|
Berman, M. G., Hout, M. C., Kardan, O., Hunter, M. R., Yourganov, G., Henderson, J. M., ... & Jonides, J. (2014). The perception of naturalness correlates with low-level visual features of environmental scenes. PloS one, 9(12), e114572. Berman, M. G., Jonides, J., & Kaplan, S. (2008). The cognitive benefits of interacting with nature. Psychological science, 19(12), 1207-1212. Berto, R. (2005). Exposure to restorative environments helps restore attentional capacity. Journal of Environmental Psychology, 25, 249–259. Blondin, F., & Lepage, M. (2005). Decrease and increase in brain activity during visual perceptual priming: An fMRI study on similar but perceptually different complex visual scenes. Neuropsychologia, 43(13), 1887-1900. Bratman, G. N., Daily, G. C., Levy, B. J., & Gross, J. J. (2015). The benefits of nature experience: Improved affect and cognition. Landscape and Urban Planning, 138, 41-50. Bratman, G. N., Hamilton, J. P., Hahn, K. S., Daily, G. C., & Gross, J. J. (2015). Nature experience reduces rumination and subgenual prefrontal cortex activation. Proceedings of the national academy of sciences, 112(28), 8567-8572. Canário, N., Jorge, L., Silva, M. L., Soares, M. A., & Castelo-Branco, M. (2016). Distinct preference for spatial frequency content in ventral stream regions underlying the recognition of scenes, faces, bodies and other objects. Neuropsychologia, 87, 110-119. Epstein, R. A., & Morgan, L. K. (2012). Neural responses to visual scenes reveals inconsistencies between fMRI adaptation and multivoxel pattern analysis. Neuropsychologia, 50(4), 530-543. Ganaden, R. E., Mullin, C. R., & Steeves, J. K. (2013). Transcranial magnetic stimulation to the transverse occipital sulcus affects scene but not object processing. Journal of cognitive neuroscience, 25(6), 961-968. Graham, D., Schwarz, B., Chatterjee, A., & Leder, H. (2016). Preference for luminance histogram regularities in natural scenes. Vision research, 120, 11-21. Grahn, J. A., & Manly, T. (2012). Common neural recruitment across diverse sustained attention tasks. PloS one, 7(11), e49556. Hartig, T., & Staats, H. (2006). The need for psychological restoration as a determinant of environmental preferences. Journal of Environmental Psychology, 26(3), 215-226. Hartig, T., Evans, G. W., Jamner, L. D., Davis, D. S., & Gärling, T. (2003). Tracking restoration in natural and urban field settings. Journal of environmental psychology, 23(2), 109-123. Head, J., & Helton, W. S. (2012). Natural scene stimuli and lapses of sustained attention. Consciousness and cognition, 21(4), 1617-1625. Henderson, J. M., Larson, C. L., & Zhu, D. C. (2007). Cortical activation to indoor versus outdoor scenes: an fMRI study. Experimental brain research, 179(1), 75-84. Ho, L. C., Chen, J. C., & Chang, C. Y. (2014). Changes in the visual preference after stream remediation using an image power spectrum: Stone revetment construction in the Nan-Shi-Ken stream, Taiwan. Ecological Engineering, 71, 426-431. Johnson, M. R., & Johnson, M. K. (2014). Decoding individual natural scene representations during perception and imagery. Frontiers in human neuroscience, 8, 59. Journal of environmental psychology, 15(1), 77-85. Kaplan, R., & Kaplan, S. (1989). The experience of nature: A psychological perspective. CUP Archive. Kaplan, S. (1995). The restorative benefits of nature: Toward an integrative framework. Journal of environmental psychology, 15(3), 169-182. Kardan, O., Demiralp, E., Hout, M. C., Hunter, M. R., Karimi, H., Hanayik, T., ... & Berman, M. G. (2015). Is the preference of natural versus man-made scenes driven by bottom–up processing of the visual features of nature?. Frontiers in psychology, 6, 471. Kauffmann, L., Chauvin, A., Pichat, C., & Peyrin, C. (2015a). Effective connectivity in the neural network underlying coarse-to-fine categorization of visual scenes. A dynamic causal modeling study. Brain and cognition, 99, 46-56. Kauffmann, L., Ramanoël, S., Guyader, N., Chauvin, A., & Peyrin, C. (2015b). Spatial frequency processing in scene-selective cortical regions. NeuroImage, 112, 86-95. Kihara, K., & Takeda, Y. (2012). Attention-free integration of spatial frequency-based information in natural scenes. Vision research, 65, 38-44. Kravitz, D. J., Peng, C. S., & Baker, C. I. (2011). Real-world scene representations in high-level visual cortex: it''s the spaces more than the places. The Journal of Neuroscience, 31(20), 7322-7333. Laumann, K., Gärling, T., & Stormark, K. M. (2003). Selective attention and heart rate responses to natural and urban environments. Journal of environmental psychology, 23(2), 125-134. Lindquist, M. A. (2008). The statistical analysis of fMRI data. Statistical Science,23(4), 439-464. Lowe, M. X., Gallivan, J. P., Ferber, S., & Cant, J. S. (2016). Feature diagnosticity and task context shape activity in human scene-selective cortex. NeuroImage, 125, 681-692. Park, S., Brady, T. F., Greene, M. R., & Oliva, A. (2011). Disentangling scene content from spatial boundary: complementary roles for the parahippocampal place area and lateral occipital complex in representing real-world scenes. The Journal of Neuroscience, 31(4), 1333-1340. Peyrin, C., Baciu, M., Segebarth, C., & Marendaz, C. (2004). Cerebral regions and hemispheric specialization for processing spatial frequencies during natural scene recognition. An event-related fMRI study. Neuroimage, 23(2), 698-707. Peyrin, C., Schwartz, S., Seghier, M., Michel, C., Landis, T., & Vuilleumier, P. (2005). Hemispheric specialization of human inferior temporal cortex during coarse-to-fine and fine-to-coarse analysis of natural visual scenes. Neuroimage, 28(2), 464-473. Schindler, A., & Bartels, A. (2016). Visual high-level regions respond to high-level stimulus content in the absence of low-level confounds. NeuroImage, 132, 520-525. Tennessen, C. M., & Cimprich, B. (1995). Views to nature: Effects on attention. Journal of environmental psychology, 15(1), 77-85. Torralbo, A., Walther, D. B., Chai, B., Caddigan, E., Fei-Fei, L., & Beck, D. M. (2013). Good exemplars of natural scene categories elicit clearer patterns than bad exemplars but not greater BOLD activity. PloS one, 8(3), e58594. Ulrich, R. S. (1983). Aesthetic and affective response to natural environment. In Behavior and the natural environment (pp. 85-125). Springer US. Ulrich, R. S., Simons, R. F., Losito, B. D., Fiorito, E., Miles, M. A., & Zelson, M. (1991). Stress recovery during exposure to natural and urban environments.Journal of environmental psychology, 11(3), 201-230. Valtchanov, D., & Ellard, C. G. (2015). Cognitive and affective responses to natural scenes: Effects of low level visual properties on preference, cognitive load and eye-movements. Journal of Environmental Psychology, 43, 184-195. Valtchanov, D., Barton, K. R., & Ellard, C. (2010). Restorative effects of virtual nature settings. Cyberpsychology, Behavior, and Social Networking, 13(5), 503-512. Van den Berg, A. E., Jorgensen, A., & Wilson, E. R. (2014). Evaluating restoration in urban green spaces: Does setting type make a difference?. Landscape and Urban Planning, 127, 173-181. Van den Berg, A. E., Koole, S. L., & van der Wulp, N. Y. (2003). Environmental preference and restoration:(How) are they related?. Journal of environmental psychology, 23(2), 135-146. Velarde, M. D., Fry, G., & Tveit, M. (2007). Health effects of viewing landscapes– Landscape types in environmental psychology. Urban Forestry & Urban Greening, 6(4), 199-212. Walther, D. B., Caddigan, E., Fei-Fei, L., & Beck, D. M. (2009). Natural scene categories revealed in distributed patterns of activity in the human brain. The Journal of Neuroscience, 29(34), 10573-10581. Watson, D. M., Hartley, T., & Andrews, T. J. (2014). Patterns of response to visual scenes are linked to the low-level properties of the image. NeuroImage, 99, 402-410. Watson, D. M., Hymers, M., Hartley, T., & Andrews, T. J. (2016). Patterns of neural response in scene-selective regions of the human brain are affected by low-level manipulations of spatial frequency. NeuroImage, 124, 107-117. White, M., Smith, A., Humphryes, K., Pahl, S., Snelling, D., & Depledge, M. (2010). Blue space: The importance of water for preference, affect, and restorativeness ratings of natural and built scenes. Journal of Environmental Psychology, 30(4), 482-493. Wilkie, S., & Clouston, L. (2015). Environment preference and environment type congruence: Effects on perceived restoration potential and restoration outcomes. Urban Forestry & Urban Greening, 14(2), 368-376. Yue, X., Vessel, E. A., & Biederman, I. (2007). The neural basis of scene preferences. Neuroreport, 18(6), 525-529.
|