跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 11:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林冠萱
研究生(外文):Kuan-Hsuan Lin
論文名稱:噴墨列印所需之纖維素奈米微晶的膠體性質與尺寸特性探討
論文名稱(外文):Colloidal and Dimensional Properties of Cellulose Nanocrystals for Applications in Inkjet Printing
指導教授:張豐丞張豐丞引用關係江前敏晴
指導教授(外文):Feng-Cheng ChangToshiharu Enomae
口試日期:2017-07-03
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:森林環境暨資源學研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:50
中文關鍵詞:纖維素奈米微晶膠體性質噴墨列印
外文關鍵詞:Cellulose nanocrystalsColloidal propertiesInkjet printing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
纖維素為地表蘊藏量最為豐富的可再生、生物可降解資源。而將纖維素微纖維中的結晶區萃取而出,則可以得纖維素奈米微晶。本研究關注以噴墨列印法將纖維素奈米微晶應用於可設計規則性排列之商品,所需探討的纖維素奈米微晶水溶液的相關性質。本研究以纖維素奈米微晶之製程著手:試驗不同的製備條件、尋找最適者。成功於特定條件下製備尺寸落在奈米維度,近似於商用纖維素奈米微晶的產品。亦發現產品顏色會隨處理溫度與處理時間的拉長而轉深,並於熱分析中得到較多殘餘,應是較強的水解條件會帶給纖維素奈米微晶更多硫酸基所造成。其次為纖維素奈米微晶溶液之膠體性質探討,並與理論模型比對。模型比對可以證實商用的及自製纖維素奈米微晶的表面有酸水解造成之強負電荷,並其棒狀型態與硫酸基造成之表面化學特性亦須納入考量。此外,也探討其黏度性質。除剪切稀釋特性需考慮外,以黏度結果與噴墨印表機之墨水要求進行比對與篩選,進行噴墨列印測試。結果顯示纖維素奈米微晶墨水於紙材上乾燥時,會形成內縮力,進而導致紙材表面塗層的破壞與紙張彎曲。因此,若不希望產品具有設計之外的彎曲,有好塗層的紙材較適合做為纖維素奈米微晶墨水之噴墨基材。
Cellulose is the most abundant of renewable and biodegradable polymer on Earth. Cellulose nanocrystals, in short, CNCs, are the crystalline region of cellulosic chains on nanoscale. As to a new application of CNCs to inkjet printing for patterning type products, exploring properties of CNC suspensions would be necessary. Thus, a CNC preparation test was conducted and provided an optimal acid hydrolysis condition. The resulting CNCs exhibited nanoscale dimensions, and a crystallinity index similar to the commercial one. A gradient of color changes of CNCs was found with an increasing hydrolysis duration and hydrolysis temperature. Introduction of sulfate groups was assumed by sulfuric acid hydrolysis. Strong conditions are supposed to introduce more sulfate groups on CNCs, which may act as flame retardants and thus increase the amount of char residue. Colloidal properties of CNCs obtained via sulfuric acid hydrolysis were investigated. A strong negative surface charge caused by sulfuric acid hydrolysis was confirmed by fitting the data spots to theoretical equations; in addition, a cylindrical shape and a high-charged surface morphology caused by sulfate groups of CNCs were suggested. Results from viscosity measurements showed obvious shear thinning phenomena of CNC suspensions at high concentrations. A specific concentration of CNC which were suitable for inkjet use in terms of the viscosity requirements of inkjet printers was applied in printing tests. Finally, a paper substrate with a mechanically strong surface coating is suggested to be applied for prevention from destruction due to shrinkage force.
Acknowledgement I
摘要 I
Abstract II
Content I
1. Introduction 1
2. Cellulose nanocrystals preparation 3
2.1 Literature review: Cellulose nanocrystals preparation 5
2.2 Experimental 7
2.2.1 Materials and methods 8
2.2.1.1 CNC preparation: Sample “F” 8
2.2.1.2 CNC preparation: Sample “P” 8
2.2.1.3 Information about dimensions 10
2.2.1.4 Crystallinity index 11
2.2.1.5 Surface morphology 12
2.2.1.6 Thermal degradation temperature 12
2.3 Results and discussion 12
2.3.1 Assumed sulfate groups on the surface of CNCs 12
2.3.2 Outward appearance 14
2.3.3 Dimension studies 16
2.3.4 Crystalline index 19
2.3.5 Surface morphology 20
2.3.6 Thermal degradation temperature 21
2.4 Summary of CNC preparation task 24
3. Properties of cellulose nanocrystals suspensions 26
3.1 Literature review: Colloidal properties 26
3.2 Theories 28
3.2.1 Methods of calculating zeta potential (ζ) and electrophoretic mobility (EPM) 28
3.2.2 Theories to link electrophoretic mobility with zeta potentials 30
3.3 Experimental 32
3.3.1 Sample preparation for colloidal properties measurements 32
3.3.2 Zeta potential and electrophoretic mobility measurements 32
3.3.3 Size distribution 33
3.3.4 Viscosity 33
3.4 Results and discussion 34
3.4.1 Size distribution of CNCs 34
3.4.2 Charging properties of CNCs 36
3.4.3 Theories comparisons of CNC suspensions 36
3.4.4 Viscosity of CNC suspensions 38
3.5 Summary of properties of cellulose nanocrystals suspensions 40
4. Printing test 42
4.1 Experimental section 42
4.2 Results and discussion 44
5. Comprehensive conclusion 46
Reference 47
Abitbol, T., Kloser, E., and Gray, D. G. (2013) Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20: 785–794
Amin, K. N. M., Annamalai, P. K., Morrow, I. S., and Martin, D. (2015) Production of cellulose nanocrystals via a scalable mechanical method. Royal Society of Chemistry 5: 57133
Beck, S., Méthot, M., and Bouchard, J. (2015) General procedure for determining cellulose nanocrystal sulfate half-ester content by conductometric titration. Cellulose 22: 101–116
Bondeson, D., Mathew, A., and Oksman, K. (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13: 171–180
Chen, L., Wang, Q., Hirth, K., Baez, C., Agarwal, U. P., and Zhu, J. Y. (2015) Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22(3): 1753–1762
Dong, X. M. and Gray, D. G. (1997) Effect of counterions on ordered phase formation in suspensions of charged rodlike cellulose crystallites. Langmuir 13: 2404–2409
Dong, S. and Roman, M. (2007) Fluorescently labeled cellulose nanocrystals for bioimaging applications. Journal of the American Chemical Society 129: 13810–13811
Dufresne, A. (2013a) Nanocellulose: a new ageless bionanomaterial. Materials Today 16(6): 220–227
Dufresne, A. (2013b) Nanocellulose: from nature to high performance tailored materials. Berlin/Boston, DE: De Gruyter, 2013.
Espinosa, S. C., Kuhnt, T., Foster, J., and Weder, C. (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14: 1223–1230
Habibi, H., Chanzy, H., and Vignon, M. R., (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13: 679–687
Habibi, Y., Lucia, L. A., and Rojas, O. J. (2010) Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews 110: 3479–3500
Hubbe, M. A., Rojas, O. J., Lucia, L. A., and Sain, M. (2008) Cellulosic nanocomposites: A review. BioResources 3(3): 929–980
Hurtta, M., Pitka¨nen, I., and Knuutinen, J. (2004) Melting behavior of D-sucrose, D-glucose, and D-fructose. Carbohydrate Research 339: 2267–2273
Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., and Dorris, A. (2011) Nanocelluloses: A new family of nature-based materials. Angewandte Chemie International Edition 50: 5438–5466
Kobayashi, M. (2008) Electrophoretic mobility of latex spheres in the presence of divalent ions: experiments and modeling. Colloid and Polymer Science 286: 935–940
Lagerwall, J. P. F., Schütz, C., Salajkova, M., Noh, J. H., Park, J. H., Scalia, G., and Bergström, L. (2014) Cellulose nanocrystal-based materials: From liquid crystal self-assembly and glass formation. NPG Asia Materials 6
Lin, N., Huang, J., and Dufresne, S. (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: A review. Nanoscale 4: 3274–3294
Moran, J. C., Alvarez, V. A., Cyras, V. P., and Vazquez, A. (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15(1): 149–159
Ohshima, H. (1998) Surface charge density/surface potential relationship for a cylindrical particle in an electrolyte solution. Journal of Colloid and Interface Science 200(2): 291–297
Ohshima, H. (2015) Approximate Analytic Expression for the Electrophoretic Mobility of Moderately Charged Cylindrical Colloidal Particles. Langmuir 31: 13633–13638
Pan, M., Zhou, X., and Chen, M. (2013) Cellulose nanowhiskers isolation and properties from acid hydrolysis combined with high pressure homogenization. BioResources 8(1): 933–943
Park, S., Baker, J. O., Himmel, M. E., Parilla, P. A., and Johnson, D. K. (2010) Cellulose Crystallinity Index: Measurement Techniques and Their Impact on interpreting Cellulose Performance. Biotechnology for Biofuels 3: 10
Peddireddy, K. R., Capron, I., Nicolai, T. and Benyahia, L. (2016) Gelation kinetics and network structure of cellulose nanocrystals in aqueous solution. BioMacromolecules 17 (10): 3298–3304
Sehaqui, H., Salajkova, M., Zhou, Q. and Berglund, L. A. (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6: 1824–1832
Shafiei-Sabet, S., Hamad, W. Y. and Hatzikiriakos, S. G. (2012) Rheology of nanocrystalline cellulose aqueous suspensions. Langmuir 28: 17124–17133
Siqueira, G., Tapin-Lingua, S., Perez, D. da S., and Dufresne, A. (2010) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17: 1147–1158
Stokke, D. D., Wu, Q., and Han, G. (2014) Introduction to wood and natural fiber composites. John Wiley & Sons, Ltd
Terinte, N., Ibbett, R., and Schuster, K. C. (2011) Overview on Native Cellulose and Microcrystalline Cellulose I Structure Studied by X-ray Diffraction (WAXD): Comparision Between Measurement Techniques. Lenzinger Berichte 89: 118–131
Ueno, K., Kobayashi, M., Adachi, Y. and Kojima, T. (2014) Electric charging and colloid stability of fabricated needle-like TiO2 nanoparticles. Communications in Physics 24(3S1): 13–21
Yano, H., Sugiyama, J., Nakagaito, A. N., Nogi, M., Matsuura, T., Hikita, M., and Handa, K. (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Advanced Materials 17(2): 153–155
Zhong, L., Fu, S., Peng, X., Zhan, H. and Sun, R. (2012) Colloidal stability of negatively charged cellulose nanocrystalline in aqueous systems. Carbohydrate Polymers 90: 644–649
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top