跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/13 06:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭至賢
研究生(外文):Chih-Hsien Kuo
論文名稱:甘藷MYC型IbbHLH3轉錄因子利用蛋白質多重交互作用調控受傷反應途徑
論文名稱(外文):Sweet potato MYC-type bHLH transcription factor, IbbHLH3, determines wounding response pathway by targeting to different interacting proteins
指導教授:葉開溫葉開溫引用關係
指導教授(外文):Kai-Wun Yeh
口試委員:王淑珍靳宗洛施明哲謝明勳
口試委員(外文):Shu-Jen WangTsung-Luo JinnMing-Che ShihMing-Hsiun Hsieh
口試日期:2017-07-03
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:107
中文關鍵詞:IbNAC1IbbHLH3/4IbJAZsIbEIL1蛋白交互作用受傷逆境甘藷
外文關鍵詞:IbNAC1IbbHLH3/4IbJAZsIbEIL1IbWIPKsprotein interactionwounding stresssweet potato
相關次數:
  • 被引用被引用:0
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
過去研究已知,甘藷在受到昆蟲嚙食時,IbNAC1轉錄因子會調控sporamin基因表達以活化抗蟲防禦系統。而IbNAC1的基因表達是由MYC型的IbbHLH3及IbbHLH4兩個轉錄因子相互作用以調控其表達量,當IbbHLH3-IbbHLH3 homodimer形成時可啟動IbNAC1表達;反之,IbbHLH3-IbbHLH4 heterodimer則抑制IbNAC1表達。本研究顯示,IbbHLH3蛋白質的bHLH-domain 末端處有一特異區域,透過此區域與IbbHLH4結合以抑制IbNAC1基因表現。其他IbNAC1之抑制子 (repressor) 如IbJAZs及IbEIL1亦能夠與IbbHLH3結合並 抑制IbNAC1之表現。當葉片受傷時IbbHLH3的基因被誘導大量表現並產生IbbHLH3-IbbHLH3複合蛋白進而正向調控IbNAC1的轉錄以對抗昆蟲,而此時IbJAZ2 與IbEIL1的基因表現會減少。到了受傷晚期,IbJAZ1開始大量表現,藉由形成IbbHLH3-IbJAZ1複合蛋白以抑制IbNAC1表現。為進一步研究IbbHLH3與作用蛋白質結合後的功能,將這些基因分別以35S 啟動子驅動並過量表現於阿拉伯芥。這些轉殖株當中,過量表現IbJAZ2的植株在經JA處理後其表型與野生型相比無明顯差別;而過量表現IbJAZ1的植株中其生長卻不受JA抑制,且呈現花青素含量降低及JA防禦相關基因VSP2、LOX2、COI1表現下降等JA不敏感表型之特徵,此表示IbJAZ1的功能為JA訊息路徑中的抑制者。而在IbEIL1過量表現的轉殖株中亦出現對JA不敏感型的現象。綜合以上結果可知,甘藷中有許多蛋白質能與IbbHLH3產生交互作用,然而這些不同的蛋白質在面對受傷誘導的JA反應時分別扮演其特定的角色,共同協調受傷逆境生理反應。
Sweet potato IbNAC1 is known that activates the defense programs against herbivory. Previous study reported that two bHLH transcription factors, IbbHLH3 and IbbHLH4, dynamically coordinate the expression of IbNAC1 during wounding. In this study, we evidenced that IbbHLH4 interacts with IbbHLH3 by binding the end of HLH-domain of IbbHLH3 which is higher diversity compared to other bHLH homologous. Several proteins, including IbJAZs and IbEIL1, were found that interact with IbbHLH3 to regulate wounding response. When sweet potato leaves are exposed to wounding, the transcriptions of IbJAZ2 and IbEIL1 are immediately repressed, while the expression of IbbHLH3 is induced. The IbbHLH3-IbbHLH3 protein complex activates IbNAC1 against herbivory. Until late wounding, the expression of IbJAZ1 is elevated that repressed the activation function of IbbHLH3 by forming IbbHLH3-IbJAZ1 protein complex as IbbHLH3-IbbHLH4 complex. To characterize the biological functions of these IbbHLH3-intereacting proteins, the genes were overexpressed into Arabidopsis by 35S promoter. Among these transformants, the phenotype of IbJAZ2-overexpressing plants had no significant difference under JA treatment compared with WT. On the other hand, IbJAZ1-overexpressing plants showed insensitity to JA-inhibited anthocyanin accumulation, JA-inhibited root formation, and decrease of JA-regulated defence gene VSP2, LOX2, and COI1. Moreover, overexprssion of IbEIL1 also exhibited JA-insensitive response as IbJAZ1. These results suggested that the IbbHLH3-interacting proteins are multifunctional in response to wound-induced JA responses in sweet potato.
第一章 前言
第一節 植物受傷防禦機制………….……..........………………………………..1
第二節 甘藷病蟲害之防禦機制……...…………………………………………..7
第三節 甘藷受傷防禦蛋白sporamin之調控…………...………………………..8
第四節 甘藷受傷防禦轉錄因子lbNAC1..……………………….....……………9
第五節 植物防禦相關bHLH轉錄因子………..…………….…………….…....11
第六節 研究目的……………..…………………………………………….….14
第二章 材料與方法
一、實驗材料………………………………………………………………...……..16
二、實驗方法……………………………………………………………………….16
第一節 基因表現量測定………………………………………………………16
第二節 全長基因序列選殖……………………………………………………22
第三節 載體構築及轉型……………………………………………………....28
第四節 阿拉伯芥基因轉殖與分析……………………………………….….......34
第五節 阿拉伯芥原生質體轉型法及相關實驗…………………………………37
第六節 西方墨點轉印法………………………....………………………………40
第七節 蛋白質沉澱分析…………………………………………………………44
第八節 酵母菌轉型………………………………………………………...…….45
第九節 植株之實驗處理……………………...………………………………….47
第三章 結果
第一節 IbbHLH3交互作用區域之特異性分析………………………………48
第二節 IbbHLH3 之交互作用蛋白選殖…………………….………………….49
第三節 IbbHLH3與IbJAZ1、IbJAZ2a、IbJAZ2b、IbEIL1蛋白交互作用之探討…50
第四節 IbJAZs、IbEIL1及IbWIPK2次細胞定位分析……..….…………...….51
第五節 IbbHLH3交互作用蛋白IbJAZs、IbEIL1及IbWIPK2受傷誘導基因表現分析…………………………………………….………..……..….….52
第六節 IbJAZs及IbEIL1對IbbHLH3之轉錄活化能力分析……...……..….…53
第七節 IbbHLH3交互作用蛋白IbJAZs、IbEIL1及IbWAIPK2影響植物生理調控之分析…………………………………………………….………..53
第八節 IbJAZs、IbEIL1及IbWAIPK2與MYC-type 抑制子IbbHLH4之交互作用……………….......................……….…………………………..….56
第四章 討論
第一節 IbbHLH3交互作用區域之特異性探討……………….….……….……58
第二節 IbbHLH3轉錄活性之調控………………………………..…………….60
第三節 IbbHLH3與其之交互作用蛋白對阿拉伯芥表型之影響…………..….63
第四節 受傷逆境下甘藷防禦反應機制之探討….………………………....…..65
第五節 未來展望…………………………………………………………….......66
參考文獻…………………………………………………………………………..…68
圖表…………………………………………………………………………….….....85
羅慧珊 (2014)。功能性分析甘藷之IbWIPK及IbMEK1參與生物性逆境抗性之研究。國立台灣大學生命科學院植物科學研究所碩士論文。
Abe H., Urao T., Ito T., Seki M., Shinozaki K., and Yamaguchi-Shinozaki K. (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15: 63-78.
An F., Zhao Q., Ji Y., Li W., Jiang Z., Yu X., Zhang C., Han Y., He, W. Liu Y., Zhang S. Ecker J.R., and Guo H. (2010). Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 22: 2384-2401.
Apel K., and Hirt H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55: 373-399.
Bethke G., Unthan T., Uhrig J.F., Poschl Y., Gust A.A., Scheel D., and Lee J. (2009). Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. Proc. Natl. Acad. Sci. U. S. A. 106: 8067-8072.
Bleecker A.B., and Kende H. (2000). Ethylene: a gaseous signal molecule in plants. Annu. Rev. Cell Dev. Biol. 16: 1-18.
Bodenhausen N., and Reymond P. (2007). Signaling pathways controlling induced resistance to insect herbivores in Arabidopsis. Mol. Plant Microbe Interact. 20: 1406–1420.
Broadway R.M., and Duffey S.S. (1986). Plant proteinase inhibitors: Mechanism of action and effect on the growth and digestive physiology of larval Heliothis zea and Spodoptera exiqua. J. Insect Physiol. 32: 827-833.
Chadha K.C., and Brown S.A. (1974). Biosynthesis of Phenolic Acids in Tomato Plants Infected with Agrobacterium Tumefaciens. Can. J. Bot. 52: 2041-2047.
Chang S., Puryear J., and Cairney J. (1993). A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11: 113-116.
Chen H.J., Wang S.J., Chen C.C., and Yeh K.W. (2006). New gene construction strategy in T-DNA vector to enhance expression level of sweet potato sporamin and insect resistance in transgenic Brassica oleracea. Plant Sci. 171: 367–374.
Chen S.P., Lin I.W., Chen X., Huang Y.H., Chang H.C., Lo H.S., Lu H.H., and Yeh K.W. (2016a). Sweet potato NAC transcription factor, IbNAC1, up-regulates sporamin gene expression by binding the SWRE motif against mechanical wounding and herbivore attack. Plant J. 86: 234-248.
Chen S.P., Kuo C.H., Lu H.H., Lo H.S., and Yeh K.W. (2016b). The sweet potato NAC-domain transcription factor IbNAC1 is dynamically coordinated by the activator IbbHLH3 and the repressor IbbHLH4 to reprogram the defense mechanism against wounding. PLoS Genet. 12: 10.
Chen, P.J., Senthilkumar R., Jane W.N., He Y., Tian Z., and Yeh K.W. (2014). Transplastomic Nicotiana benthamiana plants expressing multiple defense genes encoding protease inhibitors and chitinase display broad-spectrum resistance against insects, pathogens and abiotic stresses. Plant Biotechnol. J. 12: 503–515.
Chen Q., Sun J., Zhai Q., Zhou W., Qi L., Xu L., Wang B., Chen R., Jiang H., Qi J., Li X., Palme K., and Li C. (2011). The basic helix-loop-helix transcription factor MYC2 directly represses PLETHORA expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis. Plant Cell 23: 3335-3352.
Chen Y.C., Chang H.S., Lai H.M., and Jeng S.T. (2005). Characterization of the wound-inducible protein ipomoelin from sweet potato. Plant Cell Environ. 28: 251-259.
Chen Y.C., Siems W.F., Pearce G., and Ryan C.A. (2008). Six peptide wound signals derived from a single precursor protein in Ipomoea batatas leaves activate the expression of the defense gene sporamin. J. Biol. Chem. 283: 11469–11476.
Cheng Z., Sun L., Qi T., Zhang B., Peng W., Liu Y., and Xie D. (2011). The bHLH transcription factor MYC3 interacts with the Jasmonate ZIM-domain proteins to mediate jasmonate response in Arabidopsis. Mol. Plant. 4: 279–288.
Chico J.M., Chini A., Fonseca S., and Solano R. (2008). JAZ repressors set the rhythm in jasmonate signaling. Curr. Opin. Plant Biol. 11: 486–494.
Chico J.M., Fernández-Barbero G., Chini A., Fernández-Calvo P., Díez-Díaz M., and Solano R. (2014). Repression of jasmonate-dependent defenses by shade involves differential regulation of protein stability of MYC transcription factors and their JAZ repressors in Arabidopsis. Plant Cell 26: 1967-1980.
Chini A., Fonseca S., Fernández G., Adie B., Chico J., Lorenzo O., García-Casado G., López-Vidriero I., Lozano F., and Ponce M.R., Micol J.L., and Solano R. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448: 666–671.
Chini A., Fonseca S., Chico J., Fernández-Calvo P., and Solano R. (2009). The ZIM domain mediates homo- and heteromeric interactions between Arabidopsis JAZ proteins. Plant J. 59: 77–87.
Chini A., Gimenez-Ibanez S., Goossens A., and Solano R. (2016). Redundancy and specificity in jasmonate signalling. Curr. Opin. Plant Biol. 33: 147-156.
Citovsky V., Lee L.Y., Vyas S., Glick E., Chen M.H., Vainstein A., Gafni Y., Gelvin S.B., and Tzfira T. (2006). Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta. J. Mol. Biol. 362: 1120-1131.
Colcombet J., Sözen C., and Hirt H. (2016). Convergence of multiple MAP3Ks on MKK3 identifies a set of novel stress MAPK modules. Front Plant Sci. 7: 1941.
Chrispeels M.J., and Raikhel N.V. (1991). Lectins, lectin genes, and their role in plant defense. Plant Cell. 3: 1–9.
Cui J., You C., Zhu E., Huang Q., Ma H., and Chang F. (2016). Feedback regulation of DYT1 by interactions with downstream bHLH factors promotes DYT1 nuclear localization and anther development. Plant Cell. 28: 1078–1093.
Diezel C. von Dahl C.C., Gaquerel E., and Baldwin I.T. (2009). Different lepidopteran elicitors account for cross-talk in herbivory-induced phytohormone signaling. Plant Physiol. 150: 1576-1586.
Doczi R., Brader G., Pettko-Szandtner A., Rajh I., Djamei A., Pitzschke A., Teige M., and Hirt H. (2007). The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling. Plant Cell 19: 3266-3279.
Dombrecht B., Xue G.P., Sprague S.J., Kirkegaard J.A., Ross J.J., Reid J.B., Fitt G.P., Sewelam N., Schenk P.M., Manners J.M., and Kazana K. (2007). MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19: 2225-2245.
Ehlting J., Chowrira S.G., Mattheus N., Aeschliman D.S., Arimura G.I., and Bohlmann J. (2008). Comparative transcriptome analysis of Arabidopsis thaliana infested by diamond back moth (Plutella xylostella) larvae reveals signatures of stress response, secondary metabolism, and signalling. BMC Genomics 9: 154.
FAO (2014). www.fao.org/giews/english/fo/index.htm.
Feller A., Machemer K., Braun E.L., and Grotewold E. (2011). Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J. 66: 94-116.
Fernandez-Calvo P., Chini A., Fernandez-Barbero G., Chico J.M., Gimenez-Ibanez S., Geerinck J., Eeckhout D., Schweizer F., Godoy M, Franco-Zorrilla J.M., Pauwels L., Witters E., Puga M.I., Paz-Ares J., Goossens A., Reymond P., De Jaeger G., and Solano R. (2011). The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell. 23: 701-715.
Figueroa P., and Browse J. (2015). Male sterility in Arabidopsis induced by overexpression of a MYC5-SRDX chimeric repressor. Plant J. 81: 849-860.
Fonseca S., Ferna´ndez-Calvo P., Ferna´ndez G.M., Dı´ez-Dı´az M., Gimenez-Ibanez S., Lo´ pez-Vidriero I, Godoy M., Ferna´ndez-Barbero G., Leene J.V., Jaeger G.D., Franco-Zorrilla J.M., and Solano1 R. (2014). bHLH003, bHLH013 and bHLH017 are new targets of JAZ repressors negatively regulating JA responses. PLoS One 9: 1.
Friedrichsen D.M., Nemhauser J., Muramitsu T., Maloof J.N., Alonso J., Ecker J.R., Furuya M., and Chory J. (2002). Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth. Genetics 162: 1445–1456.
Gabriela T.O., Enamul H.1., and Peter H.Q. (2003). The Arabidopsis Basic/Helix-Loop-Helix transcription factor family. Plant Cell. 15: 1749–1770.
Gagne J.M., Smalle J., Gingerich D.J., Walker J.M., Yoo, S.D., Yanagisawa S., and Vierstra R.D. (2004). Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc. Natl Acad. Sci. USA 101: 6803–6808.
Gao S., Yu B., Yuan L., Zhai H., He S.Z., and Liu Q.C. (2011). Production of transgenic sweetpotato plants resistant to stem nematodes using oryzacystatin-I gene. Sci. Hortic. 128: 408–414.
Gimenez-Ibanez S., Boter M., and Solano R. (2015). Novel players fine-tune plant trade-offs. Essays Biochem. 58: 83-100.
Godoy M., Franco-Zorrilla J.M., Perez-Perez J., Oliveros J.C., Lorenzo O., and Solano R. (2011). Improved protein-binding microarrays for the identification of DNA-binding specificities of transcription factors. Plant J. 66: 700-711.
Gonzalez A., Zhao M., Leavitt J.M., and Lloyd A.M. (2008). Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J. 53: 814–827.
Guo H., and Ecker J.R. (2003). Plant responses to ethylene gas are mediated by SCF(EBF1/ EBF2)-dependent proteolysis of EIN3 transcription factor. Cell 115: 667–677.
Hattori T., Nakagawa S., and Nakamura K. (1990). High-level expression of tuberous root storage protein genes of sweet potato in stems of plantlets grown in in vitro on sucrose medium. Plant Mol Biol 14: 595–604.
Heim M.A., Akoby M., Werber M., Martin C., Weisshaar B., and Bailey P.C. (2003). The basic helix–loop–helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol. Biol. Evol. 20: 735–747.
Hiruma K., Nishiuchi T., Kato T., Bednarek P., Okuno T., Schulze- Lefert P., and Takano Y. (2011). Arabidopsis ENHANCE D DISEA SE RESISTA NCE 1 is required for pathogen-induced expression of plant defensins in nonhost resistance, and acts through interference of MYC2-mediated repressor function. Plant J. 67: 980–992.
Höfgen R., and Willmitzer L. (1988). Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res. 16: 9877.
Hong G.J., Xue X.Y., Mao Y.B., Wang L.J., and Chen X.Y. (2012). Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell 24: 2635-2648.
Hu H., Dai M., Yao J., Xiao B., Li X., Zhang Q., and Xiong, L. (2006). Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A. 103: 12987-12992.
Huang H., Liu B., Liu L., and Song S. (2017). Jasmonate action in plant growth and development. Exp Bot. 268: 1349-1359.
Huesing J.E., Murdock L.L., and Shade R.E. (1991). Effect of wheat germ isolectins on development of cowpea weevil. Phytochemistry 30: 785-788.
Ichimura K., Shinozaki K., Tena G., Sheen J., Henry Y., Champion A., Kreis M., Zhang S.Q., Hirt H., Wilson C., Heberle-Bors E., Ellis B.E., Morris P.C., Innes R.W., Ecker J.R., Scheel D., Klessig D.F., Machida Y., Mundy J., Ohashi Y., Walker J.C., and Grp M. (2002). Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci. 7: 301-308.
Imanishi S., Kito-Nakamura K., Matsuoka K., Morikami A., and Nakamura K. (1997). A major jasmonate-inducible protein of sweet potato, ipomoelin, is an ABA-independent wound-indueible protein. Plant Cell Physiol. 36: 643-652.
Jassbi A.R., Gase K., Hettenhausen C., Schmidt A., and Baldwin I.T. (2008). Silencing geranylgeranyl diphosphate synthase in Nicotiana attenuata dramatically impairs resistance to tobacco hornworm. Plant Physiol. 146: 974-986.
Jeong J.S., Jung C., Seo J.S., Kim J.K., and Chua N.H. (2017). The deubiquitinating enzymes UBP12 and UBP13 positively regulate MYC2 levels in jasmonate responses. Plant Cell. tpc.17.00216.
Jih P.J., Chen Y.C., and Jeng S.T. (2003). Involvement of hydrogen peroxide and nitric oxide in expression of the ipomoelin gene from sweet potato. Plant Physiol. 132: 381-389.
Jones S. (2004). An overview of the basic helix-loop-helix proteins. Genome Biol. 5: 226.
Kazan K., and Manners J.M. (2008). Jasmonate signaling: Toward an integrated view. Plant Physiol. 146: 1459–1468.
Kazan K., and Manners J.M. (2012). JAZ repressors and the orchestration of phytohormone crosstalk. Trends Plant Sci. 17: 22-31.
Kazan K., and Manners J.M. (2013). MYC2: the master in action. Mol. Plant. 6: 686-703.
Kieber J.J., Rothenberg M., Roman G., Feldmann K.A., and Ecker J.R. (1993). CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72: 427–441.
Kong Q., Pattanaik S., Feller A., Werkman J.R., Chai C., Wang Y., Grotewold E., and Yuan L. (2012). Regulatory switch enforced by basic helix-loop-helix and ACT-domain mediated dimerizations of the maize transcription factor R. Proc Natl Acad Sci U S A. 109: 2091–2097.
Li G., Meng X., Wang R., Mao G., Han L., Liu Y., and Zhang S. (2012). Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis. PLoS Genet. 8: 6.
Li Y.C., Wan W.L., Lin J.S., Kuo Y.W., King Y.C., Chen Y.C., and Jeng S.T. (2016). Signal transduction and regulation of IbpreproHypSys in sweetpotato. Plant Cell Environ. 39: 1576–1587.
Li Q., Xie Q.G., Smith-Becker J., Navarre D.A., and Kaloshian, I. (2006). Mi-1-mediated aphid resistance involves salicylic acid and mitogen-activated protein kinase signaling cascades. MPMI. 19: 655-664.
Liu L., Xu W., Hu X., Liu H., and Lin Y. (2016). W-box and G-box elements play important roles in early senescence of rice flag leaf. Sci. Rep. 6: 20881.
Liu Q. (2017). Improvement for agronomically important traits by gene engineering in sweetpotato. Breed Sci. 67: 15-26.
Lorenzo O., Chico J., Sánches-Serrano J., and Solano R. (2004). JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essetioal to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16: 1938–1950.
Maeshima M., Sasaki T., and Asahi T. (1985). Characterization of major proteins in sweet potato tuberous roots. Phytochemistry 24: 1899–1902.
Mathelier A., Fornes O., Arenillas D.J., Chen1 C., Denay G., Lee1 J., Shi1 W., Shyr C., Tan G., Worsley-Hunt1 R., Zhang A.W., Parcy F., Lenhard B., Sandelin A., and Wasserman W.W. (2016). JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 4: 44.
Mathur J.1, and Koncz C. (1998). PEG-mediated protoplast transformation with naked DNA. Methods Mol Biol. 82: 267-76.
Malone L.A., Giacon H.A., Burgess E.P.J., Maxwell J.Z., Christeller J.T., and Laing W.A. (1995). Toxicity of trypsin endopeptidase inhibitors to honey bees (Hymenoptera: Apidae) J Econ Entomol 88: 46-50.
McGurl B., Pearce G., Orozco-Cardenas M., and Ryan C.A. (1992). Structure, expression, and antisense inhibition of the systemin precursor gene. Science. 255: 1570-1573.
Menkens A.E., Schindler U., and Cashmore A.R. (1995). The G-box: a ubiquitous regulatory DNA element in plants bound by the GBF family of bZIP proteins. Trends Biochem.Sci. 20: 506-510.
Meng X., Xu J., He Y., Yang K.Y., Mordorski B., Liu Y., and Zhang S. (2013). Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Plant Cell 25: 1126-1142.
Memelink J. (2009). Regulation of gene expression by jasmonate homones. Phytochemistry 70: 1560–1570.
Menand B., Yi K., Jouannic S., Hoffmann L., Ryan E., Linstead P., Schaefer D.G., and Dolan L. (2007). An ancient mechanism controls the development of cells with a rooting function in land plants. Science 316: 1477–1480.
Mittler R., Vanderauwera S., Gollery, M. and Van Breusegem F. (2004). Reactive oxygen gene network of plants. Trends Plant Sci. 9: 490-498.
Murdock L.L., Huesing J.E., Nielsen, S.S., Pratt, R.C., and Shade R. E. (1990). Biological effects of plant lectins on the cowpea weevil. Phytochemistry 29: 85-89.
Murdock L.L., Shade R.E., and Pomeroy M.A. (1988). Effects of E-64, a cysteine proteinase inhibitor, on cowpea weevil growth, development, and fecundity. Environ. Entomol. 17: 467–469.
Murdock L.L., and Shade R.E. (2002). Lectins and protease inhibitors as plant defenses against insects. J. Agric. Food Chem. 50: 6605−661.
Nakata M., Mitsuda N., Herde M., Koo A.J., Moreno J.E., Suzuki K., Howe G.A., and Ohme-Takagi M. (2013). A bHLH-type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, acts as a repressor to negatively regulate jasmonate signaling in Arabidopsis. Plant Cell. 25: 1641-1656.
Niu Y., Figueroa P., and Browse J. (2011). Characterization of JAZ interacting bHLH transcription factors that regulate jasmonate responses in Arabidopsis. J Exp Bot 62: 2143-2154.
Ooka H., Satoh K., Doi K., Nagata T., Otomo Y., Murakami K., Matsubara K., Osato N., Kawai J., and Carninci P. (2003). Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res. 10: 239-247.
Orozco-Cárdenas M.L., Narváez-Vásquez J., and Ryan C.A. (2001). Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13: 179-191.
Park S.W., Kaimoyo E., Kumar D., Mosher S., and Klessig D.F. (2007). Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318: 113-116.
Paul C.B., Cathie M., Gabriela T., Peter H.Q., Enamul H., Marc A.H., Marc J., Martin W., and Bernd W. (2003). Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana. Plant Cell. 15: 2497-2502.
Pauwels L., Barbero G.F., Geerinck J., Tilleman S., Grunewald W., Pérez A.C., Chico J.M., Bossche R.V., Sewell J., Gil E., García-Casado G., Witters E., Inzé D., Long J.A., De Jaeger G., Solano R., and Goossens A. (2010). NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464: 788–791.
Pearce G., Strydom D., Johnson S., and Ryan C.A. (1991). A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science. 253: 895-897.
Pearce G., Siems W.F., Bhattacharya R., Chen Y.C., and Ryan C.A. (2007). Three hydroxyproline-rich glycopeptides derived from a single petunia polyprotein precursor activate defensin I, a pathogen defense response gene. J. Biol. Chem. 282: 17777-17784.
Pearce G. (2011). Systemin, hydroxyproline-rich systemin and the induction of protease inhibitors. Curr. Protein Pept. Sci. 12: 399-408.
Penninckx I., Eggermont K., Terras F., Thomma B., De Samblanx G.W., Buchala A., Métraux J.P., Manners J.M., and Broekaert W.F. (1996). Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8: 2309-2323.
Pieterse C.M., and Van Loon L. (2004). NPR1: the spider in the web of induced resistance signaling pathways. Curr. Opin. Plant Biol. 7: 456-464.
Pires N., and Dolan L. (2010). Origin and diversification of basic-helix-loop-helix proteins in plants. Mol Biol Evol. 27: 862-874.
Qi T., Song S., Ren Q., Wu D., Huang H., Chen Y., Fan M., Peng W., Ren C., and Xie D. (2011). The Jasmonate–ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell. 23: 1795–1814.
Qi T., Huang H., Song S., and Xie D. (2015). Regulation of jasmonate-mediated stamen development and seed production by a bHLH-MYB complex in Arabidopsis. Plant Cell. 27: 1620-1633.
Rodriguez M.C.S., Petersen M., and Mundy J. (2010). Mitogen-activated protein kinase signaling in plants. Annu. Rev. Plant Biol. 61: 621-649.
Ryan C.A., and Pearce G. (2003). Systemins: A functionally defined family of peptide signal that regulate defensive genes in Solanaceae species. Proc. Natl. Acad. Sci. U. S. A. 100: 14577-14580.
Sasaki-Sekimoto Y., Jikumaru Y., Obayashi T., Saito H., Masuda S., Kamiya Y., Ohta H., and Shirasu K. (2013). bHLH transcription factors JAASSOCIATED MYC2-LIKE 1, JAM2 and JAM3 are negative regulators of jasmonate responses in Arabidopsis. Plant Physiol 63: 291-304.
Schmiesing A., Emonet A., Gouhier-Darimont C., and Reymond P. (2016). Arabidopsis MYC transcription factors are the target of hormonal salicylic acid/jasmonic acid cross talk in response to pieris brassicae egg extract. Plant Physiol. 170: 2432–2443.
Senthilkumar R., and Yeh K.W. (2012). Multiple biological functions of sporamin related to stress tolerance in sweet potato (Ipomoea batatas Lam). Biotechnol Adv. 30: 1309-1317.
Seo S., Sano H., and Ohashi Y. (1999). Jasmonate-based wound signal transduction requires activation of WIPK, a tobacco mitogen-activated protein kinase. Plant Cell 11: 289-298.
Sethi V., Raghuram B., Sinha A.K., and Chattopadhyay S. (2014). A mitogen-activated protein kinase cascade module, MKK3-MPK6 and MYC2, is involved in blue light-mediated seedling development in Arabidopsis. Plant Cell 26: 3343-3357.
Sharon N. (2007). Lectins: carbohydrate-specific reagents and biological recognition molecules. J. Biol. Chem. 282: 2753–2764.
Shin J., Heidrich K., Sanchez-Villarreal A., Parker J.E., and Davis S.J. (2012). TIME FOR COFFEE represses accumulation of the MYC2 transcription factor to provide time-of-day regulation of jasmonate signaling in Arabidopsis. Plant Cell 24: 2470-2482.
Solano R., Stepanova A., Chao Q., and Ecker J.R. (1998). Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENEINSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev. 12: 3703–3714.
Song S., Qi T., Fan M., Zhang X., Gao H., Huang H., Wu D, Guo H., and Xie D. (2013). The bHLH subgroup IIId factors negatively regulate jasmonate-mediated plant defense and development. PLoS Genet. 9: 7.
Song S., Huang H., Gao H., Wang J., Wu D., Liu X., Yang S., Zhai Q., Li C., Qi T., and Xie D. (2014). Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis. Plant Cell 26: 263–279.
Souer E., van Houwelingen A., Kloos D., Mol J., and Koes R. (1996). The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85: 159-170.
Takahashi F., Yoshida R., Ichimura K., Mizoguchi T., Seo S., Yonezawa M. Maruyama K., Yamaguchi-Shinozaki K., and Shinozaki K. (2007). The mitogen-activated protein kinase cascade MKK3–MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell. 19: 805–818.
Thaler J.S., Farag M.A., Pare P.W., and Dicke M. (2002). Jasmonate-deficient plants have reduced direct and indirect defences against herbivores. Ecol. Lett. 5: 764-774.
Toledo-Ortiz G., Huq E., and Quail P.H. (2003). The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell. 15: 1749-1770.
Turner J.G., Ellis C., and Devoto A. (2002). The jasmonate signal pathway. Plant Cell 14 (Suppl): S153–S164.
Verma V., Ravindran P., and Kumar P.P. (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 16: 86.
Wang S.J., Lan Y.C., Chen S.F., Chen Y.M., and Yeh K.W. (2002). Wound-response regulation of the sweet potato sporamin gene promoter region. Plant Mol Biol 48: 223–231.
Wasternack C., and Hause B. (2013). Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. Ann. Bot. 111: 1021-1058.
Williams B., and Dickman M. (2008). Plant programmed cell death: can''t live with it; can''t live without it. Mol. Plant Pathol. 9: 531-544.
Williams M.E., Foster R., and Chua N.H. (1992). Sequences flanking the hexameric G-box core CACGTG affect the specificity of protein binding. Plant Cell 4: 485-496.
Wu J.Q., Hettenhausen C., Meldau, S. and Baldwin I.T. (2007). Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata. Plant Cell 19: 1096-1122.
Xie Q., Guo H.S., Dallman G., Fang S., Weissman A.M., and Chua N.H. (2002). SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature 419: 167-170.
Yalpani N., and Raskin I. (1993). Salicylic acid: a systemic signal in induced plant disease resistance. Trends Microbiol. 1: 88-92.
Yeh K.W., Chen J.C., Lin M.I., Chen Y.M., and Lin C.Y. (1997a). Functional activity of sporamin from sweet potato (Ipomoea batatas Lam.): a tuber storage protein with trypsin inhibitory activity. Plant Mol Biol 33: 565–570.
Yeh, K.W., Lin M.I., Tuan S.J., Chen Y.M., Lin C.J, and Kao S.S. (1997b). Sweetpotato (Ipomoea batatas) trypsin inhibitors expressed intransgenic tobacco plants confer resistance against Spodoptera litura. Plant Cell Rep. 16: 696–699.
Yin Y.H., Wu D.Y., and Chory J. (2002). Plant receptor kinases: Systemin receptor identified. Proc. Natl. Acad. Sci. U. S. A. 99: 9090-9092.
Yoo S.D., Cho, Y.H., Tena G., Xiong Y., and Sheen J. (2008). Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 451: 789-795.
Zander M., Thurow C., and Gatz C. (2014). TGA transcription factors activate the salicylic acid-suppressible branch of the ethylene-induced defense program by regulating ORA59 expression. Plant Physiol. 165: 1671-1683.
Zhai H., Wang F.B., Si Z.Z., Huo J.X., Xing L., An Y.Y., He S.Z., and Liu Q.C. (2016). A myo-inositol-1-phosphate synthase gene, IbMIPS1, enhances salt and drought tolerance and stem nematode resistance in transgenic sweet potato. Plant Biotechnol. J. 14: 592–602.
Zhai Q., Yan L., Tan D., Chen R., Sun J., Gao L., Dong M.Q., Wang Y., and Li C. (2013). Phosphorylation-coupled proteolysis of the transcription factor MYC2 is important for jasmonate-signaled plant immunity. PLoS Genet. 9: 4.
Zhang F., Yao J., Ke J., Zhang L., Lam V.Q., Xin X.F., Zhou X.E., Chen J., Brunzelle J., Griffin P.R., Zhou M., Xu H.E., Melcher K., and He S.Y. (2015). Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling. Nature 525: 269-273.
Zhang X., Zhu Z., An F., Hao D., Li P., Song J., Yi C., and Guo H. (2014). Jasmonate-activated MYC2 represses ETHYLENE INSENSITIVE3 activity to antagonize ethylene-promoted apical hook formation in Arabidopsis. Plant Cell 26: 1105–1117.
Zhu Z, and Lee B. (2015). Friends or foes: New insights in jasmonate and ethylene co-actions. Plant Cell Physiol. 56: 414–420.
Zhu X., Chen1 J., Xie Z., Gao J., Ren G., Gao S., Zhou X., and Kuai B. (2015). Jasmonic acid promotes degreening via MYC2/3/4- and ANAC019/055/072-mediated regulation of major chlorophyll catabolic genes. Plant Cell. 84: 597-610.
Zhua Z., Ana F., Fenga Y., Lia P., Xueb L., Aa M, Jianga Z., Kimc J.M., Toc T.K., Lib W., Zhanga Z., Yua Q., Donga Z., Chena W., Sekic M., Zhoub Z., and Guo H. (2011). Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. PNAS 108: 12539-12544.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top