(54.236.58.220) 您好!臺灣時間:2021/03/01 17:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蕭保元
研究生(外文):Pao-Yuan Hsiao
論文名稱:植物防禦素AtPDF1.1藉由鐵螯合防禦機制提高對細菌性軟腐病之抗性
論文名稱(外文):The Arabidopsis defensin gene AtPDF1.1 mediates defense against Pectobacterium carotovorum subsp. carotovorum via an iron-withholding defense system
指導教授:詹明才鄭秋萍鄭秋萍引用關係
指導教授(外文):Ming-Tsair ChanChiu-Ping Cheng
口試日期:2017-07-31
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:植物科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:79
中文關鍵詞:分泌性植物防禦素鐵扣留防禦系統鐵載體鐵離子分布失衡細菌性軟腐病菌茉莉酸與乙烯反應
外文關鍵詞:Plant defensin (AtPDF1.1)iron-withholding defensesiderophoresiron distribution perturbationnecrotrophic bacteria (Pcc)jasmonic acid/ethylene response
相關次數:
  • 被引用被引用:0
  • 點閱點閱:67
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
植物防禦素是一種富含半胱氨酸的小分子蛋白質,參與多種生物功能。其中,較多的研究是關於對抗植物病原菌,尤其是對於真菌類的病原菌。而對於細菌性病原菌之防禦機制的了解則相對較為稀少。本研究發現阿拉伯芥植物防禦素(AtPDF1.1)是一個具有鐵離子親和力的分泌性蛋白。在大量表現植物防禦素的轉殖植物,鐵離子會被聚集在細胞的質外體進而擾亂細胞的鐵離子分布。當阿拉伯芥感染細菌性軟腐病菌(Pectobacterium carotovorum subsp. carotovorum),此植物防禦素會在感染葉與系統葉受到誘導而增加其表現量,並在轉殖植物中提高抗病耐受性。這些結果顯示植物防禦素參與抵抗細菌性軟腐病原菌的角色。藉由分析鐵恆定或缺乏和植物賀爾蒙相關基因的表現情形,發現葉片植物防禦素大量表現造成的鐵離子分布失去平衡會誘導缺鐵訊息,此缺鐵訊息會傳遞到根部進而活化乙烯合成與訊息傳遞相關基因的表現。活化的乙烯相關反應可能促使在系統葉上乙烯反應路徑的相關基因也跟著一起提高表現,而活化乙烯相關反應已被證實會增加對軟腐病菌的抗病性。總言之,我們的研究顯示:當阿拉伯芥感染細菌性軟腐病菌時,藉由提高植物防禦素在質外體的表達而造成一種鐵螯合防禦系統,而這機制可能就是植物防禦素參與對抗病原菌二次感染的生物功能。另一方面,當植物防禦素與病菌競爭可利用的鐵,也會直接地抑制病原菌生長與發病過程。本研究首先提出植物防禦素在對抗細菌性軟腐病菌所扮演的功能。
Plant defensins (PDFs) are cysteine-rich peptides that have a range of biological functions, including defense against fungal pathogens. However, little is known about their role in anti-bacterial defense systems. In this study, we showed that the protein encoded by ARABIDOPSIS THALIANA PLANT DEFENSIN TYPE 1.1 (AtPDF1.1) is a secreted protein that can chelate apoplastic iron. Transcripts of AtPDF1.1 were induced in both the infected and systemic non-infected leaves of Arabidopsis thaliana plants infected with the necrotrophic bacterium Pectobacterium carotovorum subsp. carotovorum (Pcc). Moreover, overexpression of AtPDF1.1 in A. thaliana led to enhanced tolerance to Pcc, suggesting its involvement in defense against bacteria. Expression analysis of genes associated with iron homeostasis/deficiency and hormone signaling indicated that the sequestration of iron by apoplastic AtPDF1.1 perturbs iron homeostasis in leaves and consequently activates an iron deficiency-mediated response in roots via the ethylene signaling pathway. This in turn triggers ethylene-mediated signaling in systemic leaves, which is involved in suppressing the infection of necrotrophic pathogens. These findings provide new insight into the key functions of plant defensins in limiting the infection by a phytopathogenic bacterium via an iron-deficiency-mediated defense response.
謝辭 - Ⅱ
中文摘要 - Ⅲ
Abstract - Ⅳ
Thesis text - 01
Introduction - 01
Results - 07
Transcript levels of AtPDF1s increase in response to iron treatment and Pcc infection - 07
AtPDF1.1 confers plant tolerance to Pcc infection - 09
AtPDF1.1 is secreted into the apoplast - 10
AtPDF1.1 localized to the apoplast is involved in iron regulation - 12
Chelation of iron in the leaf by apoplastic AtPDF1.1 induces an iron deficiency response - 16
A defense response is induced upon the induction of an iron deficiency response - 18
AtPDF1.1-mediated tolerance to Pcc infection requires the activation of a defense response in plants - 22
The AhPDF1 genes also confer A. halleri tolerance of Pcc infection - 23
Discussion - 24
Conclusion - 30
Materials and methods - 31
Plant materials and growth conditions - 31
Generation of transgenic plants - 32
Gene expression analysis following metal treatments and Pcc infection - 33
Plant pathogen inoculation and disease response assay - 33
Subcellular protein localization - 34
Detection of secreted proteins - 35
Immunoblotting analysis - 35
Metal binding assay - 37
Detection of iron distribution - 38
Measurement of metal concentration - 38
Ferric chelate reductase (FCR) activity assay - 39
Iron infiltration and treatment of ethylene inhibitor - 40
Quantitation of hydrogen peroxide content and callose deposition - 40
Pcc growth inhibition assay - 41
Accession numbers - 42
References - 43

Index of tables
Table 1. List of primers used for vector construction - 50
Table 2. List of primers used to quantify gene expression levels - 51


Index of figures
Fig 1. Expression levels of AtPDF1s are increased by treatment with zinc, iron or copper - 52
Fig 2. Expression levels of AtPDF1.1 were increased both locally and systemically by Pcc infection - 53
Fig 3. Prediction plot of the AtPDF1.1 signal peptide and expression of AtPDF1.1 in transgenic plants - 54
Fig 4. The expression levels of AtPDF1.1 correspond to protection against Pcc infection - 55
Fig 5. AtPDF1.1:GFP fusion proteins are localized and accumulated in the apoplast - 56
Fig 6. AtPDF1.1 protein is a secreted protein identified in the culture medium - 57
Fig 7. The infiltration of iron significantly increases Pcc-mediated symptoms in all transgenic plants - 58
Fig 8. The AtPDF1.1 protein potentially binds to various metal ions - 59
Fig 9. The iron aggregate accumulated in the apoplast by AtPDF1.1 protein - 60
Fig 10. AtPDF1.1 protein tends to aggregate irons in the apoplast - 61
Fig 11. AtPDF1.1 OE plants had less chlorophyll content than the other transgenic plants - 62
Fig 12. The iron deficiency-associated genes are upregulated in AtPDF1.1 OE plant - 63
Fig 13. The iron deficiency-associated genes are increased after infection of Pcc - 64
Fig 14. Ferric chelate reductase (FCR) activities are enhanced with the expression of AtPDF1.1 and infection of Pcc - 65
Fig 15. Pcc infection induced apoplastic iron accumulation both locally and systemically - 66
Fig 16. The iron homeostasis and iron-deficiency-responsive genes are increased after infection of Pcc - 67
Fig 17. The expression levels of downstream genes of ERF1/2 are increased in AtPDF1.1 OE plant - 68
Fig 18. The downstream genes of ERF1/2 are activated by infection of Pcc - 69
Fig 19. AtPDF1.1 transgenic plants do not confer protection against P. syringae pv. tomato DC3000 - 70
Fig 20. The ET-signalling genes are upregulated in AtPDF1.1 OE plant - 71
Fig 21. The ET-biosynthesis and signalling genes are up-regulated by infection of Pcc - 72
Fig 22. The application of ethylene inhibitor significantly enhances the severity of Pcc-mediated disease - 73
Fig 23. Hydrogen peroxide content and callose deposition are increased with expression of AtPDF1.1 and Pcc infection - 74
Fig 24. The growth of Pcc is not inhibited by AtPDF1.1 protein in vitro - 76
Fig 25. The AtPDF1.1 protein did not reduce the growth of Pcc - 77
Fig 26. The Pcc tolerance of A. halleri is also corresponded with the expression levels of AhPDF1s - 78
Fig 27. A proposed model of AtPDF1.1-mediated defence response to the infection by Pcc - 79
1Pieterse, C. M. J., Leon-Reyes, A., Van der Ent, S. & Van Wees, S. C. M. Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5, 308-316 (2009).
2Raub, J. A., Mathieu-Nolf, M., Hampson, N. B. & Thom, S. R. Carbon monoxide poisoning--a public health perspective. Toxicology 145, 1-14 (2000).
3Janeway, C. A., Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54 Pt 1, 1-13 (1989).
4De Coninck, B., Cammue, B. P. A. & Thevissen, K. Modes of antifungal action and in planta functions of plant defensins and defensin-like peptides. Fungal Biol Rev 26, 109-120 (2013).
5Dias, R. O. & Franco, O. L. Cysteine-stabilized alphabeta defensins: From a common fold to antibacterial activity. Peptides 72, 64-72 (2015).
6Marmiroli, N. & Maestri, E. Plant peptides in defense and signaling. Peptides 56, 30-44 (2014).
7Tam, J., Wang, S., Wong, K. & Tan, W. Antimicrobial Peptides from Plants. Pharmaceuticals 8, 711 (2015).
8Vriens, K., Cammue, B. P. & Thevissen, K. Antifungal plant defensins: mechanisms of action and production. Molecules 19, 12280-12303 (2014).
9Kaur, J., Sagaram, U. S. & Shah, D. Can plant defensins be used to engineer durable commercially useful fungal resistance in crop plants? Fungal Biol Rev 25, 128-135 (2011).
10Mirouze, M. et al. A putative novel role for plant defensins: a defensin from the zinc hyper-accumulating plant, Arabidopsis halleri, confers zinc tolerance. Plant J 47, 329-342 (2006).
11Shahzad, Z. et al. Plant Defensin type 1 (PDF1): protein promiscuity and expression variation within the Arabidopsis genus shed light on zinc tolerance acquisition in Arabidopsis halleri. New Phytol 200, 820-833 (2013).
12Fant, F., Vranken, W., Broekaert, W. & Borremans, F. Determination of the three-dimensional solution structure of Raphanus sativus antifungal protein 1 by 1H NMR. J Mol Biol 279, 257-270 (1998).
13Stotz, H. U., Spence, B. & Wang, Y. A defensin from tomato with dual function in defense and development. Plant Mol Biol 71, 131-143 (2009).
14Silverstein, K. A., Graham, M. A., Paape, T. D. & VandenBosch, K. A. Genome organization of more than 300 defensin-like genes in Arabidopsis. Plant Physiol 138, 600-610 (2005).
15Terras, F. R. et al. A new family of basic cysteine-rich plant antifungal proteins from Brassicaceae species. FEBS Lett 316, 233-240 (1993).
16Zimmerli, L., Stein, M., Lipka, V., Schulze-Lefert, P. & Somerville, S. Host and non-host pathogens elicit different jasmonate/ethylene responses in Arabidopsis. Plant J 40, 633-646 (2004).
17Penninckx, I. A. et al. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8, 2309-2323 (1996).
18Sels, J. et al. Use of a PTGS-MAR expression system for efficient in planta production of bioactive Arabidopsis thaliana plant defensins. Transgenic Res 16, 531-538 (2007).
19Terras, F. R. et al. Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell 7, 573-588 (1995).
20Oomen, R. J. et al. Plant defensin AhPDF1.1 is not secreted in leaves but it accumulates in intracellular compartments. New Phytol 192, 140-150 (2011).
21Nguyen, N. N. et al. Evolutionary tinkering of the expression of PDF1s suggests their joint effect on zinc tolerance and the response to pathogen attack. Front Plant Sci 5, 70 (2014).
22Kobayashi, T. & Nishizawa, N. K. Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63, 131-152 (2012).
23Briat, J. F., Curie, C. & Gaymard, F. Iron utilization and metabolism in plants. Curr Opin Plant Biol 10, 276-282 (2007).
24Zak, O., Leibman, A. & Aisen, P. Metal-binding properties of a single-sited transferrin fragment. Biochim Biophys Acta 742, 490-495 (1983).
25Thieme, J., Kilcoyne, D., Tyliszczak, T. & Haselwandter, K. Spatially resolved NEXAFS spectroscopy of siderophores in biological matrices. J Phys: Conf Ser 463, 012037 (2013).
26Shin, L. J. et al. IRT1 degradation factor1, a ring E3 ubiquitin ligase, regulates the degradation of iron-regulated transporter1 in Arabidopsis. Plant Cell 25, 3039-3051 (2013).
27Connolly, E. L., Fett, J. P. & Guerinot, M. L. Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14, 1347-1357 (2002).
28Yuan, Y. et al. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Res 18, 385-397 (2008).
29Sivitz, A. B., Hermand, V., Curie, C. & Vert, G. Arabidopsis bHLH100 and bHLH101 control iron homeostasis via a FIT-independent pathway. PLoS One 7, e44843 (2012).
30Koen, E. et al. Arabidopsis thaliana nicotianamine synthase 4 is required for proper response to iron deficiency and to cadmium exposure. Plant Sci 209, 1-11 (2013).
31Ravet, K. et al. Post-translational regulation of AtFER2 ferritin in response to intracellular iron trafficking during fruit development in Arabidopsis. Mol Plant 2, 1095-1106 (2009).
32Schuler, M. & Bauer, P. Heavy Metals Need Assistance: The contribution of nicotianamine to metal circulation throughout the plant and the Arabidopsis NAS gene family. Front Plant Sci 2, 69 (2011).
33Andrews, S. C., Robinson, A. K. & Rodriguez-Quinones, F. Bacterial iron homeostasis. FEMS Microbiol Rev 27, 215-237 (2003).
34Winkelmann, G. Ecology of siderophores with special reference to the fungi. Biometals 20, 379-392 (2007).
35Byers, B. R. & Arceneaux, J. E. Microbial iron transport: iron acquisition by pathogenic microorganisms. Met Ions Biol Syst 35, 37-66 (1998).
36Kieu, N. P. et al. Iron deficiency affects plant defence responses and confers resistance to Dickeya dadantii and Botrytis cinerea. Mol Plant Pathol 13, 816-827 (2012).
37Aznar, A. et al. Scavenging iron: a novel mechanism of plant immunity activation by microbial siderophores. Plant Physiol 164, 2167-2183 (2014).
38Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43, 205-227 (2005).
39Allen, A. et al. Plant defensins and virally encoded fungal toxin KP4 inhibit plant root growth. Planta 227, 331-339 (2008).
40Kim, H. S. et al. Overexpression of the Brassica rapa transcription factor WRKY12 results in reduced soft rot symptoms caused by Pectobacterium carotovorum in Arabidopsis and Chinese cabbage. Plant Biol (Stuttg) 16, 973-981 (2014).
41Mengiste, T. Plant immunity to necrotrophs. Annu Rev Phytopathol 50, 267-294 (2012).
42Bendtsen, J. D., Nielsen, H., von Heijne, G. & Brunak, S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340, 783-795 (2004).
43Amien, S. et al. Defensin-like ZmES4 mediates pollen tube burst in maize via opening of the potassium channel KZM1. PLoS Biol 8, e1000388 (2010).
44Toth, I. K. et al. Evaluation of phenotypic and molecular typing techniques for determining diversity in Erwinia carotovora subspp. atroseptica. J Appl Microbiol 87, 770-781 (1999).
45Yu, X. et al. Transcriptional analysis of the global regulatory networks active in Pseudomonas syringae during leaf colonization. MBio 5, e01683-01614 (2014).
46Franza, T., Mahe, B. & Expert, D. Erwinia chrysanthemi requires a second iron transport route dependent of the siderophore achromobactin for extracellular growth and plant infection. Mol Microbiol 55, 261-275 (2005).
47Dellagi, A. et al. Siderophore-mediated upregulation of Arabidopsis ferritin expression in response to Erwinia chrysanthemi infection. Plant J 43, 262-272 (2005).
48Oshima, T., Oshima, C. & Baba, Y. Selective extraction of histidine derivatives by metal affinity with a copper (II)-chelating ligand complex in an aqueous two-phase system. J Chromatogr B Analyt Technol Biomed Life Sci 990, 73-79 (2015).
49Kavaklı, P. A., Kavaklı, C. & Güven, O. Preparation and characterization of Fe(III)-loaded iminodiacetic acid modified GMA grafted nonwoven fabric adsorbent for anion adsorption. Radiat Phys Chem 94, 105-110 (2014).
50Das, A. Stabilities of ternary complexes of cobalt (II), nickel (II), copper (II) and zinc (II) involving aminopolycarboxylic acids and heteroaromaticN-bases as primary ligands and benzohydroxamic acid as a secondary ligand. Transit Metal Chem 15, 399-402 (1990).
51Lei, G. J. et al. Abscisic acid alleviates iron deficiency by promoting root iron reutilization and transport from root to shoot in Arabidopsis. Plant Cell Environ 37, 852-863 (2014).
52Bienfait, H. F., van den Briel, W. & Mesland-Mul, N. T. Free space iron pools in roots: generation and mobilization. Plant Physiol 78, 596-600 (1985).
53Pushnik, J. C., Miller, G. W. & Manwaring, J. H. The role of iron in higher plant chlorophyll biosynthesis, maintenance and chloroplast biogenesis. J Plant Nutr 7, 733-758 (1984).
54Robinson, N. J., Procter, C. M., Connolly, E. L. & Guerinot, M. L. A ferric-chelate reductase for iron uptake from soils. Nature 397, 694-697 (1999).
55Wu, H. et al. Co-overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis-enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots. Plant Physiol 158, 790-800 (2012).
56Anderson, J. P. et al. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16, 3460-3479 (2004).
57Pre, M. et al. The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol 147, 1347-1357 (2008).
58Garcia, M. J., Suarez, V., Romera, F. J., Alcantara, E. & Perez-Vicente, R. A new model involving ethylene, nitric oxide and Fe to explain the regulation of Fe-acquisition genes in Strategy I plants. Plant Physiol Biochem 49, 537-544 (2011).
59Garcia, M. J., Lucena, C., Romera, F. J., Alcantara, E. & Perez-Vicente, R. Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis. J Exp Bot 61, 3885-3899 (2010).
60Walley, J. W. et al. The chromatin remodeler SPLAYED regulates specific stress signaling pathways. PLoS Pathog 4, e1000237 (2008).
61Luna, E. et al. Callose deposition: a multifaceted plant defense response. Mol Plant Microbe Interact 24, 183-193 (2011).
62De Coninck, B. M. et al. Arabidopsis thaliana plant defensin AtPDF1.1 is involved in the plant response to biotic stress. New Phytol 187, 1075-1088 (2010).
63Fones, H. & Preston, G. M. The impact of transition metals on bacterial plant disease. FEMS Microbiol Rev 37, 495-519 (2013).
64Koen, E. et al. beta-Aminobutyric acid (BABA)-induced resistance in Arabidopsis thaliana: link with iron homeostasis. Mol Plant Microbe Interact 27, 1226-1240 (2014).
65Trapet, P. et al. The Pseudomonas fluorescens siderophore pyoverdine weakens Arabidopsis thaliana defense in favor of growth in iron-deficient conditions. Plant Physiol 171, 675-693 (2016).
66Chen, P. W., Singh, P. & Zimmerli, L. Priming of the Arabidopsis pattern-triggered immunity response upon infection by necrotrophic Pectobacterium carotovorum bacteria. Mol Plant Pathol 14, 58-70 (2013).
67Nawrath, C. & Metraux, J. P. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11, 1393-1404 (1999).
68Miethke, M. & Marahiel, M. A. Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71, 413-451 (2007).
69Alvarez-Fernandez, A., Diaz-Benito, P., Abadia, A., Lopez-Millan, A. F. & Abadia, J. Metal species involved in long distance metal transport in plants. Front Plant Sci 5, 105 (2014).
70Fourcroy, P. et al. Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. New Phytol 201, 155-167 (2014).
71Fourcroy, P., Tissot, N., Gaymard, F., Briat, J. F. & Dubos, C. Facilitated Fe nutrition by phenolic compounds excreted by the Arabidopsis ABCG37/PDR9 transporter requires the IRT1/FRO2 high-affinity root Fe transport system. Mol Plant 9, 485-488 (2016).
72Tsednee, M., Yang, S. C., Lee, D. C. & Yeh, K. C. Root-secreted nicotianamine from Arabidopsis halleri facilitates zinc hypertolerance by regulating zinc bioavailability. Plant Physiol 166, 839-852 (2014).
73Karimi, M., Inze, D. & Depicker, A. GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7, 193-195 (2002).
74Sanjaya et al. Overexpression of Arabidopsis thaliana tryptophan synthase beta 1 (AtTSB1) in Arabidopsis and tomato confers tolerance to cadmium stress. Plant Cell Environ 31, 1074-1085 (2008).
75Ko, S. S. et al. The bHLH142 transcription factor coordinates with TDR1 to modulate the expression of EAT1 and regulate pollen development in rice. Plant Cell 26, 2486-2504 (2014).
76Li, C. W. et al. Tomato RAV transcription factor is a pivotal modulator involved in the AP2/EREBP-mediated defense pathway. Plant Physiol 156, 213-227 (2011).
77King, E. O., Ward, M. K. & Raney, D. E. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44, 301-307 (1954).
78Yu, Q., Tang, C. & Kuo, J. A critical review on methods to measure apoplastic pH in plants. Plant Soil 219, 29-40.
79Patterson, G. H., Knobel, S. M., Sharif, W. D., Kain, S. R. & Piston, D. W. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J 73, 2782-2790 (1997).
80May, M. J. & Leaver, C. J. Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension cultures. Plant Physiol 103, 621-627 (1993).
81Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685 (1970).
82Schagger, H. Tricine-SDS-PAGE. Nat Protoc 1, 16-22 (2006).
83Marques, L., Oomen, R. J., Aumelas, A., Le Jean, M. & Berthomieu, P. Production of an Arabidopsis halleri foliar defensin in Escherichia coli. J Appl Microbiol 106, 1640-1648 (2009).
84Meindre, F. et al. The nuclear magnetic resonance solution structure of the synthetic AhPDF1.1b plant defensin evidences the structural feature within the gamma-motif. Biochemistry 53, 7745-7754 (2014).
85Soeters, R. & Aus, C. Hazards of injectable therapy. Trop Doct 19, 124-126 (1989).
86Roschzttardtz, H. et al. New insights into Fe localization in plant tissues. Front Plant Sci 4, 350 (2013).
87Lin, H. Y. et al. Genome-wide annotation, expression profiling, and protein interaction studies of the core cell-cycle genes in Phalaenopsis aphrodite. Plant Mol Biol 84, 203-226 (2014).
88Kovacs, K. et al. Revisiting the iron pools in cucumber roots: identification and localization. Planta 244, 167-179 (2016).
89Shanmugam, V., Wang, Y. W., Tsednee, M., Karunakaran, K. & Yeh, K. C. Glutathione plays an essential role in nitric oxide-mediated iron-deficiency signaling and iron-deficiency tolerance in Arabidopsis. Plant J 84, 464-477 (2015).
90Nikolic, M. & Römheld, V. Does high bicarbonate supply to roots change availability of iron in the leaf apoplast? Plant Soil 241, 67-74 (2002).
91Masalha, J., Kosegarten, H., Elmaci, Ö. & Mengel, K. The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fert Soils 30, 433-439 (2000).
92Yi, Y. & Guerinot, M. L. Genetic evidence that induction of root Fe (III) chelate reductase activity is necessary for iron uptake under iron deficiency. Plant J 10, 835-844 (1996).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔