跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/11 01:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許雅婷
研究生(外文):Ya-Ting Hsu
論文名稱:杜鵑花耐陰性指標評估
論文名稱(外文):Evaluation of Shade Tolerance Index in Azaleas
指導教授:張育森張育森引用關係
指導教授(外文):Yu-Sun Chang
口試日期:2017-06-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝暨景觀學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:120
中文關鍵詞:杜鵑花光合作用光補償點植物形態葉溫氣溫差值
外文關鍵詞:AzaleaPhotosynthesisLight compensation pointPlant morphologyΔT
相關次數:
  • 被引用被引用:1
  • 點閱點閱:692
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
杜鵑花為臺灣北部地區重要的景觀花木,本研究主要目的為比較不同杜鵑花品種長期遮陰下生長及開花之反應、探討不同光度對平戶杜鵑生長及開花之影響,並評估具有潛力的耐陰指標與光合作用之相關性,期望提供生產應用、品種選擇以及耐陰指標提供綠化景觀使用參考。
以平戶杜鵑‘Hirado’、西洋杜鵑‘Night Paris’、‘Pink Bubble’、‘Ripples’共4種杜鵑花品種為材料,於塑膠布溫室內進行一般光度及遮陰栽培。夏季(2016/5-2016/9)平均光度分別為641和145 μmol·m-2·s-1,冬春季(2016/10-2017/3)平均光度為300和56 μmol·m-2·s-1。遮陰下‘Hirado’及‘Ripples’形態變化量較高,包含枝條長度增加幅度較高、植株總葉面積顯著增加。遮陰下‘Hirado’葉綠素a/b比值顯著下降,‘Ripples’顯著上升。乾重方面,遮陰下’Night Paris’、‘Pink Bubble’及‘Hirado’乾重沒有顯著差異;‘Ripples’乾重顯著降低。長期遮陰(19個月)下,4品種杜鵑花之總花朵數、花朵鮮重、乾重皆顯著降低,其中以‘Ripples’下降幅度最高,‘Night Paris’在遮陰下之花徑及花色明度(L*)及彩度(C*)和一般光度栽培比較沒有顯著差異。
以盆栽平戶杜鵑‘艷紫’為材料,以不同透光程度針織網進行5種光度處理,相當於100%、81%、54%、32%及13%全日照,夏季 (2016/7/12-9/10)平均光度分別為1321、1029、525、393及166 μmol·m-2·s-1,冬春季(2016/11-2017/3)平均光度為355、288、198、140及70 μmol·m-2·s-1。32%及54%日照,在夏季具有較佳的生長表現,具有最大的葉面積及葉綠素計讀值(chlorophyll meter readings, CMR),生理上具有最高的光飽和點(light saturation point, LSP)及最大光合作用速率(saturation rate of net photosynthesis, Asat);13%日照,具有最低的總枝條數、葉乾重、最大光合作用速率。開花部分,32%日照以上具有較高總花朵數、花徑、花朵乾重及鮮重,花色較鮮艷飽和;13%日照處理,花芽發育初期長度、花朵數量及品質顯著較低。
以8種杜鵑花和參考植物朱槿、白鶴芋及火鶴為材料,測量光合作用曲線及高光下(450至550 μmol·m-2·s-1)葉溫氣溫差值(ΔT),並比較其相關性,結果顯示ΔT與光飽和光合作用速率(Asat)、光飽和點(LSP)、光補償點(light compensation point, LCP)及暗呼吸速率(dark respiration rate, Rd)顯著相關,相關係數r分別為−0.69*** 、−0.61** 、−0.46* 及−0.49*,顯示ΔT為評估植物光需求、耐陰能力的潛力指標。以9種杜鵑花為材料,測量光合作用曲線、葉片葉綠素計濃度、葉綠素計讀值(CMR)、比葉重(leaf mass per leaf area, LMA)及葉片厚度,並比較其相關性,結果顯示Asat與LMA顯著相關(r=−0.58*),其他特性與光合作用沒有顯著相關。以26種常綠杜鵑花品種為材料,調查其冠層葉片ΔT值,結果顯示平戶杜鵑ΔT值顯著較其他皋月杜鵑、久留米杜鵑及西洋杜鵑低。
綜合上述研究,4品種杜鵑花評估其生長及開花表現,在遮陰下‘Night Paris’、‘Pink Bubble’為較耐陰品種,‘Hirado’可以適應低光環境,而‘Ripples’生長及開花品質下降較多,不適合遮陰下長期栽培。艷紫杜鵑夏季適度遮陰(平均光度393至525 μmol·m-2·s-1)具有較佳的生長表現,長期遮陰以32%日照(夏季平均光度393 μmol·m-2·s-1,冬季平均光度140 μmol·m-2·s-1)以上具有較佳的花朵數量及品質。以多種杜鵑花和參考植物為材料,不同品種間ΔT值與Asat、LSP、LCP、Rd顯著負相關,LMA與Asat顯著負相關,顯示ΔT及LMA是具有潛力的光需求或耐陰指標,杜鵑花品種中,以平戶杜鵑ΔT值顯著較低,推測其光需求偏向陽性植物。
Azalea (Rhododendron spp.) is an important ornamental plant in green spaces of northern Taiwan. The objective of this study was to compare effect of shading on different azalea cultivars, to understand the effects of shading on growth and flowering of R.pulchrum and to evaluate the correlation between potential shade tolerance index and photosynthesis.
The four azalea cultivars,including hirado azalea, belgian azalea ‘Night Paris’, ‘Pink Bubble’ and ‘Ripples’, were in non-shade and shade treatment in PVC covered green house. The average light intensities were 641 and 145 μmol·m-2·s-1 in summer(2016/5-2016/9), while 300 and 56 μmol·m-2·s-1 in winter (2016/10-2017/3). Under shade treatment, ‘Hirado’ and ‘Ripples’ had higher increasing rate in shoot length and total leaf area, while ‘Night Paris’ and ‘Pink Bubble’ had lower morphology plasticity. The decrease of chlorophyll a/b under shading was considered as the ability of shade tolerance. Under shading, chlorophyll a/b of ‘Hirado’ was significantly decreased while ‘Ripples ’ was significantly increased. Dry weight of ‘Night Paris’, ‘Pink Bubble’, and ‘Hirado’ had no significant differences under shading, while ‘Ripples’ significantly decreased. With long term shading treatments (19 months), flower number, flower fresh weight, dry weight of 4 cultivars were significantly decreased and ‘Ripples’ had the greatest decreasing rate. Lightness (L*) and Chroma (C*) of ‘Night Paris’ had no significant differences under shading.
Potted R.pulchrum was grown under 100%, 81%, 54%, 32% and 13% of sunlight with various shading clothes. The average light intensities were 1321、1029、525、393and166μmol·m-2·s-1 in summer (2016/7/12-9/10), and 355、288、198、140 and 70 μmol·m-2·s-1 in winter(2016/11-2017/3). The highest chlorophyll meter readings (CMR), light saturation rate of net photosynthesis (Asat) and light saturation point (LSP) was observed in plants grown under 32% and 54% of sunlight and were considered to have best growth performances. The lowest shoot number, leaf dry weight and Asat was observed in plants grown under 13% of sunlight. Plants got higher total flower number, flower width, flower fresh weight, dry weight and saturation color with light intensity of 100% to 32% of sunlight.
Leaf canopy temperature minus air temperature (ΔT) along with Asat, LSP, light compensation point (LCP) and dark respiration rate (Rd)was conducted in 8 azalea cultivars, hibiscus, peace lilies and anthurium to evaluate the correlation between each other. Results showed that ΔT had significant negative correlation with Asat , LSP, LCP and Rd. The correlation coefficients were −0.69*** 、−0.61** 、−0.46* and−0.49* respectively. ΔT might be a potential index in evaluating light requirement and shade tolerance of plants. Leaf chlorophyll concentration, CMR, leaf mass per leaf area (LMA) along with Asat , LSP, LCP and Rd was conducted in 9 azalea cultivars. Results showed that LMA had significant negative correlation with Asat (r=−0.58*). ΔT of 26 azalea cultivars was investigated. Results showed that hirado azaleas had lower ΔT value than satsuki azalea, kureme azalea and belgian azalea.
In conclusion, ‘Night Paris’, ‘Pink Bubble’ were shade tolerant, ‘Hirado’ was able to adapt in lowlight, but ‘Ripples’ was not shade tolerant with overall evaluation of growth and flower performance. R.pulchrum had the best growth performance with moderate shading in summer (average light intensity of 525 to 393 μmol·m-2·s-1) and best flower quality with light intensity more than 32% of full sun (average 393μmol·m-2·s-1 in summer and 140 μmol·m-2·s-1 in winter). Asat, LSP, LCP and Rd had neganive correlation with ∆T in several azalea cultivars and reference plant. LMA had neganive correlation with Asat. ∆T and Asat were potential indexes in evaluating light requirement or shade tolerance of plants. ∆T was used to compare the differencesamong 26 azalea cultivars.Result showed that hirado azaleas had a lower ∆T than satsuki azaleas, kurume azaleas and belgian azaleas, indicated that hirado azaleas were inclined to light-demanding plants.
誌謝 i
摘要 ii
Abstract iv
目錄 vi
圖目錄 viii
表目錄 ix
第一章 前言 10
第二章 前人研究 12
一、杜鵑花生長習性及應用 12
二、植物耐陰性 13
三、耐陰植物對遮陰的反應 14
四、遮陰對杜鵑花之影響 17
五、耐陰性指標之研究 17
第三章 遮陰對4種杜鵑花品種生長及開花之影響 20
摘要(Abstract) 20
一、前言(Introduction) 21
二、材料與方法(Materials and Methods) 22
三、結果(Results): 26
四、討論(Discussion): 30
五、結論(Conclusion): 35
第四章 遮陰對平戶杜鵑‘艷紫’形態、生長及開花之影響 52
摘要(Abstract) 52
一、前言(Introduction) 54
二、材料與方法(Materials and Methods) 55
三、結果(Results) 60
四、討論(Discussion) 64
五、結論(Conclusion) 69
第五章 杜鵑花耐陰指標探討 88
摘要(Abstract) 88
一、前言(Introduction) 89
二、材料與方法(Materials and Methods) 90
三、結果(Results) 95
四、討論(Discussion) 98
五、結論(Conclusion) 101
第六章 結論 112
參考文獻(Reference) 114
附錄(Appendix) 119
王銘琪(編)。1985。杜鵑花。臺北。
白偉嵐、任建武、蘇雪痕。1999。八種植物耐陰性比較研究。
伍世平、王君健、于志熙。1994。11 種地被植物的耐陰性研究。植物科學學報。12。360-364。
江秀紅。1999。溫度、遮光與容器及植株大小對繡球花生長與開花之影響。臺北。
吳俊偉。2003。環境綠化植物耐陰性指標之研究。臺北。
呂勝由、楊遠波。1989。台灣杜鵑花屬植物之訂正。林業試驗所研究報告季刊。4。155-166。
宋馥華、張育森。2000。台灣地區平戶杜鵑之開花習性。中國園藝。45。1-10。
李合生。2000。植物生理生化實驗原理與技術。北京,中國。
肖松江、孫振元、楊中藝、袁劍剛、辛國榮、巨關升、袁首仁。2006。3 種爬山虎屬植物 23 個生態型的耐陰性研究。中山大學學報 (自然科學版)。45。73-77。
林怡如、葉德銘。2002。遮光對鳴子百合地上部及根莖生長之影響。中國園藝。48。125-132。
姚銘輝。2011。光度單位轉換問題之探討。技術服務。22。26-29。
姚銘輝、盧虎生、朱鈞。2002。葉綠素螢光與作物生理反應。科學農業。50。31-41。
張育森、呂美麗。2005。杜鵑花。台灣農家要覽增訂(三版)-農作二。p823-830。臺北。
郭耀綸。2013。植物耐陰性及臺灣原生樹種耐陰性類別。林業研究專訊。20。36-40。
陳俊宏。2010。台北地區公園之綠籬、彩葉、耐陰植物應用現況調查研究。
黄其椿、李初英、趙洪濤、吳建明、趙艷紅、楊守臻、陳懷珠、孫祖東。2013。菜用大豆種質資源遮光脅迫下的耐陰性研究。西南農業學報。25。2212-2217。
謝平芳、單玉珍、邱茲容。2003。植物與環境設計。臺北。
Andersen, P.; J. Norcini, and G. Knox. 1991. Influence of irradiance on leaf physiology and plant growth characteristics of rhododendron×''Pink Ruffles''. J. Am. Soc. Hort. Sci. 116:881-887.
Azuma, A.; H. Yakushiji; Y. Koshita, and S. Kobayashi. 2012. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta 236:1067-1080.
Bertamini, M.; K. Muthuchelian; M. Rubinigg; R. Zorer; R. Velasco, and N. Nedunchezhian. 2006. Low-night temperature increased the photoinhibition of photosynthesis in grapevine (Vitis vinifera L. cv. Riesling) leaves. Environ. Exp. Bot. 57:25-31.
Björkman, O., Responses to different quantum flux densities. Physiol. plant ecol. I. Springer: 1981; pp 57-107.
Boardman, N. 1977. Comparative photosynthesis of sun and shade plants. Ann. Rev. of Plant Physiol. 28:355-377.
Campbell, S.J. and C.J. Miller. 2002. Shoot and abundance characteristics of the seagrass Heterozostera tasmanica in Westernport estuary (south-eastern Australia). Aquat. Bot. 73:33-46.
Chen, J., Q. Wang, R. Henny, and D. McConnell, 2003. Response of tropical foliage plants to interior low light conditions. In “VIII International Symposium on Postharvest Physiology of Ornamental Plants 669”, pp. 51-56.
Craine, J.M. and P.B. Reich. 2005. Leaf‐level light compensation points in shade‐tolerant woody seedlings. New Phytol. 166:710-713.
Dai, Y., Z. Shen, Y. Liu, L. Wang, D. Hannaway, and H. Lu. 2009. Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Environ. Exp. Bot. 65:177-182.
Deng, Y., C. Li; Q. Shao, X. Ye, and J. She. 2012a. Differential responses of double petal and multi petal jasmine to shading: I. Photosynthetic characteristics and chloroplast ultrastructure. Plant Physiol. Biochem. 55:93-102.
Deng, Y., Q. Shao, C. Li, X. Ye, and R. Tang. 2012b. Differential responses of double petal and multi petal jasmine to shading: II. Morphology, anatomy and physiology. Sci. Hort. 144:19-28.
Ellsworth, D. and P. Reich. 1996. Photosynthesis and leaf nitrogen in five Amazonian tree species during early secondary succession. Ecol. 77:581-594.
Evans, J. and H. Poorter. 2001. Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, Cell Environ. 24:755-767.
Evans, J.R. 1999. Leaf anatomy enables more equal access to light and CO2 between chloroplasts. New Phytol. 143:93-104.
Galle, F.C. 1987. Azaleas: Revised and enlarged edition. Timber Press.
Geromel, C., L.P. Ferreira, F. Davrieux, B. Guyot, F. Ribeyre; M.B. dos Santos Scholz; L.F.P. Pereira; P. Vaast; D. Pot, and T. Leroy. 2008. Effects of shade on the development and sugar metabolism of coffee (Coffea arabica L.) fruits. Plant Physiol. Biochem. 46:569-579.
Givnish, T.J. 1988. Adaptation to sun and shade: a whole-plant perspective. Funct. Plant Biol. 15:63-92.
Gommers, C.M., E.J. Visser, K.R. St Onge, L.A. Voesenek, and R. Pierik. 2013. Shade tolerance: when growing tall is not an option. Trends Plant Sci. 18:65-71.
Griesbach, R. 1992. Correlation of pH and Light Intensity on Flower Color in Potted Eustoma grandiflorum Grise. HortScience 27:817-818.
Grime, J.P. and J. Mackey. 2002. The role of plasticity in resource capture by plants. Evol. Ecol. 16:299-307.
Grubb, P.J. 1998. A reassessment of the strategies of plants which cope with shortages of resources. Perspect. Plant Ecol. Evol. Syst. 1:3-31.
Guo, J. and M.-H. Wang. 2010. Ultraviolet A-specific induction of anthocyanin biosynthesis and PAL expression in tomato (Solanum lycopersicum L.). Plant growth regulat. 62:1-8.
Guo, X.-f., G.-a. Shi, X.-s. Kong, C.-p. Bai, X.-y. Liu, and Z.-w. Jin. 2003. Effects of sucrose on physiological characters and flower quality of tree peony in shady condition. J. Henan Univ. Sci. Technol. (Agr. Sci.) 1:004.
Han, S.; J. Jiang, H. Li, A. Song; S. Chen, and F. Chen. 2015. The differential response of two chrysanthemum cultivars to shading: photosynthesis, chloroplast, and sieve element-companion cell ultrastructure. HortScience 50:1192-1195.
Henning, F., T.J. Smalley, O.M. Lindstrom, and J.M. Ruter. 2006. Manipulating light intensity and fall fertilization to influence photosynthesis and freeze resistance of azaleas. HortScience 41:977-977.
Hikosaka, K. 1996. Effects of leaf age, nitrogen nutrition and photon flux density on the organization of the photosynthetic apparatus in leaves of a vine (Ipomoea tricolor Cav.) grown horizontally to avoid mutual shading of leaves. Planta 198:144-150.
Hlatshwayo, M. and P. Wahome. 2010. Effects of shading on growth, flowering and cut flower quality in carnation (Dianthus caryophyllus). J. Agr. and Social Sci. 6:34-38.
Huang, C.-J., G. Wei, Y.-C. Jie, J.-J. Xu, S. Anjum, and M. Tanveer. 2016. Effect of shade on plant traits, gas exchange and chlorophyll content in four ramie cultivars. Photosynthetica. 54:390-395.
Inskeep, W.P. and P.R. Bloom. 1985. Extinction coefficients of chlorophyll a and b in N, N-dimethylformamide and 80% acetone. Plant Physiol. 77:483-485.
Kim, S.J., D.J. Yu; T.-C. Kim, and H.J. Lee. 2011. Growth and photosynthetic characteristics of blueberry (Vaccinium corymbosum cv. Bluecrop) under various shade levels. Sci. Hort. 129:486-492.
Kittas, C., A. Baille, and P. Giaglaras. 1999. Influence of covering material and shading on the spectral distribution of light in greenhouses. J.of Agr. Eng. Res. 73:341-351.
Knapp, A.K. and D.L. Smith. 1997. Leaf Angle, Light Interception, and Water Relations. Amer. Biol. teacher 59:365-68.
Kohl, H. and R. Sciaroni. 1956. Bud initiation of azaleas: Preliminary studies on flower development indicate frequent removal of branch terminals will produce abundant flowering. Calif. Agric. 10:15-15.
Lei, T.T., R. Tabuchi; M. Kitao, and T. Koike. 1996. Functional relationship between chlorophyll content and leaf reflectance, and light‐capturing efficiency of Japanese forest species. Physiol. Plant. 96:411-418.
Levitt, J. 2015. Water, radiation, salt, and other stresses. Elsevier.
Lichtenthaler, H.K.; F. Babani, and G. Langsdorf. 2007. Chlorophyll fluorescence imaging of photosynthetic activity in sun and shade leaves of trees. Photosynth. Res. 93:235.
Lusk, C.H., P.B. Reich, R.A. Montgomery, D.D. Ackerly, and J. Cavender-Bares. 2008. Why are evergreen leaves so contrary about shade? Trends Ecol. Evol. 23:299-303.
Mc Millen, G.G. and J.H. Mc Clendon. 1979. Leaf angle: an adaptive feature of sun and shade leaves. Botanical Gazette:437-442.
McBride, K., R.J. Henny, J. Chen, and T.A. Mellich. 2014. Effect of light intensity and nutrition level on growth and flowering of Adenium obesum ‘Red’and ‘Ice Pink’. HortScience 49:430-433.
Miralles, J., J. Martínez-Sánchez, J. Franco, and S. Bañón. 2011. Rhamnus alaternus growth under four simulated shade environments: Morphological, anatomical and physiological responses. Sci. Hort. 127:562-570.
Morandi, B., M. Zibordi, P. Losciale, L. Manfrini, E. Pierpaoli, and L.C. Grappadelli. 2011. Shading decreases the growth rate of young apple fruit by reducing their phloem import. Sci. Hort. 127:347-352.
Niinemets, F.V.a.U. 2008. Shade tolerance, a key plant feature of complex nature and consequences. Annu. Rev. Ecol. Evolution Systematics 39:237-257.
Niinemets, Ü. 2010. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol. Res. 25:693-714.
Osmond, C. 1994. What is photoinhibition? Some insights from comparisons of shade and sun plants.Environ. plant biol. p1-24.
Peri, P.L., D.J. Moot, P. Jarvis, D.L. McNeil, and R.J. Lucas. 2007. Morphological, anatomical, and physiological changes of orchardgrass leaves grown under fluctuating light regimes. Agron. J. 99:1502-1513.
Pooter, L. 1999. Growth responses of 15 rain-forest tree species to a light gradient : the relative importance of morphological and physiological traits. Funtional Ecol. 13:396-410.
Portsmuth, A. and Ü. Niinemets. 2007. Structural and physiological plasticity in response to light and nutrients in five temperate deciduous woody species of contrasting shade tolerance. Funct. Ecol. 21:61-77.
Qiusheng, Y. and Z. Lijuan. 2005. Effects of shading and extraneous source sucrose on petal color and the photosynthetic characteristics in paeonia suffruticosa. J.of Henan Agri. University.
Raveh, E., A. Nerd, and Y. Mizrahi. 1998. Responses of two hemiepiphytic fruit crop cacti to different degrees of shade. Sci. Hort. 73:151-164.
Reich, P.B., M.B. Walters, and D.S. Ellsworth. 1997. From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences 94:13730-13734.
Rozali, S.E.; K.A. Rashid, and R. Farzinebrahimi. 2016. Effects of shading treatments on pigmentation and inflorescence quality of Calathea crotalifera bracts. Intl. J. of Agro. and Biol. 18:549-556.
Sánchez‐Gómez, D., F. Valladares, and M.A. Zavala. 2006. Performance of seedlings of Mediterranean woody species under experimental gradients of irradiance and water availability: trade‐offs and evidence for niche differentiation. New Phytol. 170:795-806.
Scuderi, D., F. Giuffrida, S. Toscano, and D. Romano. 2012a. Growth, physiological response, and quality characteristics of weeping fig in response to shading levels and climatic conditions. HortScience 47:1586-1592.
Stanton, K.M., S.S. Weeks, M.N. Dana, and M.V. Mickelbart. 2010. Light exposure and shade effects on growth, flowering, and leaf morphology of Spiraea alba du roi and Spiraea tomentosa L. HortScience 45:1912-1916.
Taiz, L., E. Zeiger, I.M. Møller, and A. Murphy. 2015. Plant physiology and development. Sinauer Associates, Incorporated.
Valladares, F. and Ü. Niinemets. 2008. Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology, Evolution, and Systematics:237-257.
Valladares, F. and R.W. Pearcy, 2000. The role of crown architecture for light harvesting and carbon gain in extreme light environments assessed with a structurally realistic 3-D model. In “Anales del Jardín Botánico de Madrid”, Vol. 58, pp. 3-16.
Valladares, F.; S.J. Wright; E. Lasso; K. Kitajima, and R.W. Pearcy. 2000. Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecol. 81:1925-1936.
Walters, M. and P. Reich. 2000. Trade‐offs in low‐light CO2 exchange: a component of variation in shade tolerance among cold temperate tree seedlings. Funct. Ecol. 14:155-165.
Wang, L., F. Deng, and W.-J. Ren. 2015. Shading tolerance in rice is related to better light harvesting and use efficiency and grain filling rate during grain filling period. Field Crops Res. 180:54-62.
Westoby, M., D.S. Falster, A.T. Moles, P.A. Vesk, and I.J. Wright. 2002. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33:125-159.
Witkowski, E. and B.B. Lamont. 1991. Leaf specific mass confounds leaf density and thickness. Oecologia 88:486-493.
Wright, I.J., P.B. Reich, M. Westoby, D.D. Ackerly, Z. Baruch, F. Bongers, J. Cavender-Bares, T. Chapin; J.H. Cornelissen, and M. Diemer. 2004. The worldwide leaf economics spectrum. Nature 428:821-827.
Zhang, H., M. Sharifi, and P. Nobel. 1995. Photosynthetic characteristics of sun versus shade plants of Encelia farinosa as affected by photosynthetic photon flux density, intercellular CO2 concentration, leaf water potential, and leaf temperature. Funct. Plant Biol. 22:833-841.
Zhang, Z., B. Zhang, H. Tong, and L. Fang. 2010. Photosynthetic LCP and LSP of different grapevine cultivars. J. of Northwest Forestry University 25:24-29.
Zhao, D., Z. Hao, and J. Tao. 2012. Effects of shade on plant growth and flower quality in the herbaceous peony (Paeonia lactiflora Pall.). Plant Physiol. Biochem. 61:187-196.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top