucindo, J.Q.J. (2014) Terpenes and derivatives as a new perspective for pain treatment: a patent review. Expert Opinion on Theraputic Patents 24(3), 243-265.
Aharoni, A., Giri, A.P., Verstappen, F.W.A., Bertea, C.M., Sevenier, R., Sun, Z., Jongsma, M.A., Schwab, W., Bouwmeester, H.J. (2004) Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. The Plant Cell 16, 3110-3131.
Bleeker, P.M., Mirabella, R., Diergaarde, P.J., VanDoorn, A., Tissier, A., Kant, M.R., Prins, M., DeVos, M., Haring, M.A., Schuurink, R.C. (2012) Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative. Proceedings of the National Academy of Sciences of the United States of America 109, 20124-20129.
Boachon, B., Junker, R.R., Miesch, L., Bassard, J.E., Höfer, R., Caillieaudeaux, R., Seidel, D.E., Lesot, A., Heinrich, C., Ginglinger, J.F., Allouche, L. (2015) CYP76C1 (cytochrome P450)-mediated linalool metabolism and the formation of volatile and soluble linalool oxides in Arabidopsis flowers: a strategy for defense against floral antagonists. The Plant Cell 27, 2972-2990.
Bohlmann, J., Crock, J., Jetter, R., Croteau, R. (1998) Terpenoid-based defenses in conifers: cDNA cloning, characterization, and functional expression of wound-inducible (E)-a-bisabolene synthase from grand fir (Abies grandis). Proceedings of the National Academy of Sciences 95, 6756–6761.
Bohlmann, J., Steele, C.L., Croteau, R. (1997) Monoterpenoid synthases from grand fir (Abies grandis): cDNA isolation, characterization, and functional expression of myrcene synthase, (−)-(4S)-limonene synthase, and (−)-(1S, 5S)-pinene synthase. Journal of Biological Chemistry 272(35), 21784-21792.
Cantrell, C.L., Franzblau, S.G., Fischer, N.H. (2001) Antimycobacterial plant terpenoids. Planta Medica 67(8), 685-694.
Cao, R., Zhang, Y., Mann, F.M., Huang, C., Mukkamala, D., Hudock, M.P., Mead, M.E., Prisic, S., Wang, K., Lin, F.Y., Chang, T.K., Peters, R.J., Odfield, E. (2010) Diterpene cyclases and the nature of the isoprene fold. Proteins: Structure, Function, and Bioinformatics 78, 2417-2432.
Carrie, C., Small, I. (2013) A reevaluation of dual-targeting of proteins to mitochondria and chloroplasts. Biochimica et Biophysica Acta 1833, 253–259.
Carter, C.D., Gianfagna, T.J. and Sacalis, J.N. (1989) Sesquiterpenes in glandular trichomes of a wild tomato species and toxicity to the Colorado potato beetle. Journal of Agricultural and Food Chemistry 37, 1425-1428.
Casconea, P., Iodicea, L., Maffei, M.E., Bossi, S., Arimurac, G., Guerrieri, E. (2015) Tobacco overexpressing β-ocimene induces direct and indirect responses against aphids in receiver tomato plants. Plant Physiology 173, 28-32.
Chang, S., Puryear, J., Cairney, J. (1993) A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter 11, 113-116.
Chen, F., Tholl, D., Bohlmann, J., Pichersky, E. (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. The Plant Journal 66, 212-229.
Chirangini, P., Sharma, G.J., Sinha, S.K. (2004) Sulfur free radical reactivity with curcumin as reference for evaluating antioxidant properties of medicinal zingiberales. Journal of Environment Pathology, Toxicology and Oncology 23, 227-236.
Chu, F.H., Kuo, P.M., Chen, Y.R., Wang, S.Y. (2009) Cloning and characterization of α-pinene synthase from Chamaecyparis formosensis matsum. Holzforschung 63, 69-74.
Cornell, D.W., Jordan, R.A. (1971) Composition and distinctive volatile flavour characteristics of the essential oil from Australian-grown ginger (Zingiber officinale). Journal of the Science of Food and Agriculture 22, 93-95.
Degenhardt, J., Kollner, T.G., Gershenzon, G. (2009) Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70, 1621-1637.
Dong, L., Jongedijk, E., Bouwmeester, H., VanDerKrol, A. (2016) Monoterpene biosynthesis potential of plant subcellular compartments. New Phytologist 209, 679-690.
Dudareva, N. (2003) (E)-β-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpenoid synthase genes of a new terpenoid synthase subfamily. The Plant Cell 5, 1227-1241.
Dudareva, N., Klempien, A., Muhlemann, J.K., Kaplan, I. (2013) Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist 198(1), 16-32.
Francis, F., Vandermoten, S., Verheggen, F., Lognay, G., Haubruge, E. (2005) Is the (E)-b-farnesene only volatile terpenoid in aphids? Journal Applied Entomology 129, 6-11.
Freitas, J.A., Maluf, W.R., Cardoso, M.G., Gomes, L.A.A., Bearzotti, E. (2002) Inheritance of foliar zingiberene contents and their relationship to trichome densities and whitefly resistance in tomatoes. Euphytica 127, 275-287.
Gadek, P.A., Alpers, D.L., Heslewood, M.M., Quinn, C.J. (2000) Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87 (7), 1044-1057.
Ginglinger, J.F., Boachon, B., Höfer, R., Paetz, C., Köllner, T.G., Miesch, L., Lugan, R., Baltenweck, R., Mutterer, J., Ullmann, P., Beran, F. (2013) Gene coexpression analysis reveals complex metabolism of the monoterpene alcohol linalool in Arabidopsis flowers. The Plant Cell 25, 4640-4657.
Gutensohn, M., Orlova, I., Nguyen, T.T.H., Rikanati, D.R., Ferruzzi, M.G., Sitrit, Y. (2013) Cytosolic monoterpene biosynthesis is supported byplastid-generated geranyldiphosphate substrate in transgenic tomato fruits. The Plant Journal 75, 351-363.
Hillwig, M.L., Xu, M., Toyomasu, T., Tiernan, M.S., Wei, G., Cui, G. (2011) Domain loss has independently occurred multiple times in plant terpene synthase evolution. The Plant Journal 68, 1051–1060
Höfer, R., Dong, L., André, F., Ginglinger, J.F., Lugan, R., Gavira, C., Grec, S., Lang, G., Memelink, J., VanderKrol, S., Bouwmeester, H., Werckreichhart, D. (2013) Geraniol hydroxylase and hydroxygeraniol oxidase activities of the CYP76 family of cytochrome P450 enzymes and potential for engineering the early steps of the (seco) iridoid pathway. Metabolic Engineering 20, 221–232.
Holstein, S., Hohl, R. (2004) Isoprenoids: remarkable diversity of form and function. Lipids 39, 293-309.
Huang, M., Abel, C., Sohrabi, R., Petri, J., Haupt, I., Cosimano, J. (2010) Variation of herbivore-induced volatile terpenes among arabidopsis ecotypes depends on allelic differences and subcellular targeting of two terpene synthases, TPS02 and TPS03. Plant Physiology 153, 1293-1310.
Huber, D.P.W., Philippe, R.N., Godard, K.A., Sturrock, R.N., Bohlmann, J. (2005) Characterization of four terpene synthase cDNAs from methyl jasmonate induced douglas-fir, pseudotsuga menziesii. Phytochemistry 66, 1427-1439.
Hussain, A., Virmani, O.P., Popli, S.P., Misra, L.N., Gupta, M.M. (1992) Dictionary of Indian medicinal plants. Central Institute of Medicinal and Aromatic Plants 2, 39.
Jatoi, S.A., Kikuchi, A., Gilani, S.A., Watanabe, K.N. (2007) Phytochemical, pharmacological and ethnobotanical studies in mango ginger (Curcuma amada Roxb. Zingiberaceae). Phytotherapy Research 21, 507-516.
Keeling, C.I., Bohlmann, J. (2006) Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytologist 170(4), 657-675.
Keeling, C.I., Weisshaar, S., Ralph, S.G., Jancsik, S., Hamberger, B., Dullat, H.K., Bohlmann, J. (2011) Transcriptome mining, functional characterization, and 85 phylogeny of a large terpene synthase gene family in spruce (Picea spp.). BMC Plant Biology 11(1), 43.
Köksal, M., Hu, H., Coates, R.M., Peters, R.J., Christianson, D.W. (2011) Structure and mechanism of the diterpene cyclase ent-copalyl diphosphate synthase. Nature Chemical Biology 7, 431-433.
Lichtenthaler, H.K. (2010) The non-mevalonate DOXP/MEP (deoxyxylulose 5-phosphate/ methylerythritol 4-phosphate) pathway of chloroplast isoprenoid and pigment biosynthesis in the chloroplast: basics and applications. Springer Netherlands, 95-118.
Lopez, S.B., Lopez, M.L., Aragon, L.M., Tereschuk, M.L., Slanis, A.C., Feresin, G.E., Zygadlo, J.A., Tapia, A.A. (2011) Composition and anti-insect activity of essential oils from Tagetes L. species (Asteraceae, Helenieae) on Ceratitis capitata wiedemann and Triatoma infestans klug. Journal of Agricultural and Food Chemistry 59(10), 5286-5292.
Martin, D. M., Aubourg, S., Schouwey, M.B., Daviet, L., Schalk, M., Toub, O. (2010) Functional annotation, genome organization and phylogenyof thegrapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biology 10, 1-22.
Martin, D.M., Fäldt, J., Bohlmann, J. (2004) Functional characterization of nine Norway spruce TPS genes and evolution of gymnosperm terpenoid synthases of the TPS-d subfamily. Plant Physiology 135(4), 1908-1927.
Martin, V.J.J., Pitera1, D.J., Withers, S.T., Newman, J.D., Keasling, J.D. (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature Biotechnology 21, 796-802.
Masters, M.T. (1906) On the conifers of China. Botanical Journal of the Linnean Society 37(262), 410-424.
Mujumdar, A.M., Naik, D.G., Dandge, C.N., Puntambekar, H.M. (2000) Anti-inflammatory activity of Curcuma amada Roxb. in albino rats. Indian Journal of Pharmacology 32, 375-377.
Nagegowda, D.A. (2010) Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Lettets 584, 2965–2973.
Nagegowda, D.A., Gutensohn, M., Wilkerson, C.G., Dudareva, N. (2008) Two nearly identical terpene synthases catalyze the formation of nerolidol and linalool in snapdragon flowers. The Plant Journal 55, 224-239.
Nagel, R., Berasategui, A., Paetz, C., Gershenzon, J., Schmidt, A. (2014) Overexpression of an isoprenyl diphosphate synthase in spruce leads to unexpected terpene diversion products that function in plant defense. Plant Physiology 164, 555-596.
Niranjan, A., Prakash, D., Tewari, S.K., Pande, A., Pushpangadan, P. (2003) Chemistry of curcuma species cultivated on sodic soil. Journal of Applied Research on Medicinal and Aromatic Plants 25, 69-75.
Okamoto, T., Okuyama, Y., Goto, R., Tokoro, M., Kato, M. (2015) Parallel chemical switches underlying ollinator isolation in Asian mitella. Journal of Evolutionary Biology 28, 590-600.
Pachauri, S.P., Mukherjee, S.K. (1970) Effect of curcuma longa (Haridra) and curcuma amada (Amragandhi) on the cholesterol level in experimental hypercholesterolemia of rabbits. The Journal of Research in Indian Medicine 5, 27-30.
Pare, P.W., Tumlinson, J.H. (1999) Plant volatiles as a defense against insect herbivores. Plant Physiology 121, 325-332.
Parthasarathy, V.A., Chempakam, B., Zachariah, T.J. (2008) Chemistry of spices. CABI Publisher Wallingford UK, 1-445.
Pazouki, L., Niinemets, Ü. (2016) Multi-substrate terpene synthases: their occurrence and physiological significance. Frontiers in Plant Science 7, 1-16.
Pazouki, L., Memari, H.R., Kaennaste, A., Bichele, R., Niinemets, U. (2015) GermacreneA synthase in yarrow (Achillea millefolium) is an enzyme with mixed substrate specificity: gene cloning, functional characterization and expression analysis. Frontiers in Plant Science 6, 111.
Phillips, M.A., Wildung, M., Williams, D.C., Hyatt, D.C., Croteau, R. (2003) cDNA isolation, functional expression, and characterization of (+)-alphapinene synthase and (–)-alpha-pinene synthase from loblolly pine (Pinus taeda): stereocontrol in pinene biosynthesis. Archives of Biochemistry and Biophysics 411, 267-276.
Price, R.A. (1989) An immunological comparison of the Sciadopityaceae, Taxodiaceae, and Cupressaceae. Systematic Botany 14, 141-149.
Prota, N., Cankar, K., Klompmaker, M., Houwelingen, A., Jongsma, M.A., Bouwmeester, H.J., Beekwilder, J. (2015) Discovery and characterization of a novel zingiberene synthase and effects on whitefly of its overexpression in Nicotiana tabacum. International Standard Book Number 978, 75-133.
Raguso, R.A. (2016) More lessons from linalool: insights gained from a ubiquitous floral volatile. Current Opinion in Plant Biology 32, 31-36.
Raguso, R.A., Pichersky, E. (1999) A day in the life of a linalool molecule: chemical communication in a plant-pollinator system, part 1: linalool biosynthesis in flowering plants. Plant Species Biology 14, 95-120.
Renninger, N., Mcphee, D.J. (2008) Fuel composition comprising farnesene and farnesane derivatives and method of making and using same. United States Patent 7399323, 1-41.
Ridley, R.G. (2002) Medical need, scientific opportunity and the drive for antimalarial drugs. Nature 415, 686-693.
Roach, C.R., Hall, D.E., Zerbe, P., Bohlmann, J. (2014) Plasticity and evolution of (+)-3-carene synthase and (−)-sabinene synthase functions of a sitka spruce monoterpene synthase gene family associated with weevil resistance. Journal of Biological Chemistry 289, 23859–23869.
Schie, C.C.V., Haring, M.A., Schuurink, R.C. (2007) Tomato linalool synthase is induced in trichomes by jasmonic acid. Plant Molecular Biology 64, 251-263.
Schmidt, A., Wachtler, B., Temp, U., Krekling, T., Seguin, A., Gershenzon, J. (2014) A bifunctional geranyl and geranylgeranyl diphosphate synthase is involved in terpene oleoresin formation in Picea abies. Plant Physiology 152, 639-655.
Schnee, C., Köllner, T.G., Gershenzon, J., Degenhardt, J. (2002) The maize gene terpene synthase encodes a sesquiterpene synthase catalyzing the formation of (E)-farnesene, (E)-nerolidol, and (E, E)-farnesol after herbivore damage. Plant Physiology 130, 2049-2060.
Silva, F.M., Marques, A., Chaveiro, A. (2010) Reactive oxygen species: a double-edged sword in reproduction. Open Veterinary Science Journal 4, 127-133.
Steele, C. L., Crock, J., Bohlmann, J., Croteau, R. (1998) Sesquiterpene synthases from grandfir (Abies grandis)-comparisonofconstitutiveand wound-induced activities, and cDNA isolation, characterization and bacterial expression of d-selinene synthaseand g-humulene synthase. Journal of Biological Chemistry 273, 2078-2089.
Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S. (2013) Mega6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 2725-2729.
Thabet, I., Guirimand, G., Courdavault, V., Papon, N., Godet, S., Dutilleul, C., Simkin, A.J. (2011) The subcellular localization of periwinkle farnesyl diphosphate synthase provides insight into the role of peroxisome in isoprenoid biosynthesis. Plant Physiology 168, 2110–2116.
Tholl, D. (2006) Terpenoid synthases and the regulation, diversity and biological roles of terpenoid metabolism. Current Opinion in Plant Biology 9(3), 297-304.
Trapp, S.C., Croteau, R.B. (2001) Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics 158, 811-832.
Turkez, H., Sozio, P., Geyikoglu, F., Tatar, A., Hacimuftuoglu, A., Stefano, A.D. (2014) Neuroprotective effects of farnesene against hydrogen peroxide-induced neurotoxicity in vitro. Cellular and Molecular Neurobiology 34, 101-111.
Verma, R.S., Padalia, R.C., Pandey, V., Chauhan, A. (2013) Volatile oil composition of vegetative and reproductive parts of lemon-scented gum (Eucalyptus citriodora). Journal of Essential Oil Research 25(6), 452-457.
Vickers, C.E., Bongers, M., Qing, L., Delatte, T., Bouwmeester, H. (2014) Metabolic engineering of volatile isoprenoids in plants and microbes. Plant Cell & Environment 37, 1753-1775.
Wang, L.J., Fang, X., Yang, C.Q., Li, J.X., Chen, X.Y. (2013) Biosynthesis and regulation of secondary terpenoid metabolism in plants. Scientia Sinica Vitae 43(12), 1030-1046.
Winterhalter, P., Katzenberger, D., Schreier, P. (1986) 6, 7-Epoxylinalool and related oxygenated terpenoids from carica papaya fruit. Phytochemistry 25, 1347-1350.
Yang, T., Stoopen, G., Yalpani, N., Vervoort, J., deVos R., Voster, A., Verstappen, F.W., Bouwmeester, H.J., Jongsma, M.A. (2011) Metabolic engineering of geranic acid in maize to achieve fungal resistance is compromised by novel glycosylation patterns. Metabolic Engineering 13, 414-425.
Zhou, K., Gao, Y., Hoy, J.A., Mann, F.M., Honzatko, R.B., Peters, R.J. (2012) Insights into diterpene cyclization from structure of bifunctional abietadiene synthase from Abies grandis. Journal of Biological Chemistry 287, 6840-6850.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top