(3.231.29.122) 您好!臺灣時間:2021/02/26 01:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:甘培玟
研究生(外文):Pei-Wen Kan
論文名稱:岩桐屬植物花朵與葉脈顏色之遺傳
論文名稱(外文):Inheritance of Flower Characteristics and Leaf Vein Color in Sinningia
指導教授:葉德銘葉德銘引用關係
指導教授(外文):Der-Ming Yeh
口試日期:2017-06-08
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝暨景觀學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:127
中文關鍵詞:苦苣苔科雜交重瓣花花色花萼瓣化
外文關鍵詞:Gesneriaceaehybriddouble-flowerflower colorpetaloid calyx
相關次數:
  • 被引用被引用:2
  • 點閱點閱:141
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
大岩桐[Sinningia speciosa (Lodd.) Hiern]為重要室內盆花,本研究以重瓣品種絲織品(Brocade),單瓣品種愛娃(Avanti)與其他具特殊性狀之原生種與單株為材料,觀察其花朵形態並進行分類,探討重瓣花瓣起源與半重瓣花不同雄蕊類型之花粉的發芽率。另進行雜交探討後代花型、花色及葉斑之分離比,以及其他岩桐屬植物花萼瓣化的遺傳模式。
大岩桐依花瓣層數可分成單瓣(一層花瓣)、半重瓣(兩層花瓣)與重瓣(三層花瓣)。半重瓣可分成Type 1與Type 2。Type 1可依雄蕊的瓣化程度再分成三類:完全瓣化雄蕊(Type 1-A)、花絲瓣化雄蕊合生(Type 1-B)與未合生的退化雄蕊(Type 1-C)。而Type 2則有器官重複的現象,具兩輪花瓣與一輪雄蕊;重瓣(Type 3)依雄蕊的瓣化程度可分成兩類:三層花冠筒且無雄蕊(Type 3-A)與兩輪花冠筒與一輪未合生的退化雄蕊(Type 3-B)。經解剖觀察可知,大部分類型的半重瓣與重瓣花是由雄蕊瓣化而來。
黃花岩桐(S. richii Clayberg ‘Robson Lopes’)、大岩桐絲織品-紅(Brocade Red)與大岩桐歡樂鈴-藍(MultiBells Blue)之花粉於去離子水培養,其發芽率甚低,在BK培養基中參試品種花粉發芽之適合蔗糖濃度為10%-15%。分別取半重瓣‘Brocade Purple/white bicolour’之正常雄蕊、花絲瓣化雄蕊與退化雄蕊三種類型之花粉,以內含10%蔗糖之BK培養基、於25℃黑暗下培養2小時,結果顯示正常花藥與花絲瓣化雄蕊之花粉外觀飽滿,皆可正常發芽;而退化雄蕊之花粉外觀乾癟,無法發芽。
將兩側對稱之花朵親本雜交與自交,其後代花朵兩側對稱:輻射對稱花朵之分離比為1:0或3:1。以輻射對稱之花朵親本自交或互相雜交,其後裔皆為輻射對稱,推測大岩桐對稱性是由一對偶基因C、c所控制,兩側對稱花為顯性,基因型為CC或Cc,輻射對稱花為完全隱性,基因型為cc。
取單瓣親本自交或雜交,共計8個雜交組合,其後代皆為單瓣。而以單瓣與半重瓣親本雜交,其雜交後裔重瓣:半重瓣:單瓣,之分離比為0:1:1。以半重瓣品種自交或雜交,其雜交後代分離出重瓣、半重瓣與單瓣,分離比為1:2:1。推測重瓣大岩桐是由一對基因D、d所控制,當基因型為DD時,表現型為重瓣花,Dd時為半重瓣花,dd結合時為單瓣花。
紫色裂片親本自交、紅色裂片與紫色裂片親本雜交,雜交後代紫色裂片:紅色裂片後代之植株數分離比為1:0或1:1。紅色裂片親本雜交與自交,後代裂片顏色皆為紅色,推測紫色裂片與紅色裂片是由一對基因R、r所控制,當基因型為R¬_,裂片呈現紫色,當基因型為rr,裂片呈現紅色。
淡紫色裂片花朵與紅色裂片親本雜交,後代紫色裂片:紅色裂片:淡紫色裂片:淡紅色裂片之花朵,分離比為1:1:1:1。紫色裂片與淡紫裂片親本雜交,後代紫色裂片、紅色裂片、淡紫色裂片與淡紅色裂片之花朵,分離比為3:1:3:1。淡紫色裂片親本自交,後代紫色裂片:紅色裂片:淡紫色裂片:淡紅色裂片:白色裂片之花朵,分離比為3:1:6:2:4。白色裂片與紅色裂片親本雜交,後代皆為淡紅色裂片。白色裂片親本自交或雜交,後代皆為白色裂片,推測淡色花是由一對基因W、w所控制,為R、r的上位基因,當基因型為WW,裂片花色深,花色分布均勻,當基因型為Ww,花色變淡,花色分布不均。基因型為ww,花朵為純白色,無任何斑點與斑塊。
花瓣無白覆輪親本自交或雜交,後代花瓣無白覆輪:白覆輪數之分離比為3:1或1:0。花瓣有白覆輪之品種自交後代皆有白覆輪,推測白覆輪的有無是由一對偶基因Wm、wm所控制,同質隱性結合(wm wm)花朵具白覆輪。
取斑點分布於花冠筒內之品種雜交,後代斑點皆分布於花冠筒內。取斑點分布於花冠筒與斑點分布於花冠筒與裂片上的品種雜交,斑點分布於花冠筒內與花冠筒與裂片上之植株分離比為0:1或1:1。推測斑點分布是由一對基因Sp、sp所控制,當基因型為SpSp與Spsp,斑點分布在花冠筒內部與裂片上,當基因型為spsp,斑點僅分布於花冠筒內。
白色葉脈親本自交後代皆具白色葉脈,白色葉脈與綠脈之親本雜交,後代亦皆具白色葉脈。以綠脈品種雜交或自交,後代皆為綠脈,推測大岩桐白色葉脈係由一對偶基因所控制,相對於綠脈為顯性性狀。切片觀察顯示白色葉脈處上表皮細胞與柵狀組織間具有氣隙,而綠色組織之上表皮與柵狀組織間緊密相連。
以3種花萼正常之原生種岩桐與3種花萼瓣化之品種雜交,後代正常花萼:瓣化花萼之分離比約1:1,推論花萼瓣化為顯性性狀,由一對基因H、h所控制,並與雌蕊畸形連鎖,當基因型為Hh,花萼瓣化,伴隨雌蕊畸形;當基因型為hh,為正常花萼,雌蕊亦正常。
本研究由‘Brocade Purple’自交後代選育具特殊性狀單株大岩桐Gm01。其花徑約7 cm,為半重瓣花,開花株能同時著生4朵以上花朵,花朵中心之花瓣緊密,且最外層花瓣緣具綠色覆輪斑,為特殊之新穎性狀,有別於目前市場上之流通品種。
Gloxinia [Sinningia speciosa (Lodd.) Hiern] is an important indoor plant. Double- flowered cultivar Brocade, single-flowered cultivar Avanti, native Sinningia species and other hybrid with special traits were included in this study. The objectives were to 1) observe and classify different flower types, 2) determine the origin of double-floweredness and pollen germination rate from different stamen types, 3) record the segregation ratio for flower type, flower color, leaf vein color, and petaloid calyx inheritance in selfed and crossed progeny.
Gloxinia flowers could be categorized as single-flower (one corolla whorl, Type 0), semi-doubled flower (two corolla whorls, Type 1 and 2), and double-flower (three corolla whorls, Type 3). Type 1 was further classified as 1-A, 1-B, and 1-C with completely petaloid stamen, petaloid filament, and staminoide, respectively and all have deformed pistil. Type 3 can be divided as 3-A and 3-B, with corolla and staminoide in the inner whorl, respectively. All double- and semi-double flowers had inner petal whorls originated from stamens.
Few pollen of Sinningia richii Clayberg ‘Robson Lopes’, ‘Brocade Red’ and ‘MultiBells Blue’ germinated in deionized water, while pollen germinated well in BK media with 10%-15% sucrose. Pollen from normal stamen, petaloid filament and staminoide of ‘Brocade Purple/white bicolour’ were cultured in BK media with 10% sucrose for 2 h in dark. Results showed that pollen in anthers from normal and petaloid filament stamen germinated, but not for those from staminoide.
Crossing or selfing zygomorphic-flowered Sinningia species/cultivars resulted in a 3:1 or 1:0 ratio (zygomorphic : actinomorphic). Selfing actinomorphic-flowered parents resulted in all actinomorphic progeny. Flower symmetry was proposed as controlled by a single allele (C, c). Genotype C¬_ resulted in zygomorphic flower, and cc for actinomorphic flower.
Crossing or selfing single-flowered Sinningia species/cultivars resulted in all single- flowered progeny. Crossing semi-doubled flower and single-flowered parents resulted in 1 semi-double flower : 1 single-flower ratio. Crossing or selfing semi-doubled flower parents resulted in a 1 double-flower : 2 semi-double flower : 1 single-flower ratio. Flower type was proposed as controlled by a single allele (D, d). Genotype DD, Dd, and dd resulted in double, semi-double, and single flower, respectively.
Selfing purple limb parents or crossing with red limb parents resulted in a 1:0 or 1:1 ratio (purple : red). All progeny had red limb from crossing or selfing red limb parents, suggesting that purple limb (R_) is dominant to red limb (rr).
Progeny from crossing light purple and red limb parents resulted in a 1:1:1:1 ratio (purple : red : light purple : pink). Progeny from crossing purple and light purple limb parents resulted in a 3:1:3:1 ratio (purple : red : light purple : pink). Progeny from selfing light purple limb resulted in a 3:1:6:2:4 ratio (purple : red : light purple : pink : white). All progeny had pink limb from crossing white limb and red limb parents. All progeny showed white limb after crossing and selfing white limb parents. Light-colored flower is proposed as controlled by a single allele (W, w) and is epistasis to R, r genes. The WW, Ww, and ww genotypes yielded deep, light color, and pure white without any spot or pattern, respectively.
Crossing or selfing non-picotee parents resulted in a 1:0 or 3:1 ratio (non-picotee : picotee). Crossing or selfing picotee parents resulted in all picotee progeny. The presence of white picotee flower was proposed as controlled by a single allele (Wm, wm), the wm wm genotype resulted in phenotype with white picotee flower.
All progeny had the parental spot distribution after crossing or selfing parents with spot distributed in corolla tube. Crossing or selfing parents with spot distributed in corolla tube and those distributed both in corolla tube and limb resulted in a 1:0 or 1:1 ratio (spot only distributed in corolla tube : spot distributed in corolla tube and limb). The spot distribution was proposed as controlled by a single allele (Sp, sp). The Sp_ genotype had spots on corolla tube and limb, the spsp genotype had spots distributed only in corolla tube.
Crossing or selfing white leaf vein and green leaf vein parents, all progeny had white vein. Crossing or selfing green leaf vein parents, all progeny had green vein. Leaf vein color was proposed as controlled by a single allele (Vw, Vg). The Vw_ genotype showed white leaf vein, the VgVg genotype showed green leaf vein. Anatomy results revealed that air space existed between epidermal and palisade cells in the while vein tissue but not for the green tissue.
Selfing normal calyx Sinningia spp. resulted in all normal calyx progeny. Crossing petaloid calyx and normal calyx parents resulted in a 1 petaloid calyx : 1 normal calyx ratio. Petaloid calyx was proposed as controlled by a single allele (H, h). A single dominant gene expressed in HH or Hh state resulted in petaloid calyxed phenotype and the hh genotype showed normal calyx. Petaloid calyx is linked with deformed pistil.
After selfing ‘Brocade Purple’, Sinningia Gm01 was selected since it had big (7-cm diameter) double-flowers, 4 or more simultaneous flowers, compact inner whorl corollas, and green picotee on the outer corolla.
誌謝(Acknowledgement) i
摘要 ii
Abstract v
目錄 viii
表目錄 xi
圖目錄 xii
前言 (Introduction) 1
前人研究 (Literature review) 3
一、大岩桐之分類與栽培歷史 3
二、岩桐屬植物之親緣關係 3
三、重瓣花之分類 4
四、重瓣花卉之重瓣起源 6
五、ABCDE model與花器官形成 7
六、蔗糖濃度對花粉發芽之影響 7
七、花朵對稱性 9
八、重瓣花卉之遺傳模式 10
九、花青素之生合成 11
十、花色遺傳 12
十一、黃花草本花卉之選育 14
十二、葉片主脈顏色、斑點與斑塊之遺傳 15
十三、觀葉植物葉斑成因 16
十四、花萼瓣化之遺傳 17
材料與方法 (Materials and Methods) 19
試驗一、大岩桐花朵之分類、半重瓣與重瓣花瓣起源 20
試驗二、蔗糖濃度對岩桐花粉發芽率之影響 21
試驗三、半重瓣大岩桐之雄蕊類型與其花粉形態與發芽 21
試驗四、花形之遺傳 22
試驗五、雜交後代花色表現 23
試驗六、大岩桐葉脈顏色之遺傳與白色葉脈解剖 26
試驗七、品系選拔 26
試驗八、岩桐屬植物花萼瓣化之遺傳 27
結果 (Results) 29
試驗一、大岩桐花朵之分類、半重瓣與重瓣花瓣起源 29
(一) 大岩桐花朵之分類 29
(二) 半重瓣與重瓣花瓣起源 30
試驗二、蔗糖濃度對岩桐花粉之影響 32
試驗三、半重瓣大岩桐之雄蕊類型與其花粉形態與發芽 32
試驗四、花形之遺傳 33
(一) 花朵對稱性狀之遺傳 33
(二) 重瓣性狀之遺傳 34
試驗五、雜交後代花色表現 34
(一) 裂片主要顏色之遺傳 34
(二) 白覆輪之遺傳 36
(三) 花瓣斑點分布之遺傳 37
(四) 種間雜交黃花性狀之表現 38
試驗六、大岩桐葉脈顏色之遺傳與白色葉脈解剖 38
(一) 大岩桐葉脈顏色之遺傳 38
(二) 不同顏色大岩桐葉脈之解剖 39
試驗七、單株選拔 39
試驗八、岩桐屬植物花萼瓣化之遺傳 39
討論 (Discussion) 109
參考文獻 (References) 120
郭孟樺. 2012. 夏菫與毛葉蝴蝶草種間雜交胚之拯救與多倍體化. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
謝吉容、李國昌、梁國魯. 2006. 大岩桐的研究概況及展望. 西南園藝 34:33-36.
徐駿逸. 2015. 鼠尾草屬植物之花器生物學、生殖系統與種間雜交. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
徐蘊如、李玥瑩、逢洪波、張雨欣、劉羽蓮. 2015. CYC類基因在被子植物花發育中的研究進展. 生物技術通報 31:10-16.
張丹丹、王瑩、荀志麗、李麗紅、陸海、劉頔. 2014. 單、重瓣玉簪花器官分化和花形態學比較研究. 電子顯微學報33:271-277.
張芳綺. 2005. 粗肋草之開花授粉、斑葉遺傳及親緣分析. 國立臺灣大學園藝學系碩士論文. 臺北.
程金水、劉清林. 2000. 園林植物遺傳育種學. 中國林業出版社. 北京. 中國.
楊恭毅. 1984. 楊氏園藝植物大名典, p. 6490-6497. 楊青造園企業. 中國花卉雜誌社, 臺北.
劉明宗. 2016. 重瓣及香氣孤挺花品種之選育. 國立臺灣大學園藝暨景觀學系博士論文. 臺北.
留欽培. 2008. 韭蘭屬物種之種間雜交. 國立中興大學園藝學研究所碩士論文. 臺中.
趙印泉、劉青林. 2009. 重瓣花的形成機理及遺傳特性研究進展. 西北植物學報4:832-841.
間藤正美、山形敦子、佐藤孝夫. 2007. 八重咲きトルコギキョウを得る表現型の組み合わせ. 東北農業研究 60:167-168.
Acar, I., B.E. Ak, and K. Sarpkaya1. 2010. Effects of boron and gibberellic acid on in vitro pollen germination of pistachio (Pistacia vera L.). Afr. J. Biotechnol. 9:5126-5130.
Akita, Y., Y. Horikawa, and A. Kanno. 2008. Comparative analysis of floral MADS-box genes between wild-type and a putative homeotic mutant in lily. J. Hort. Sci. Biotechnol. 83:453–461.
Akita, Y., M. Nakada, and A. Kanno. 2010. Effect of the expression level of an AGAMOUS-like gene on the petaloidy of stamens in the double-flowered lily, ‘Elodie’. Scientia Hort. 128:48–53.
Almeida1, A.M.R., A. Brown, and C.D. Specht. 2013. Tracking the development of the petaloid fertile stamen in Canna indica: Insights into the origin of androecial petaloidy in the Zingiberales. AoB PLANTS 5: plt009.
Angenent, G.C. and L. Colombo. 1996. Molecular control of ovule development. Trends Plant Sci. 1:228-232.
Bell, W.D. 1977. Double flower amaryllis. Proc. Fla. State Hort. Soc. 90:121-122.
Berti, F., M. Fambrini, M. Turi, D. Bertini, and C. Pugliesi. 2005. Mutations of corolla symmetry affect carpel and stamen development in Helianthus annuus. Can. J. Bot. 83:1065-1072.
Biggs, N. 2004. Sinningia pusilla, p. 193-196. In: M. Rix (ed.). Curtis’s Botanical Magazine. Vol. 21. Blackwell Publishing, New York.
Bowman, J.L., D.R. Smyth, and E.M. Meyerowitz. 1989. Genes directing flower development in Arabidopsis. Plant Cell 1:37-52.
Brewbaker, J.L. and B.H. Kwack. 1963. The essential role of calcium ion in pollen germination and pollen tube growth. Amer. J. Bot. 50:859-865.
Brink, R.A. 1924. The physiology of pollen IV. Chemotropism; Effects on growth of grouping grains; formation and function of callose plugs; summary and conclusion. Amer. J. Bot. 11:417-436.
Broderick, S. 2007. Green picotee petunia. 10 May 2017. <http://articles.extension.org/pages/61173/green-picotee-petunia>
Cao, Z., S. Sui, Q. Yang, and Z. Deng. 2017. A single gene controls leaf background color in caladium (Araceae) and is tightly linked to genes for leaf main vein color, spotting and rugosity. Hort. Res. 4:16067.
Chen, C.M., T.Y. Wei, and D.M. Yeh. 2012. Morphology and inheritance of double floweredness in Catharanthus roseus. HortScience 47:1679-1681.
Cheon, K.S., A. Nakatsuka, and N. Kobayashi. 2016. Mutant PI/GLO homolog confers the hose-in-hose flower phenotype in kurume azaleas. Hort. J. 85:380-387.
Citerne, H.L. and Q.C.B. Cronk. 1999. The origin of the peloric Sinningia. New Plantsman 6:219–222.
Citerne, H.L., M.M. Quentin, and C.B. Cronk. 2000. Diversity of cycloidea-like genes in Gesneriaceae in relation to floral symmetry. Ann. Bot. 86:167-176.
Citerne, H.L., R.T. Pennington, and Q.C.B. Cronk. 2006. An apparent reversal in floral symmetry in the legume Cadia is a homeotic transformation. Proc. Natl. Acad. Sci. U.S.A. 103:12017-12020.
Clayberg, C.D. 1968. Biosystematic studies in Sinningia and Rechsteineria (Gesneriaceae). Amer. J. Bot. 55:829-833.
Clayberg, C.D. 1970a. Cytology of interspecific hybrids in Sinningia and Rechsteineria (Gesneriaceae). Can. J. Genet. Cytol. 12:759-768.
Clayberg, C.D. 1970b. Genetics and culture of a new laboratory plant, Sinningia pusilla. J. Hered. 61:11-14.
Clayberg, C.D. 1975. Genetics of corolla traits in gloxinia. J. Hered. 66:10-12.
Clayberg, C.D. 1996. Interspecific hybridization in Sinningia (Gesneriaceae). Baileya 23:184-194.
Coen, E.S. and E.M. Meyerowitz. 1991. The war of whorls: Genetic interactions controlling flower development. Nature 353:31-37.
Cronk, Q.C.B. 2006. Legume flowers bear fruit. Proc. Natl. Acad. Sci. 13:4801-4802.
Cubas, P.C. Vincent, and E. Coen. 1999. An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157-161.
Deng, Z. and B.K. Harbaugh. 2004. Technique for in vitro pollen germination and short-term pollen storage in caladium. HortScience 39:365-367.
Deng, Z. and B.K. Harbaugh. 2006. Independent inheritance of leaf shape and main vein color in Caladium. J. Amer. Soc. Hort. Sci. 131:53-58.
Eeckhaut, T., G. Samyn, and E. van Bockstaele. 2003. Interspecific breeding in the Rhododendron genus involving R. simsii hybrids. Acta Hort. 165-172.
Endress, P.K. 2001. Evolution of floral symmetry. Curr. Opin. Plant Biol. 4:86–91.
Eyster, W.H. and D. Burpee. 1936. Inheritance of doubleness in the flowers of the nasturtium. J. Hered. 27:51-60.
Ferrari, T.E. and D.H. Wallance. 1975. Germination of Brassica pollen and expression of incompatibility in vitro. Euphytica 24:757-765.
Fooshee, W.C. and R.J. Henny. 1991. Chlorophyll levels and anatomy of variegated and nonvariegated areas of Aglaonema nitidum leaves. Florida State Hort. Soc. 103:170-172.
Frost, H.B. 1915. The inheritance of doubleness in Matthiola and Petunia. Amer. Naturalist. 49:623-636.
Fukuta, N. and M. Nakayama. 2008. Influence of temperature on the coloring area rate in picotee petals of Eustoma grandiflorum (Raf.) Shinn. Hort. Res. (Japan) 7:531-536.
Gatt, M.K., K.R.W. Hammett, K.R. Markham, and B.G. Murraya. 1998. Yellow pinks: Interspecific hybridization between Dianthus plumarius and related species with yellow flowers. Scientia Hort. 77:207-218.
Geissman, T.A. and G.A.L. Mehlquist. 1947. Inheritance in the carnation, Dianthus caryophyllus. IV. the chemistry of flower color variation, I.Genetics 4:410-433.
Goto, K., J. Kyozuka, and J.L. Bowman. 2001. Turning floral into leaves, leaves into floral organs. Curr. Opin. Genet. Dev. 11:449-456.
Gould, K.S. and B.D. Quinn. 1999. Do anthocyanins protect leaves of New Zealand
native species from UV-B? New Zeal. J. Bot. 37:175-178.
Hammett, K.R.W., B.G. Murray, K.R. Markham, and I.C. Hallett. 1993. Interspecific hybridization between Lathyrus odoratus and L. belinensis. Intl. J. Plant Sci. 155:763-771.
Hara, N. 1957. Study of the variegated leaves, with special reference to those caused by spaces. Jpn. J. Bot. 16:86-101.
Henny, R.J. 1982. Inheritance of foliar variegation in two Dieffenbachia cultivars. J. Hered. 73:384.
Henny, R.J. 1983a. Inheritance of foliar variegation in three Aglaonema species. J. Hered. 74:475-476.
Henny, R.J. 1983b. Inheritance of the midrib in Dieffenbachia maculate and its linkage with the gene for foliar variegation. J. Hered. 74:484-485.
Henny, R.J. 1986a. Single locus, multiallelic inheritance of foliar variegation in Aglaonema. J. Hered. 77:214-215.
Henny, R.J. 1986b. Inheritance of the foliar variegation in Dieffenbachia maculate ‘Camille’. J. Hered. 77:285-286.
Henny, R.J. 1992. Inheritance of the foliar variegation pattern from Aglaonema nitidum (Jack) Kunth ‘Ernesto’s Favorite’. HortScience 27:274.
Hess, D. 1971. Chemogenetical investigations on the synthesis of flower colour substances in Torenia species (Scrophulariaceae). Biochem. Physiol. Pflanzen. 162:386-389.
Heursel, J. 1976. Die Vererbung des Merkmals “hose in hose” (Doppelkronigkeit) bei Azaleen. Gartenwelt 76:111-113.
Hitier, H. 1950. Etude génétique des caractères ‘énation’ et ‘catacorolle’ chez Nicotiana tabacum L. Ann. Inst. Exp. Du Tabac. Bergerac. 1:31-61.
Horn, W. 2002. Breeding methods and breeding research, p. 47-83. In. A.Vainstein (ed.). Breeding For ornamentals: Classical and molecular approaches. Springer. Netherlands. Bohn Stafleu van Loghum, Netherlands.
Howard, J.C. 2009. Why didn’t Darwin discover Mendel’s laws? J. Biol. 8:151-158.
Howarth, D.G. and M.J. Donoghue. 2006. Phylogenetic analysis of the ‘‘ECE’’ (CYC/TB1) clade reveals duplications predating the core eudicots. PANS 103: 9101–9106.
Hsu, H.C., C.Y. Chen, T.K. Lee, L.K. Weng, D.M. Yeh, T.T. Lin, C.N Wang, and Y.F Kuo. 2015. Quantitative analysis of floral symmetry and tube dilation in an F2 cross of Sinningia speciosa. Scientia Hort. 188:71–77.
Hsu, H.C., Q. Cronk, and C.N. Wang. 2009. Inheritance and molecular genetics of floral symmetry in Darwin’s Gloxinia peloria (Sinningia speciosa). Mech. Dev. 126:S251 (abstr.).
Jack, T. 2001. Relearning our ABCs: New twists on an old model. Trends Plant Sci. 6:310-316.
Kanno, A. and S.Y. Kim. 2009. Morphological differentiation of sepal and petal in Habenaria radiate (Orchidaceae). p. 313-323. In: N. Huttunen and T. Sinisalo (eds.). Plant breeding (Agronomy research and developments series). Nova Science Publishers, Inc., New York.
Kanno, A., H. Saeki, T. Kameya, H. Saedler, and G. Theissen. 2003. Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana). Plant Mol. Biol. 52:831-841.
Kim, S.Y.M. Endo, P.Y. Yun, and A. Kanno. 2010. Production of intraspecific hybrids between wild-type and petaloid-sepal cultivars in Habenaria radiate. Scientia Hort. 124:415-418.
Kim, S.Y., P.Y. Yun, T. Fukuda, T. Ochiai, J.K. Yokoyama, and A.T. Kanno. 2007. Expression of a DEFICIENS-like gene correlates with the differentiation between sepal and petal in the orchid, Habenaria radiata (Orchidaceae). Plant Sci. 172:319-326.
Kimmins, R.K. 1980. Gloxinias, Africa violetes, and other gesneriads. In. R.A. Larson (ed.). Introduction to floriculture. Academic Press. New York.
Lawrence W.J.C. and V.C. Sturgess. 1957. Studies on Streptocarpus. Heredity 11:337-357.
Li, J., B. Dudas, M A. Webster, H.E. Cook, B.H. Davies, and P.M. Gilmartin. 2010. Hose in hose, an S locus–linked mutant of Primula vulgaris, is caused by an unstable mutation at the Globosa locus. PNAS. 107:5664-5668.
Liu, M.C. and D.M. Yeh. 2015. ‘T.S.S. No.1-Pink Pearl’: A double-flowered and fragrant amaryllis cultivar. HortScience 50:1588-1590.
Loo, T.L. and T.C. Hwang. 1944. Growth stimulation by manganese sulphate, indole-3-acetic acid and colchicine in pollen germination and pollen tube growth. Amer. J. Bot. 31:356-367.
Luo, D., R. Carpenter, L. Copsey, C. Vincent, J. Clark, and E. Coen. 1999. Control of organ asymmetry in flowers of Antirrhinum. Cell 99:367-376.
Martín-Trillo, M. and P. Cubas. 2010. TCP genes: a family snapshot ten years later. Trends Plant Sci. 15:31-39.
Noor, S.H., K. Ushijima, A. Murata, K.Yoshida, M. Tanabe, T. Tanigawa, Y. Kubo, and R. Nakano. 2014. Double flower formation induced by silencing of C-class MADS-box genes and its variation among petunia cultivars. Scientia Hort. 178:1-7.
O''Kelley, J.C. 1955. External carbohydrates in growth and respiration of pollen tubes in vitro. Amer. J. Bot. 42:322-327.
Page, M. 2005. Paeonia Itoh hybrids, p. 36-39. In: M. Grant (ed.). The Plantsman. The Royal Horticultural Society, London.
Parton, E., I. Vervaeke, R. Delen, B. Vandenbussche, R. Deroose, and M.D. Proft. 2002. Viability and storage of bromeliad pollen. Euphytica 125:155-161.
Perret, M., A. Chautems, R. Spichiger, G. Kite, and V. Savolainen. 2003. Systematics and evolution of tribe Sinningieae (Gesneriaceae): Evidence from phylogenetic analysis of six plastid DNA regions and nuclear ncpGS. Amer. J. Bot. 90:445-460.
Reynolds, J. and J. Tampion. 1983. Double flower: A scientific study. Scientific and Academic Editions, New York.
Rife, D.C. 1944. The genetics of certain common variation in Coleus. Ohio. J. Sci. 44:18-24.
Robbertse, P.J., L.A. Coetzer, N.G.N. Seart, J.J. Bezuidenhout, and L. Voster. 1990. The influence of boron on fruit set in avocado. Acta Hort. 275:587-594.
Rousi, A. 1968. Cytoplasmic inheritance Aquilegia vulgaris. Hereditas 60:223-232.
Saito, R., N. Fukuta, A. Ohmiya, Y. Itoh ,Y. Ozeki, K. Kuchitsu, and M. Nakayama. 2006. Regulation of anthocyanin biosynthesis involved in the formation of marginal picotee petals in Petunia. Plant Sci. 170:828-834.
Sampson, D.R. 1965. Breeding Philadelphus for double flower, purple center and low stature. Euphytica 14:157-160.
Scovel, G., H. Ben-Meir, M. Ovadis, H. Itzhaki, and A. Vainstein. 1998. RAPD and RFLP markers tightly linked to the locus controlling carnation (Dianthus caryophyllus) flower type. Theor. Appl. Genet. 96:117-122.
Shalit, P. 2000. Breeding gesneriads, p. 155-173. In: D.J. Callaway and M.B. Callaway (eds.). Breeding ornamental plants, Timber Press, Portland, Ore.
Shivanna, K.R. and N.S. Rangaswamy. 1992. Pollen biology. Spring-Verlag, Germany.
Shull, G.H. 1912. The primary color-factors of Lychnis and color-inhibitors of Papaver rhoeas. Bot. Gaz. 54:120-135.
Smith, J.L. 2000. Breeding africa violets, p. 133-154. In: D.J. Callaway and M.B. Callaway (eds.). Breeding ornamental plants, Timber Press, Portland, Ore.
Stimart, D. and T. Boyle. 2007. Zinnia, p. 337-357. In: O.A. Neil (ed.). Flower breeding and genetics. Springer, Dordrecht, Netherlands.
Stone, J.L., J.D. Thomson, and S.J. Dent-Acosta. 1995. Assessment of pollen viability in hand-pollination experiments. Amer. J. Bot. 82: 1186-1197.
Sukhvibul, N. and J.A. Considine. 1993. Medium and long term storage of Anigozanthos manglesii (D. Don) pollen. New Zealand J. Crop Hort. Sci. 21:343-347.
Tateishi, N., Y. Ozaki, and H. Okubo. 2010. White marginal picotee formation in the petals of Camellia japonica ‘Tamanoura’. J. Jpn. Soc. Hort. Sci. 79:207-214.
Takuro, S., T. Takahiro,Y. Asuka, M. Takatoshi, K. Toshihiro, S. Kazunao, and N.Chisako. 2015. Inheritance of the double-flowered trait in decorative Hydrangea flowers. Hort. J. 84:253–260.
Theißen. G. 2001. Development of floral organ identity: Stories from the MADS house. Curr. Opin. Plant Biol. 4:75-85.
van der Walt, I.D. and G.M. Littlejohn. 1996. Storage and viability testing of Protea pollen. J. Amer. Soc. Hort. Sci. 121:804-809.
Varkonyi-Gasic, E., S.M. Moss, C. Voogd, R. Wu, R.H. Lough, Y.Y. Wan, and R.P. Hellens. 2011. Identification and characterization of flowering genes in kiwifruit: Sequence conservation and role in kiwifruit flower development. BMC Plant Biol. 11:72.
van Laere, K., J. van Huylenbroeck, and E. van Bockstaele. 2007. Introgression of yellow flower colour in Buddleja davidii by means of polyploidisation and interspecific hybridization. HortScience 38:96-103.
Voyiatzi, C.I. 1995. An assessment of the in vitro germination capacity of pollen grains of five tea hybrid rose cultivars. Euphytica 83:199-204.
Weber, A. 2004. Gesneriaceae, p.63-158. In. J.W. Kadereit (ed.). Flowering plants dicotyledons. Springer-Verlag, Berlin Heidelberg.
Webster, M. A. and C. J. Grant. 1990. The inheritance of calyx morph variants in Primula vulgaris (Huds.). Heredity 64:121-124.
Wigge, P.A. 2015. The control of flowering and floral development, p.591-620. In. Taiz L. and E. Zeiger (eds.). Plant physiology and development. Sinauer Association, Inc. Sunderland. U.S.A.
Yang, X., H.B. Pang, B.L. Liu, Z.J. Qiu, Q. Gao, L. Wei, Y. Dong, and Y.Z. Wang. 2012. Evolution of double positive autoregulatory feedback loops in CYCLOIDEA2 clade genes is associated with the origin of floral zygomorphy. Plant Cell 24:1834-1847.
Yoshikazu, T., S. Nobuhiro, and A. Ohmiya. 2008. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. Plant J. 54:733-749.
Zahn, L.M., J. Leebens-Mack, C.W. DePamphilis, H. Ma, and G. Theissen. 2005. To B or not to B a flower: The role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms. J. Hered. 96:225-240.
Zainol, R. and D.P. Stimart. 2001. A monogenic recessive gene, fw, conditions flower doubling in Nicotiana alata. HortScience 36:128-130.
Zainol, R., D.P. Stimart, and R.F. Evert. 1998. Anatomical analysis of double-flower morphogenesis in a Nicotiana alata mutant. J. Amer. Soc. Hor. Sci. 123:967-972.
Zaitlin, D. 2012. Intraspecific diversity in Sinningia speciosa (Gesneriaceae: Sinningieae), and possible origins of the cultivated florist’s gloxinia. AoB PLANTS. pls039.
Zaitlin, D. and A.J. Pierce. 2010. Nuclear DNA content in Sinningia (Gesneriaceae); Intraspecific genome size variation and genome characterization in S. speciosa. Genome 53:1066–1082.
Zhang, Y., T. Hayashi, M. Hosokawa, S. Yazawa, and Y. Li. 2009. Metallic lustre and the optical mechanism generated from the leaf surface of Begonia rex. Putz. Scientia Hort. 121:213-217.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔