跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 10:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇曼萍
研究生(外文):Man-Ping Su
論文名稱:台灣中部柳杉林之長期林分蒸散量推估:熱消散樹液流法的校正及其於野外資料的應用
論文名稱(外文):Long-term stand transpiration estimates in a Japanese cedar forest, central Taiwan: Calibration of thermal dissipation sap flow measurements and its application to field data
指導教授:久米朋宣
口試日期:2017-06-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:森林環境暨資源學研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:100
中文關鍵詞:校正樹液流蒸散
外文關鍵詞:calibrationsap flowtranspiration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了解氣候變遷及森林經營對水循環的影響,長期林分蒸散量的推估是不可或缺的。樹液流量測方法是推估林分蒸散量的方式之一,且其由 Granier 在1985年校正的熱消散樹液流方法於現今廣為所用。然而,一些前人研究進行校正實驗發現並非所有樹種都適用於Granier的經驗公式,且柳杉為台灣山區森林重要樹種之一,但還無研究進行校正實驗測定Granier樹液流方式對量測柳杉樹液流的精確度。並且甚少研究檢測推估林分蒸散時,樹木生長的影響。因此本研究目的為 1) 使用樹幹片段進行校正實驗以確認Granier樹液流方法對量測中部台灣柳杉之樹液流的精確度;2) 利用近7年野外量測之樹液流資料檢測真實邊材長度與樹木生長對林分蒸散量推估的影響;3) 將校正實驗之結果應用於野外資料以改增進的林分蒸散量推估的精確度;4) 研究長期林分蒸散及氣象資料之年間變異。校正實驗結果顯示使用 Clearwater 公式修正可以大幅提升推估的精確度,因此真實邊材長度的量測是很重要的。且校正實驗結果顯示 Granier 經驗公式推估的結果會低估真實流量約30%。由於真實邊材長度的量測十分重要,我們在野外樹液流量測樣區進行染劑注射實驗,且量測樹木生長量,用以檢測邊材長度的改變對蒸散量推估的影響,亦檢測由樹木生長所造成的邊材面積的改變對長期蒸散量推估的影響。在本研究中,由樹木生長造成的邊材面積的改變與邊材長度的改變對每年林分蒸散量推估的影響不大,因為 1) 在本研究期間樹木生長量小,及2) 因染劑注射實驗修正之邊材長度造成2-4公分之樹液流速變大,雖2-4公分樹液流速變大使推估量增加,但其會與邊材面積減少所造成的推估降低互相抵銷。而為了得到可良好推估蒸散的方法,我們嘗試將校正實驗之結果使用五種不同方法應用於野外資料。結果顯示五種方式的差距出乎預期之大。藉由比較其各自的樹液流日變化曲線,以及比較五種方式計算之年林分蒸散量與潛在蒸發量,得到年林分蒸散量推估的可能範圍大致為原本推估方式的1.5至3倍。最後,本實驗推估近7年的林分蒸散量。林分蒸散量的年間變異很小,因為林分蒸散量主要受水蒸氣壓虧缺及太陽輻射影響,而其年間變異亦不大。溪頭的氣象狀況在過去近7年間似乎維持滿穩定的狀態。
Long-term stand scale transpiration estimation is indispensable for understanding climate change impacts and the effects of forest management on the water cycle. Sap flow measurement is a robust approach for estimating stand transpiration; a thermal dissipation method calibrated by Granier (1985) has already been widely implemented. However, some experimental sap flow calibration studies have claimed that Granier’s empirical formula is not universally applicable. Japanese cedar is a dominant tree in the mountain forests of Taiwan; however, no experimental calibration studies have been conducted to determine the accuracy of the Granier sap flow method for this species. Additionally, the potential for incorporating tree growth effects on stand transpiration into the formula has not been examined. Therefore, this study aimed to 1) determine the accuracy of the Granier sap flow method on Japanese cedar in central Taiwan by conducting a calibration experiment using stem segments; 2) examine the effect of actual sapwood depth and tree growth on transpiration estimates based on near 7-year field measurements; 3) apply the results from the calibration experiment to field data to improve the accuracy of transpiration estimates; and 4) investigate inter-annual variation due to long-term transpiration and meteorological factors in a Japanese cedar plantation in Xitou, central Taiwan. The results of the calibration experiment showed that the application of Clearwater formula substantially improved the accuracy of transpiration estimates, indicating the importance of accurate sapwood depth measurements. The calibration experiments showed that the Granier formula underestimated actual water uptake by approximately 30%. Thus, a dye injection experiment was conducted using samples from the field study site; tree growth was also measured to examine the effects of changes in sapwood depth and area due to tree growth on long-term transpiration estimates. These effects were small, because 1) there was little tree growth during the study period and 2) the 2–4 cm sap flow rate became high due to the correction of sapwood depth for dye injection. However, the increase in the inner sap flow rate was balanced by the decrease in sapwood area due to the sapwood depth correction. To determine the better method to estimate stand transpiration, the calibration results were applied to field data using five different methods. Contrary to expectations, there were distinct differences among the results produced by these methods; stand-scale transpiration, was found to be 1.5–3 times larger than that obtained using the original method. We then conducted stand transpiration estimates for the near 7-year field data. There was little inter-annual variation in stand transpiration, because stand-scale transpiration was mainly affected by vapor pressure deficit and solar radiation, which exhibited little inter-annual variation. Meteorological conditions in Xitou appear to have been stable over the past 7 years.
口試委員會審定書………………………………………………………………………i
誌謝……………………………………………………………………………………...ii
中文摘要………………………………………………………………………………..iii
英文摘要….…………………………………………………………………………......v
Chapter 1 Introduction……………………………………………………………...……6
1-1 Background………………………………………………………………..……6
1-2 Meteorological factors for stand-transpiration……………………………….…6
1-3 Transpiration in Taiwan…………………………………………..………….…8
1-4 Sap flow measurement………………………………..…………………….…..9
1-5 Calibration of Granier probe……………………….……………………….…11
1-6 The goals of this study…………………………………………………….…12
Chapter 2 Materials and methods…………………………………………………….…14
2-1 Sap flow measurement..…………………….…………………………………14
2-2 Calibration experiment……………………………..…………………………18
2-2-1 Samples and tree segment preparation………………...…………….…18
2-2-2 Process of calibration experiment…………………..……………….…20
2-2-3 Sap flow measurement-sensor arrangement…………..…………….…22
2-2-4 Determining of sapwood area and sapwood depth………..………...…23
2-3 Long-term measurement of sap flow and meteorological factors…….……..…24
2-3-1 Experiment site and samples……………………………………..….…24
2-3-2 Sapwood depth and sapwood area measurement……………..……..…25
2-3-3 Biometric parameters measurement……………………………...……27
2-3-4 Meteorological factors………………………………………...…….…27
2-3-5 Sap flow measurement-sensor arrangement………………..……….…28
2-4 Data processing for long-term stand scale sap flow……………..……………29
2-4-1 Estimation of stand scale transpiration…………………..…………..…29
2-4-2 Effect of sapwood depth and growth on stand transpiration estimate…..30
2-4-3 Application of calibration experiment results to field sap flow data..…..31
Chapter 3 Results and discussions………………………………………………...….…34
3-1 Calibration experiment……………………………………………………..…34
3-1-1 Sample segments………………………………………………………34
3-1-2 Effect of sensor number……………………………………………..…36
3-1-3 Effect of segment height…………………………………………….…36
3-1-4 Accuracy of thermal dissipation probe for Japanese cedar trees……….37
3-1-5 Comparison with other calibration studies…………………………..…38
3-2 Estimation of long-term stand scale transpiration…..………………………....47
3-2-1 Measurement of sapwood depth………………………………...…..…47
3-2-2 Effect of sapwood depth and radial variation on transpiration estimation…………………………………………………………………….48
3-2-3 Changed in Biometric parameters……....………………………...……50
3-2-4 Effect of tree growth…………………………………………….…..…51
3-3 Application of indoor-calibration experiment results to field sap flow data.......58
3-4 Inter-annual variations in stand transpiration………………………….………66
3-4-1 Meteorological factors and stand scale transpiration from Sep 2010 to Mar 2017..........................................................................................................66
3-4-2 Relationship between transpiration and Meteorological factors…….....68
3-4-3 Comparison of stand scale transpiration with other cloud forests….…..71
Chapter 4 Conclusions……………………………………………………………….…80
Chapter 5 References………………………………………………………………...…83
Appendix……………………………………………………………………..……...…90
林祐竹. (2011). 棲蘭山樣區降水對台灣扁柏樹液流影響之探討. 東華大學自然資源管理研究所碩士論文, 1-95.
林務局第四次全國森林資源調查 (2017).
徐嘉君. (2015). 台灣山地霧林的分布型態. 林業研究專訊, 22(1), 5-8.
陳俐如. (2005). 鴛鴦湖地區台灣扁柏樹液流動之探討. 東華大學自然資源管理研究所碩士論文, 1-86.
蔡孜奕. (2013). 臺灣中部塔塔加地區臺灣雲杉老熟林樹液流特性. 臺灣大學森林環境暨資源學研究所學位論文, 1-78.
羅勻謙. (2004). 鴛鴦湖地區台灣扁柏森林生態系蒸散作用之研究. 東華大學自然資源管理研究所碩士論文, 1-81.
Alkaeed, O., Flores, C., Jinno, K., & Tsutsumi, A. (2006). Comparison of several reference evapotranspiration methods for Itoshima Peninsula area, Fukuoka, Japan. Memoirs of the Faculty of Engineering, Kyushu University, 66(1), 1-14.
Ayutthaya, I. N., Do, F. C., Pannengpetch, K., Junjittakarn, J., Maeght, J. L., Rocheteau, A., & Cochard, H. (2009). Transient thermal dissipation method of xylem sap flow measurement: multi-species calibration and field evaluation. Tree Physiology, 30(1), 139.
Braun, P., & Schmid, J. (1999). Sap flow measurements in grapevines (Vitis vinifera L.) 2. Granier measurements. Plant and Soil, 215(1), 47-55.
Burgess, S. S. O., & Dawson, T. E. (2004). The contribution of fog to the water relations of Sequoia sempervirens (D. Don): foliar uptake and prevention of dehydration. Plant, Cell & Environment, 27(8), 1023-1034.
Bush, S. E., Hultine, K. R., Sperry, J. S., & Ehleringer, J. R. (2010). Calibration of thermal dissipation sap flow probes for ring-and diffuse-porous trees. Tree physiology, 30(12), 1545-1554.
Chen, M. L. (2013). Characteristics of sap flow in a Japanese cedar plantation in Sitou, central Taiwan. School of Forestry and Resource Conservation College of Bioresources and Agriculture, National Taiwan University Master Thesis, 1-81.
Chiu, C. W., Kume, T., Komatsu, H., Tseng, H., Wey, T. H., & Otsuki, K. (2016). Seasonal changes of azimuthal, radial, and tree-to-tree variations in sap flux affect stand transpiration estimates in a Cryptomeria japonica. Journal of Forest Research, 21(4), 151-160.
Clausnitzer, F., Köstner, B., Schwärzel, K., & Bernhofer, C. (2011). Relationships between canopy transpiration, atmospheric conditions and soil water availability—Analyses of long-term sap-flow measurements in an old Norway spruce forest at the Ore Mountains/Germany. Agricultural and forest meteorology, 151(8), 1023-1034.
Clearwater, M. J., Meinzer, F. C., Andrade, J. L., Goldstein, G., & Holbrook, N. M. (1999). Potential errors in measurement of nonuniform sap flow using heat dissipation probes. Tree physiology, 19(10), 681-687.
Dawson, T. E. (1998). Fog in the California redwood forest: ecosystem inputs and use by plants. Oecologia, 117(4), 476-485.
Delzon, S., Sartore, M., Granier, A., & Loustau, D. (2004). Radial profiles of sap flow with increasing tree size in maritime pine. Tree Physiology, 24(11), 1285-1293.
Do, F., & Rocheteau, A. (2002). Influence of natural temperature gradients on measurements of xylem sap flow with thermal dissipation probes. 2. Advantages and calibration of a noncontinuous heating system. Tree physiology, 22(9), 649-654.
García-Santos, G. (2012). Transpiration in a sub-tropical ridge-top cloud forest. Journal of hydrology, 462, 42-52.
Gebauer, T., Horna, V., & Leuschner, C. (2008). Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species. Tree physiology, 28(12), 1821-1830.
Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W., & Sitch, S. (2004). Terrestrial vegetation and water balance—hydrological evaluation of a dynamic global vegetation model. Journal of Hydrology, 286(1), 249-270.
Granier, A. (1987). Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree physiology, 3(4), 309-320.
Granier, A., Huc, R., & Barigah, S. T. (1996). Transpiration of natural rain forest and its dependence on climatic factors. Agricultural and forest meteorology, 78(1-2), 19-29.
Gutiérrez, M. V., & Santiago, L. S. (2006). A comparison of sap flow measurements and potometry in two tropical lowland tree species with contrasting wood properties. Revista de biología tropical, 54(1), 73-81.
Hölttä, T., Linkosalo, T., Riikonen, A., Sevanto, S., & Nikinmaa, E. (2015). An analysis of Granier sap flow method, its sensitivity to heat storage and a new approach to improve its time dynamics. Agricultural and Forest Meteorology, 211, 2-12.
Hultine, K. R., Nagler, P. L., Morino, K., Bush, S. E., Burtch, K. G., Dennison, P. E. & Ehleringer, J. R. (2010). Sap flux-scaled transpiration by tamarisk (Tamarix spp.) before, during and after episodic defoliation by the saltcedar leaf beetle (Diorhabda carinulata). Agricultural and Forest Meteorology, 150(11), 1467-1475.
Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L. & Dolman, A. J. (2010). Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467(7318), 951-954.
Klimešová, J., Stŕedová, H., & Stŕeda, T. (2013). Maize transpiration in response to meteorological conditions. Contributions to Geophysics and Geodesy, 43(3), 225-236.
Komatsu, H., Onozawa, Y., Kume, T., Tsuruta, K., Kumagai, T. O., Shinohara, Y., & Otsuki, K. (2010). Stand-scale transpiration estimates in a Moso bamboo forest: II. Comparison with coniferous forests. Forest Ecology and Management, 260(8), 1295-1302.
Köstner, B., Granier, A., & Cermák, J. (1998). Sapflow measurements in forest stands: methods and uncertainties. In Annales des sciences forestières (Vol. 55, No. 1-2, pp. 13-27). EDP Sciences.
Kumagai, T. O., Aoki, S., Nagasawa, H., Mabuchi, T., Kubota, K., Inoue, S. & Otsuki, K. (2005). Effects of tree-to-tree and radial variations on sap flow estimates of transpiration in Japanese cedar. Agricultural and Forest Meteorology, 135(1), 110-116.
Kume, T., Onozawa, Y., Komatsu, H., Tsuruta, K., Shinohara, Y., Umebayashi, T., & Otsuki, K. (2010). Stand-scale transpiration estimates in a Moso bamboo forest:(I) Applicability of sap flux measurements. Forest Ecology and Management, 260(8), 1287-1294.
Kume, T., Otsuki, K., Du, S., Yamanaka, N., Wang, Y. L., & Liu, G. B. (2012). Spatial variation in sap flow velocity in semiarid region trees: its impact on stand‐scale transpiration estimates. Hydrological Processes, 26(8), 1161-1168.
Laplace, S. (2013). Study on transpiration in a Taiwanese Moso bamboo forest using sap flow measurement. School of Forestry and Resource Conservation College of Bioresources and Agriculture, National Taiwan University Master Thesis, 1-92.
Limousin, J. M., Rambal, S., Ourcival, J. M., Rocheteau, A., Joffre, R., & Rodríguez‐Cortina, R. (2009). Long‐term transpiration change with rainfall decline in a Mediterranean Quercus ilex forest. Global Change Biology, 15(9), 2163-2175.
Lin, M., Guan, D., Wang, A., Jin, C., Wu, J., & Yuan, F. (2015). Impact of leaf retained water on tree transpiration. Canadian Journal of Forest Research, 45(10), 1351-1357.
Lu, P., Urban, L., & Zhao, P. (2004). Granier''s thermal dissipation probe (TDP) method for measuring sap flow in trees: theory and practice. Acta Botanica Sinica-English edition, 46(6), 631-646.
Lu, P., Woo, K. C., & Liu, Z. T. (2002). Estimation of whole‐plant transpiration of bananas using sap flow measurements. Journal of Experimental Botany, 53(375), 1771-1779.
McJannet, D., Fitch, P., Disher, M., & Wallace, J. (2007). Measurements of transpiration in four tropical rainforest types of north Queensland, Australia. Hydrological Processes, 21(26), 3549-3564.
Meinzer, F. C., Goldstein, G., & Andrade, J. L. (2001). Regulation of water flux through tropical forest canopy trees: do universal rules apply? Tree Physiology, 21(1), 19-26.
Misson, L., Rasse, D. P., Vincke, C., Aubinet, M., & François, L. (2002). Predicting transpiration from forest stands in Belgium for the 21st century. Agricultural and Forest Meteorology, 111(4), 265-282.
Muñoz-Villers, L. E., Holwerda, F., Gómez-Cárdenas, M., Equihua, M., Asbjornsen, H., Bruijnzeel, L. A. & Tobón, C. (2012). Water balances of old-growth and regenerating montane cloud forests in central Veracruz, Mexico. Journal of Hydrology, 462, 53-66.
Nadezhdina, N., Cermak, J., & Ceulemans, R. (2002). Radial patterns of sap flow in woody stems of dominant and understory species: scaling errors associated with positioning of sensors. Tree Physiology-Victoria-, 22(13), 907-918.
Nakada, R., Fujisawa, Y., & Hirakawa, Y. (1999). Soft X-ray observation of water distribution in the stem ofCryptomeria japonica D. Don I: General description of water distribution. Journal of wood science, 45(3), 188-193.
Niu, F., Röll, A., Hardanto, A., Meijide, A., Köhler, M., & Hölscher, D. (2015). Oil palm water use: calibration of a sap flux method and a field measurement scheme. Tree physiology, 35(5), 563-573.
Ohashi, H., Motegi, Y., & Yasue, M. (1985). Water distribution and water alleyway in the living stem of Cryptomeria japonica. Res Bull Fac Agric Gifu Univ, 50, 111-129.
Oishi, A. C., Oren, R., & Stoy, P. C. (2008). Estimating components of forest evapotranspiration: a footprint approach for scaling sap flux measurements. Agricultural and Forest Meteorology, 148(11), 1719-1732.
Okada, N., Hirakawa, Y., & Katayama, Y. (2012). Radial movement of sapwood-injected rubidium into heartwood of Japanese cedar (Cryptomeriajaponica) in the growing period. Journal of wood science, 58(1), 1-8.
Pataki, D. E., & Oren, R. (2003). Species differences in stomatal control of water loss at the canopy scale in a mature bottomland deciduous forest. Advances in Water Resources, 26(12), 1267-1278.
Paudel, I., Kanety, T., & Cohen, S. (2013). Inactive xylem can explain differences in calibration factors for thermal dissipation probe sap flow measurements. Tree physiology, 33(9).
Ritter, A., Regalado, C. M., & Aschan, G. (2009). Fog reduces transpiration in tree species of the Canarian relict heath-laurel cloud forest (Garajonay National Park, Spain). Tree physiology, 29(4), 517-528.
Santiago, L. S., Goldstein, G., Meinzer, F. C., Fownes, J. H., & Mueller-Dombois, D. (2000). Transpiration and forest structure in relation to soil waterlogging in a Hawaiian montane cloud forest. Tree Physiology, 20(10), 673-681.
Shen, Q., Gao, G., Fu, B., & Lü, Y. (2015). Responses of shelterbelt stand transpiration to drought and groundwater variations in an arid inland river basin of Northwest China. Journal of Hydrology, 531, 738-748.
Shinohara, Y., Tsuruta, K., Ogura, A., Noto, F., Komatsu, H., Otsuki, K., & Maruyama, T. (2013). Azimuthal and radial variations in sap flux density and effects on stand-scale transpiration estimates in a Japanese cedar forest. Tree physiology, 33(5).
Smith, D. M., & Allen, S. J. (1996). Measurement of sap flow in plant stems. Journal of Experimental Botany, 47(12), 1833-1844.
Steppe, K., De Pauw, D. J., Doody, T. M., & Teskey, R. O. (2010). A comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods. Agricultural and Forest Meteorology, 150(7), 1046-1056.
Sterling, S. M., Ducharne, A., & Polcher, J. (2013). The impact of global land-cover change on the terrestrial water cycle. Nature Climate Change, 3(4), 385-390.
Sun, H., Aubrey, D. P., & Teskey, R. O. (2012). A simple calibration improved the accuracy of the thermal dissipation technique for sap flow measurements in juvenile trees of six species. Trees, 26(2), 631-640.
Tseng, H. (2011).Transpiration estimates and spatial and temporal variability of sap flow in a Japanese cedar plantation in Sitou, central Taiwan. School of Forestry and Resource Conservation College of Bioresources and Agriculture, National Taiwan University Master Thesis, 1-74.
Tsuruta, K., Kume, T., Komatsu, H., Higashi, N., Umebayashi, T., Kumagai, T. O., & Otsuki, K. (2010). Azimuthal variations of sap flux density within Japanese cypress xylem trunks and their effects on tree transpiration estimates. Journal of Forest Research, 15(6), 398-403.
Wey, T. H., Lai, Y. J., Chang, C. S., Shen, C. W., Hong, C. Y., Wang, Y. N., & Chen, M. C. (2011). Preliminary studies on fog characteristics at Xitou region of central Taiwan. J NTU Exp Forest, 25, 149-160.
Wiedemann, A., Marañón-Jiménez, S., Rebmann, C., Herbst, M., & Cuntz, M. (2016). An empirical study of the wound effect on sap flux density measured with thermal dissipation probes. Tree Physiology.
Wilson, K. B., Hanson, P. J., Mulholland, P. J., Baldocchi, D. D., & Wullschleger, S. D. (2001). A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agricultural and forest Meteorology, 106(2), 153-168.
Wullschleger, S. D., & Hanson, P. J. (2006). Sensitivity of canopy transpiration to altered precipitation in an upland oak forest: Evidence from a long‐term field manipulation study. Global Change Biology, 12(1), 97-109.
Wullschleger, S. D., Hanson, P. J., & Todd, D. E. (2001). Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques. Forest Ecology and Management, 143(1), 205-213.
Zeppel, M. J., Macinnis-Ng, C. M., Yunusa, I. A., Whitley, R. J., & Eamus, D. (2008). Long term trends of stand transpiration in a remnant forest during wet and dry years. Journal of Hydrology, 349(1), 200-213.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top