跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/17 19:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林展伊
研究生(外文):Chan-Yi Lin
論文名稱:探討NPF家族及CLC家族在葉片之硝酸鹽分佈及硝酸鹽的訊息傳遞
論文名稱(外文):Investigation of NPFs and CLCs in Nitrate Signaling and Nitrate Distribution among Leaves
指導教授:曲芳華蔡宜芳蔡宜芳引用關係
口試日期:2017-07-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:森林環境暨資源學研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:129
中文關鍵詞:阿拉伯芥硝酸鹽轉運蛋白硝酸鹽分布初期硝酸鹽反應
外文關鍵詞:Arabidopsisnitratetransporternitrate distributionprimary nitrate response
相關次數:
  • 被引用被引用:0
  • 點閱點閱:240
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氮源在植物的生長中扮演不可或缺的角色,而硝酸鹽是植物最常利用的形式。為了有效地利用硝酸鹽,植物發展出可以有效吸收、轉移和儲存硝酸鹽的各種機制。NPF的成員是植物很重要的硝酸鹽轉運蛋白,然而在53個成員裡,除了少數成員的角色已被確立之外,仍有一大部分尚未被了解。為了進一步探討哪些基因參與在硝酸鹽在地上部的分布,首先利用公開資料庫(MPSS以及e-FP Browser)所提供的基因表達資料篩選出在葉片表達量較高的基因,並選定19個基因剔除變異株進行硝酸鹽含量測定。研究發現,gtr2-1的基因剔除株中年輕葉的硝酸鹽含量比野生株高,在氮15標定硝酸鹽追蹤實驗中,氮15在年輕葉的含量也比野生株高,此外,在低硝酸鹽環境下,GTR2的基因表現量在年輕葉片中高於老葉,且利用GUS報導基因發現GTR2主要表現在根、地上部與地下部連接處、以及年輕葉片,這些證據指出GTR2可能負責降低年輕葉片中的硝酸鹽。另一方面,為了探討細胞內部硝酸鹽含量是否會影響植物感應外在硝酸鹽濃度的變化,在初期硝酸鹽反應實驗中採用了硝酸鹽儲存缺失的基因剔除株clca/clcb,目前的結果顯示內部硝酸鹽的含量可能在根部輕微影響初期硝酸鹽反應,但對地上部卻沒有影響。本研究針對NPF家族,提供硝酸鹽在葉片儲存及分布的系統化分析,並得知GTR2確實參與在年輕葉片硝酸鹽的分布,另外也藉由clca/clcb的基因剔除株了解細胞內部硝酸鹽的含量是否會影響初期硝酸鹽反應。
Nitrogen is one of the most important nutrients for plants to grow, and nitrate is the most common form of nitrogen to be absorbed. To utilize nitrate efficiently, higher plants have developed various transporters, including NPFs being responsible for uptake, transport and storage. Of all the 53 genes in NPF, despite some of the members have been well characterized, a lot of them remain unclear. To find if any NPF genes participate in nitrate distribution among leaves, gene expression from public databases, MPSS and e-FP Browser, was analyzed, and nitrate content among leaves of mutants of 19 candidates was measured. The results showed that the nitrate content of young leaf in gtr2-1 was higher than wild type, and more root-fed 15N was transported to young leaf in gtr2-1. The gene expression of GTR2 was higher in young leaf under low nitrate concentration, andβ-glucuronidase reporter analyses indicated that GTR2 were expressed in roots, root-shoot junction, and the young leaves. Taken together, these results suggest that GTR2 might be involved in repressing nitrate allocation to young leaves. In addition, to find out if internal nitrate level would affect primary nitrate response, a nitrate storage defective mutant, clca/clcb, was characterized, and the data showed that CLCa and CLCb might be partly involved in regulating primary nitrate response in roots but not in shoots. This study provides a systematic analysis of the roles of NPFs in nitrate distribution among leaves and found out that GTR2 has a negative impact on nitrate distribution in young leaves. Besides, the study of clca/clcb suggests that external nitrate plays a major role in inducing primary nitrate response.
Table of Contents
中文摘要 i
Abstract ii
Table of Contents iv
List of Figures and Tables vi
1. Introduction 1
1-1. Nitrate metabolism in plants 1
1-2. Nitrate transport systems in Arabidopsis thaliana. 1
1-3. NPF members have diverse functions in plants. 2
1-4. Nitrate serves as an important nutrient and a signal molecule. 5
1-5. CLC family members are involved in nitrate compartmentalization in intracellular organelles 6
1-6. Nitrate transporters in Poplar 7
1-7. Aim of this research 8
2. Material and method 10
2-1. Plant Material and Growth Condition 10
2-2. Genomic DNA extraction 12
2-3. Quantitative PCR analysis 13
2-4. Nitrate Content Analysis by HPLC 13
2-5. 15NO3- Labeling Assay 14
2-6. GUS staining 15
3. Results 16
3-1. Investigation of NPF genes for nitrate distribution among leaves 16
3-1-1. Bioinformatics research to identify potential candidates for further study. 16
3-1-2. Three more NPF members were selected based on Massively Parallel Signature Sequencing (MPSS) and RT-PCR results presented in a review article. 17
3-1-3. 19 candidates were chosen to measure nitrate content and biomass among leaves 18
3-2. Functional analyses of Arabidopsis GTR2 24
3-2-1. GTR2 was mainly expressed in root, root-shoot junction and young leaves 24
3-2-2. More 15N was accumulated in young leaves of gtr2-1 24
3-2-3. Expression of GTR2 in young leaves is increased at low nitrate condition 25
3-2-4. Nitrate content in young leaves was higher under different nitrate concentrations in gtr2-1 26
3-2-5. Nitrate content dropped faster under starvation in gtr2-1 27
3-2-6. Primary root length in gtr2-1 was longer under low nitrate condition 28
3-3. CLCa and CLCb are responsible for nitrate storage in vacuole and might have impact on nitrate sensing in roots 29
3-3-1. clca and clcb mutants showed a reduction in nitrate content among all leaves. 29
3-3-2. clca/clcb had no dramatic difference compared to wild type in terms of primary nitrate response under both high- and low-affinity nitrate conditions. 30
4. Discussion 35
4-1. Most of the mutants of NPF members showed an identical pattern of nitrate distribution among leaves compared to wild type in this experiment. 35
4-2. GTR2 might play the role of regulating nitrate storage in young leaves 39
4-3. CLCa and CLCb do not affect nitrate sensing in short-term primary nitrate response 41
5. Reference 45
6. Appendix 109
Alboresi, A., Gestin, C., Leydecker, M.T., Bedu, M., Meyer, C., and Truong, H.N. (2005). Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant Cell Environ. 28, 500-512.
Andersen, T.G., Nour-Eldin, H.H., Fuller, V.L., Olsen, C.E., Burow, M., and Halkier, B.A. (2013). Integration of biosynthesis and long-distance transport establish organ-specific glucosinolate profiles in vegetative Arabidopsis. Plant Cell 25, 3133-3145.
Bai, H., Euring, D., Volmer, K., Janz, D., and Polle, A. (2013). The nitrate transporter (NRT) gene family in poplar. PLoS One 8, e72126.
Chiang, C.S., Stacey, G., and Tsay, Y.F. (2004). Mechanisms and functional properties of two peptide transporters, AtPTR2 and fPTR2. J. Biol. Chem. 279, 30150-30157.
Chiba, Y., Shimizu, T., Miyakawa, S., Kanno, Y., Koshiba, T., Kamiya, Y., and Seo, M. (2015). Identification of Arabidopsis thaliana NRT1/PTR FAMILY (NPF) proteins capable of transporting plant hormones. J. Plant Res. 128, 679-686.
Chiu, C.C., Lin, C.S., Hsia, A.P., Su, R.C., Lin, H.L., and Tsay, Y.F. (2004). Mutation of a nitrate transporter, AtNRT1:4, results in a reduced petiole nitrate content and altered leaf development. Plant Cell Physiol. 45, 1139-1148.
Cookson, S.J., Williams, L.E., and Miller, A.J. (2005). Light-dark changes in cytosolic nitrate pools depend on nitrate reductase activity in Arabidopsis leaf cells. Plant Physiol. 138, 1097-1105.
Corratge-Faillie, C., and Lacombe, B. (2017). Substrate (un)specificity of Arabidopsis NRT1/PTR FAMILY (NPF) proteins. J. Exp. Bot.
Crawford, N.M. (1995). Nitrate - Nutrient and Signal for Plant-Growth. Plant Cell 7, 859-868.
Crawford, N.M., and Glass, A.D.M. (1998). Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci. 3, 389-395.
Dechorgnat, J., Nguyen, C.T., Armengaud, P., Jossier, M., Diatloff, E., Filleur, S., and Daniel-Vedele, F. (2011). From the soil to the seeds: the long journey of nitrate in plants. J. Exp. Bot. 62, 1349-1359.
Dietrich, D., Hammes, U., Thor, K., Suter-Grotemeyer, M., Fluckiger, R., Slusarenko, A.J., Ward, J.M., and Rentsch, D. (2004). AtPTR1, a plasma membrane peptide transporter expressed during seed germination and in vascular tissue of Arabidopsis. Plant J. 40, 488-499.
Ehlting, B., Dluzniewska, P., Dietrich, H., Selle, A., Teuber, M., Hansch, R., Nehls, U., Polle, A., Schnitzler, J.P., Rennenberg, H., and Gessler, A. (2007). Interaction of nitrogen nutrition and salinity in Grey poplar (Populus tremula x alba). Plant Cell Environ. 30, 796-811.
Fan, S.C., Lin, C.S., Hsu, P.K., Lin, S.H., and Tsay, Y.F. (2009). The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate. Plant Cell 21, 2750-2761.
Faustino, L.I., Moretti, A.P., and Graciano, C. (2015). Fertilization with urea, ammonium and nitrate produce different effects on growth, hydraulic traits and drought tolerance in Pinus taeda seedlings. Tree Physiol. 35, 1062-1074.
Forde, B.G. (2000). Nitrate transporters in plants: structure, function and regulation. Bba-Biomembranes 1465, 219-235.
Forde, B.G. (2002). Local and long-range signaling pathways regulating plant responses to nitrate. Annu. Rev. Plant. Biol. 53, 203-224.
Frommer, W.B., Hummel, S., and Rentsch, D. (1994). Cloning of an Arabidopsis histidine transporting protein related to nitrate and peptide transporters. FEBS Lett. 347, 185-189.
Geelen, D., Lurin, C., Bouchez, D., Frachisse, J.M., Lelievre, F., Courtial, B., Barbier-Brygoo, H., and Maurel, C. (2000). Disruption of putative anion channel gene AtCLC-a in Arabidopsis suggests a role in the regulation of nitrate content. Plant J. 21, 259-267.
Glass, A.D.M., Britto, D.T., Kaiser, B.N., Kronzucker, H.J., Kumar, A., Okamoto, M., Rawat, S.R., Siddiqi, M.Y., Silim, S.M., Vidmar, J.J., and Zhuo, D. (2001). Nitrogen transport in plants, with an emphasis on the regulation of fluxes to match plant demand. J. Plant Nutr. Soil Sc. 164, 199-207.
Gowri, G., Kenis, J.D., Ingemarsson, B., Redinbaugh, M.G., and Campbell, W.H. (1992). Nitrate Reductase Transcript Is Expressed in the Primary Response of Maize to Environmental Nitrate. Plant Mol. Biol. 18, 55-64.
Hammes, U.Z., Meier, S., Dietrich, D., Ward, J.M., and Rentsch, D. (2010). Functional Properties of the Arabidopsis Peptide Transporters AtPTR1 and AtPTR5. J. Biol. Chem. 285, 39710-39717.
Harada, H., Kuromori, T., Hirayama, T., Shinozaki, K., and Leigh, R.A. (2004). Quantitative trait loci analysis of nitrate storage in Arabidopsis leading to an investigation of the contribution of the anion channel gene, AtCLC-c, to variation in nitrate levels. J. Exp. Bot. 55, 2005-2014.
Ho, C.H., Lin, S.H., Hu, H.C., and Tsay, Y.F. (2009). CHL1 Functions as a Nitrate Sensor in Plants. Cell 138, 1184-1194.
Hsu, P.K., and Tsay, Y.F. (2013). Two phloem nitrate transporters, NRT1.11 and NRT1.12, are important for redistributing xylem-borne nitrate to enhance plant growth. Plant Physiol. 163, 844-856.
Hu, H.C., Wang, Y.Y., and Tsay, Y.F. (2009). AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response. Plant J. 57, 264-278.
Huang, N.C., Liu, K.H., Lo, H.J., and Tsay, Y.F. (1999). Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. Plant Cell 11, 1381-1392.
Ishimaru, Y., Oikawa, T., Suzuki, T., Takeishi, S., Matsuura, H., Takahashi, K., Hamamoto, S., Uozumi, N., Shimizu, T., Seo, M., Ohta, H., and Ueda, M. (2017). GTR1 is a jasmonic acid and jasmonoyl-L-isoleucine transporter in Arabidopsis thaliana. Biosci. Biotech. Bioch. 81, 249-255.
Kotur, Z., Mackenzie, N., Ramesh, S., Tyerman, S.D., Kaiser, B.N., and Glass, A.D. (2012). Nitrate transport capacity of the Arabidopsis thaliana NRT2 family members and their interactions with AtNAR2.1. New Phytol. 194, 724-731.
Lejay, L., Wirth, J., Pervent, M., Cross, J.M.F., Tillard, P., and Gojon, A. (2008). Oxidative pentose phosphate pathway-dependent sugar sensing as a mechanism for regulation of root ion transporters by photosynthesis. Plant Physiol. 146, 2036-2053.
Lejay, L., Tillard, P., Lepetit, M., Olive, F.D., Filleur, S., Daniel-Vedele, F., and Gojon, A. (1999). Molecular and functional regulation of two NO3- uptake systems by N- and C-status of Arabidopsis plants. Plant J. 18, 509-519.
Leran, S., Varala, K., Boyer, J.C., Chiurazzi, M., Crawford, N., Daniel-Vedele, F., David, L., Dickstein, R., Fernandez, E., Forde, B., Gassmann, W., Geiger, D., Gojon, A., Gong, J.M., Halkier, B.A., Harris, J.M., Hedrich, R., Limami, A.M., Rentsch, D., Seo, M., Tsay, Y.F., Zhang, M.Y., Coruzzi, G., and Lacombe, B. (2014). A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends Plant Sci. 19, 5-9.
Li, J.Y., Fu, Y.L., Pike, S.M., Bao, J., Tian, W., Zhang, Y., Chen, C.Z., Zhang, Y., Li, H.M., Huang, J., Li, L.G., Schroeder, J.I., Gassmann, W., and Gong, J.M. (2010). The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance. Plant Cell 22, 1633-1646.
Lin, S.H., Kuo, H.F., Canivenc, G., Lin, C.S., Lepetit, M., Hsu, P.K., Tillard, P., Lin, H.L., Wang, Y.Y., Tsai, C.B., Gojon, A., and Tsay, Y.F. (2008). Mutation of the Arabidopsis NRT1.5 Nitrate Transporter Causes Defective Root-to-Shoot Nitrate Transport. Plant Cell 20, 2514-2528.
Lin, Y.L., and Tsay, Y.F. (2017). Influence of differing nitrate and nitrogen availability on flowering control in Arabidopsis. J. Exp. Bot.
Little, D.Y., Rao, H.Y., Oliva, S., Daniel-Vedele, F., Krapp, A., and Malamy, J.E. (2005). The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proc. Natl. Acad. Sci. U.S.A. 102, 13693-13698.
Liu, K.H., Huang, C.Y., and Tsay, Y.F. (1999). CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. Plant Cell 11, 865-874.
Lv, Q.D., Tang, R.J., Liu, H., Gao, X.S., Li, Y.Z., Zheng, H.Q., and Zhang, H.X. (2009). Cloning and molecular analyses of the Arabidopsis thaliana chloride channel gene family. Plant Sci. 176, 650-661.
Martinoia, E., Massonneau, A., and Frangne, N. (2000). Transport processes of solutes across the vacuolar membrane of higher plants. Plant Cell Physiol. 41, 1175-1186.
Min, X.J., Siddiqi, M.Y., Guy, R.D., Glass, A.D.M., and Kronzucker, H.J. (2000). A comparative kinetic analysis of nitrate and ammonium influx in two early-successional tree species of temperate and boreal forest ecosystems. Plant Cell Environ. 23, 321-328.
Miyawaki, K., Matsumoto-Kitano, M., and Kakimoto, T. (2004). Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J. 37, 128-138.
Nour-Eldin, H.H., Andersen, T.G., Burow, M., Madsen, S.R., Jorgensen, M.E., Olsen, C.E., Dreyer, I., Hedrich, R., Geiger, D., and Halkier, B.A. (2012). NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds. Nature 488, 531-534.
Omena-Garcia, R.P., Justino, G.C., de Araujo, V.B.F., de Souza, L.A.G., de Camargos, L.S., and Goncalves, J.F.D. (2015). Mineral Nitrogen Associated Changes in Growth and Xylem-N Compounds in Amazonian Legume Tree. J. Plant Nutr. 38, 584-595.
Pike, S., Gao, F., Kim, M.J., Kim, S.H., Schachtman, D.P., and Gassmann, W. (2014). Members of the NPF3 Transporter Subfamily Encode Pathogen-Inducible Nitrate/Nitrite Transporters in Grapevine and Arabidopsis. Plant Cell Physiol. 55, 162-170.
Qiu, D., Hu, R., Li, Y., and Zhang, M. (2017). Aromatic dipeptide Trp-Ala can be transported by Arabidopsis peptide transporters AtPTR1 and AtPTR5. Channels 1-5.
Redinbaugh, M.G., and Campbell, W.H. (1991). Higher-Plant Responses to Environmental Nitrate. Physiol. Plantarum 82, 640-650.
Scheible, W.R., GonzalezFontes, A., Lauerer, M., MullerRober, B., Caboche, M., and Stitt, M. (1997). Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9, 783-798.
Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671-675.
Sugiura, M., Georgescu, M.N., and Takahashi, M. (2007). A nitrite transporter associated with nitrite uptake by higher plant chloroplasts. Plant Cell Physiol. 48, 1022-1035.
Tong, W., Imai, A., Tabata, R., Shigenobu, S., Yamaguchi, K., Yamada, M., Hasebe, M., Sawa, S., Motose, H., and Takahashi, T. (2016). Polyamine Resistance Is Increased by Mutations in a Nitrate Transporter Gene NRT1.3 (AtNPF6.4) in Arabidopsis thaliana. Front Plant Sci. 7, 834.
Tsay, Y.F., Schroeder, J.I., Feldmann, K.A., and Crawford, N.M. (1993). The Herbicide Sensitivity Gene Chl1 of Arabidopsis Encodes a Nitrate-Inducible Nitrate Transporter. Cell 72, 705-713.
Tsay, Y.F., Chiu, C.C., Tsai, C.B., Ho, C.H., and Hsu, P.K. (2007). Nitrate transporters and peptide transporters. FEBS Lett. 581, 2290-2300.
von der Fecht-Bartenbach, J., Bogner, M., Dynowski, M., and Ludewig, U. (2010). CLC-b-Mediated NO3-/H+ Exchange Across the Tonoplast of Arabidopsis Vacuoles. Plant Cell Physiol. 51, 960-968.
Wang, R., Okamoto, M., Xing, X., and Crawford, N.M. (2003). Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol. 132, 556-567.
Wang, R.C., Liu, D., and Crawford, N.M. (1998). The Arabidopsis CHL1 protein plays a major role in high-affinity nitrate uptake. Proc. Natl. Acad. Sci. U.S.A. 95, 15134-15139.
Wang, Y.Y., and Tsay, Y.F. (2011). Arabidopsis Nitrate Transporter NRT1.9 Is Important in Phloem Nitrate Transport. Plant Cell 23, 1945-1957.
Wang, Y.Y., Hsu, P.K., and Tsay, Y.F. (2012). Uptake, allocation and signaling of nitrate. Trends Plant Sci. 17, 458-467.
Weichert, A., Brinkmann, C., Komarova, N.Y., Dietrich, D., Thor, K., Meier, S., Suter Grotemeyer, M., and Rentsch, D. (2012). AtPTR4 and AtPTR6 are differentially expressed, tonoplast-localized members of the peptide transporter/nitrate transporter 1 (PTR/NRT1) family. Planta 235, 311-323.
Williams, L.E., and Miller, A.J. (2001). Transporters responsible for the uptake and partitioning of nitrogenous solutes. Annu. Rev. Plant Phys. 52, 659-+.
Zhang, C.X., Meng, S., Li, Y.M., and Zhao, Z. (2014). Net NH4+ and NO3- fluxes, and expression of NH4+ and NO3- transporter genes in roots of Populus simonii after acclimation to moderate salinity. Trees-Struct. Funct. 28, 1813-1821.
Zheng, Z.L. (2009). Carbon and nitrogen nutrient balance signaling in plants. Plant Signal Behav. 4, 584-591.
Zifarelli, G., and Pusch, M. (2010). CLC transport proteins in plants. FEBS Lett. 584, 2122-2127.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊