跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/25 21:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊婉琪
研究生(外文):Wan-Chi Chuang
論文名稱:都市農園之蔬菜栽培與應用
論文名稱(外文):Vegetable Cultivation and Application in Urban Farm
指導教授:林淑怡林淑怡引用關係張育森張育森引用關係
指導教授(外文):Shu-I LinYu-Sen Chang
口試日期:2017-06-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝暨景觀學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:122
中文關鍵詞:都市農園都市園藝食用安全性蔬菜栽培
外文關鍵詞:urban farmurban horticulturfood safetyvegetable cultivation
相關次數:
  • 被引用被引用:4
  • 點閱點閱:582
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近年,都市化使都市農園逐漸受到重視。但於都市中種植可食作物其安全性需要小心評估,且栽培型式和一般田間栽培環境不同,其栽培型式對都市農園實施成效亦為另一個重要環節。故本研究隨機挑選臺北地區六處都市農園進行調查,了解目前都市農園應用現況,並調查於臺北地區進行可食作物栽培之食用安全性,探討採收後經過充分清洗對降低危害風險的效果,搭配適當地點、作物種類、介質配方及容器型式之選擇,作為未來都市農園推廣之參考。
目前臺北地區都市農園多於硬舖面空間以容器進行栽培。育材模型股份有限公司生產栽植箱和興農股份有限公司生產之我家菜園栽植箱是最普遍用以栽培植物的容器。依據容器對栽培介質特性之影響,我家菜園栽植箱可能較育材栽植箱之保水性佳。受蔬菜季節性和容器栽培空間之限制,民眾偏好於春夏季種植果菜類,秋冬季則主要種植葉菜類和辛香類蔬菜。介質的使用上大多以田土和無土介質混合而成。依調查結果,在維護管理良好狀況下,介質之總體密度在0.4-0.7 g.cm-3、總孔隙度在75%-80%、容器容水量在57%-64%和通氣孔隙度在15%-20%條件下,所有蔬菜種類生長效果佳。上述介質理化性狀亦在前人研究建議範圍內。
食用安全性上,重金屬銅(Cu)和鋅(Zn)明顯有葉菜類較果菜類和根莖菜類易累積的趨勢。葉菜類中又以落葵(Basella alba L.)具有較高重金屬濃度,可能和其葉片構造粗糙具絨毛易吸附空氣污染物有關;而地瓜葉(Ipomoea batatas(L.) Lam.桃園2號)則為相對低累積重金屬的蔬菜種類。鉛(Pb)則顯示以根莖菜類較其他蔬菜種類易累積,可能和植株吸收鉛後大多存在根部有關。交通流量影響上,大部分蔬菜種類植體重金屬濃度不受交通流量影響,少部分受影響種類,多以交通流量相對較多的基隆路邊種植所含濃度有偏高的趨勢。而不同種植區的蔬菜產量無顯著性差異,因此和所含重金屬的稀釋和濃縮效應較無關,落塵量則受交通流量影響,因此,初步推測試驗中少數受交通流量影響的蔬菜重金屬濃度偏高可能和交通流量造成的落塵量有關。於採收後經過清洗僅有鎳(Ni)和鉻(Cr)在此試驗中經過清洗於部分種植地區及蔬菜種類上有顯著降低重金屬濃度的現象,其中以鉻最顯著,其他重金屬元素則於清洗後無顯著降低的效果,但經過清洗後部分重金屬濃度於部分種植地區及蔬菜種類上仍有降低的趨勢。
栽培介質篩選上,泥炭土(PM):蛭石(V):真珠石(P)在介質比例3:1:1之蕹菜(Ipomoea aquatica Forsk.)和莧菜(Amaranthus mangostanus L.)表現普遍優於或近似1:1:1之植株,其介質EC值和容器容水量高於介質比例1:1:1者。蔬菜作物相對其他作物為需水性高種類,因此,介質理化性狀若在合理範圍內,保水性及EC值相對較高之介質配方PM:V#2:P#2 = 3:1:1和PM:V#3:P#3 = 3:1:1可能較適合生長快速且需水性高的葉菜類,加上比例3:1:1介質成本較低,因此適合作為推廣都市農園建議使用之介質配方。
在容器大小和型式上,以民眾偏好使用的育材網孔式栽植箱和我家菜園非網孔式栽植箱分別於春夏季種植蕹菜,秋冬季種植葉萵苣(Lactuca sativa L.)。兩種容器型式在介質含水量上雖無顯著性差異,但以我家菜園非網孔式栽植箱於春夏季和秋冬季下皆有偏高的趨勢,且其介質EC值顯著高於育材網孔式栽植箱,可能因育材網孔式栽植箱之養份隨多餘的水分從孔壁排出,而造成EC值偏低。春夏季作物蕹菜種植於我家菜園非網孔式栽植箱下生長表現較佳,可能因台灣夏季高溫炎熱、蒸發散快,對於需水性較高的蕹菜種植於保水保肥性較高的我家菜園非網孔式栽植箱中生長表現較佳。秋冬季作物葉萵苣則種植於育材網孔式栽植箱下生長表現較好,其可能因台灣北部冬季多綿綿細雨,相對雨量多,對於需水性相對較低作物,在通氣性較好的育材網孔式栽植箱中生長,根系有較充足的氧氣供應,有助於根系生長和植物發育。
總結來說,於臺灣臺北地區進行都市農園,選擇種植適合蔬菜種類可改善食用安全性,建議可挑選低累積性的果菜類、根莖菜類(如地瓜)或地瓜葉,避免挑選可食部位粗糙具絨毛的蔬菜種類(如落葵)。種植區則建議遠離交通流量高的地區或是選擇頂樓等落塵較不易直接飄落的地區種植,於採收後經充分清洗,有助於提高都市農園之可食作物安全性。為了有較佳的生長表現,建議可使用介質配方PM:V#2:P#2 = 3:1:1和PM:V#3:P#3 = 3:1:1,於乾旱季節或需水性較高的蔬菜以非網孔式栽植箱種植,於潮濕環境適合以網孔式栽植箱種植,對於蔬菜作物生長表現上有較佳的趨勢。除上述建議事項外,良好的維護管理方式,是使都市農園持續實施,發揮對環境、社會和教育等功能的另一個關鍵點。
In recent years, the result of urbanization has attracted more attention to urban horticulture. Furthermpre, the cultivation methods of urban farms is different from that of general field cultivation, and its cultivation type is also an important link to the successful implementation of the urban farm. Therefore, this research investigated six randomly selected urban farms in the Taipei region to understand the current applications in urban farming, as well as examined the safety of edible crops grown in the Taipei region. The effects of thorough cleaning after harvesting in reducing the risk of harm in vegetables were also studied. Selections of appropriate locations, crop types, media formulations and container types will also be suggested to build a model for best-practice of urban farming in the future.
Currently urban farming in the Taipei city mostly uses containers for cultivation on hard pavements. “Yù cái” planting box by “yù cái” Co., Ltd. and “Wo jia càiyuán” by SINON Co., Ltd are the most commonly used containers for growing plants. In terms of how the planting box affects media characteristics, “Wo jia càiyuán” planting box exhibits better water retention ability relative to yu-cai. Due to the seasonality of vegetables and limited space of container, people tend to grow fruit vegetables in the spring and summer, and leafy vegetables and spice vegetables in fall and winter. Field soil mixed with soilless media is the preferred type of media. According to the survey results, under good maintenance, all types of vegetables grew better when the total density of the media was 0.4-0.7 g.cm-3, total porosity 75% -80%, container capacity 57% -64% and air porosity 15% -20%. Above physical and chemical properties of media were also within the suggested ranges from previous studies.
On the safety of edible crops, heavy metal Cu and Zn accumulated significantly more in leafy vegetables than in fruit vegetables and stem and root vegetables. Among the leafy vegetables, ceylon spinach (Basella alba L.) had high concentration of heavy metal which may be related to the rough and hairy leaf texture making it more easily to absorb air pollutants. Sweet potato (Ipomoea batatas (L.) Lam. Taoyuan #2) leaf had relatively low heavy metal accumulation. The stem and root vegetables accumulate Pb more easily than other vegetable species since Pb may mostly stored in the root after being absorbed by the plant. On the influence of traffic flow, the concentrations of heavy metals in most vegetable species were not affected by traffic flow. The few species which were affected by traffic flow with higher heavy metal concentration were planted on the busy roadsides of Keelung Road. Since there was no significant difference in the yields of vegetables planted in different areas, imply that it was not related to the dilution or concentration effect of heavy metal. Instead, the amount of dust was affected by the traffic flow. Therefore, it is suggested that the high concentration of heavy metals in affected vegetables may be related to the amount of dust caused by traffic flow. When cleaning thoroughly after harvesting of vegetables, only accumulations of Ni and Cr have been significantly reduced in some planting locations and vegetable type, especially for the Cr. After cleaning, other heavy metals were also display reduction trend in a portion of the heavy metal concentration in some planting locations and vegetable types, but not statistically significant.
On the media selections, water spinach (Ipomoea aquatica Forsk.) and edible amaranth (Amaranthus mangostanus L.) had better or similar performance when grown in the media with peat moss(PM): vermiculite(V): Perlite(P) in the ratio of 3:1:1 than the ratio of 1:1:1. The EC value of the medium and the container capacity were also higher with 3:1:1 ratio than the medium ratio of 1: 1: 1. Vegetable crops often need more water than other types of crop. When the physical and chemical properties of medium in the ranges suggested by previous studies, media formula PM: V # 2: P # 2 = 3: 1: 1 and PM: V # 3: P # 3 = 3: 1: 1 may be more suitable for leafy vegetables which grow fast and demand more water. Furthermore, the lower cost of media formula with 3:1:1 ratio makes it ideal for use in urban farming.
In terms of container size and type, we used people generally prefered “yù cái” and “Wo jia càiyuán” planting boxes to grow water spinach in the spring and summer, and leaf lettuce (Lactuca sativa L.) in fall and winter. The effect of these two types of container on media water content showed no significant difference. Nonetheless, “Wo jia càiyuán” non-mesh planting box exhibited a tendency in higher water retention with the EC value of the media significantly higher than that from the “yu cai” mesh planting box. The lower EC value from the “yucai” container may be attributed to the loss of nutrient along with excess water discharged through the mesh openings in the planting box. Warm-season vegetable- water spinach grown in “Wo jia càiyuán” non-mesh planting box had better growth performance. Under the conditions of high temperatures and fast evaporation during summer in northern Taiwan, wo jia caiyuan non-mesh planting box was able to retain better water and fertilizers may leading to the better growth performance of water spinach with high water demand. As a cool-season vegetable, leaf lettuce grown in “yù cái” mesh planting box had better growth performance. Because of the frequent drizzling during winter in northern Taiwan, “yu-cai” mesh planting box provides better ventilation that allows crops with lower water demand to access sufficient oxygen supply to develop a strong and healthy root system and plant growth.
In conclusion, selecting the right types of vegetables to grow may improve food safety when practicing urban farming in the Taipei region. Fruit vegetables, stem and root vegetables(such as sweet potao) and sweet potato leaves, that have low metal accumulation are recommended while vegetables such as Ceylon spinach which contain rough and hairy edible parts should be avoided. The planting location is recommended to be as far away from areas of high traffic flow as possible. Rooftops where dust from the traffic does not fall directly are anthor choice of planting location. Thorough washing after harvesting further improves the food safety of plants of urban farming. To promote good growth performance, media formulas PM: V # 2: P # 2 = 3: 1: 1 and PM: V # 3: P # 3 = 3: 1: 1 are suggested to use with non-mesh type of box during the dry season or when planting vegetables of high water demand, and mesh type of box may be used when the environment is wet. In addition to the above recommendations, regular and proper maintenance is another key point to the continued operation of the urban farm and expanding its environmental, social and educational functions.
摘要………………………………………………………………………………............I
Abstract…………………………………………………………………………............III
目錄…………………………………………………………………………………….VI
表目錄………………………………………………………………………………..VIII
圖目錄………………………………………………………………………………….IX
第一章 前言…………………………………………………………………………….1
第二章 前人研究……………………………………………………………………….3
一、都市農園之定義及其重要性………………………………………………….3
二、都市地區栽培蔬菜之食用安全性及降低危害風險方法…………………….3
(一) 都市環境對蔬菜重金屬汙染影響. ………………………………………..3
(二) 重金屬特性、來源及對人體健康影響……………………………………4
(三) 蔬菜採收後清洗對降低危害風險效果……………………………………6
三、常用無土介質之簡介………………………………………………………….6
(一) 有機無土介質………………………………………………………………7
(二) 無機無土介質………………………………………………………………8
四、栽培介質之理化特性………………………………………………………….8
(一) 物理特性……………………………………………………………………9
(二) 化學特性…………………………………………………………………...10
五、臺灣常用容器栽培之型式及容器型式對植物生長影響……………………10
第三章 台北地區都市農園栽培現況調查…………………………………………...12
摘要(Abstract)……………………………………………………………………...12
一、 前言(Introduction). …………………………………………………………...13
二、 材料方法(Materials and Methods) . ………………………………………….14
三、 結果(Results) …………………………………………………………………19
四、 討論(Discussion) ……………………………………………………………..22
五、 結論(Conclusion) …………………………………………………………….25
第四章 台北地區都市農園之作物食用安全性調查………………………………...32
摘要(Abstract). …………………………………………………………………….32
一、前言(Introduction) ……………………………………………………………33
二、材料方法(Materials and Methods) . ………………………………………….35
三、結果(Results) …………………………………………………………………41
四、討論(Discussion) ……………………………………………………………..45
五、結論(Conclusion) …………………………………………………………….50
第五章 都市農園蔬菜栽培之適用介質配方探討. ………………………………….66
摘要(Abstract) ……………………………………………………………………..66
一、 前言(Introduction) ……………………………………………………………67
二、 材料方法(Materials and Methods) …………………………………………...69
三、 結果(Results) …………………………………………………………………71
四、 討論(Discussion) ……………………………………………………………..74
五、 結論(Conclusion) …………………………………………………………….76
第六章 栽培容器型式對蔬菜栽培之影響…………………………………………...88
摘要(Abstract) …………………………………………………………….……….88
一、前言(Introduction). ………………………………………………….………..89
二、材料方法(Materials and Methods) ……………………………….…………..90
三、結果(Results) ………………………………………………….……………...92
四、討論(Discussion) ……………………………………………….…………….94
五、結論(Conclusion) ……………………………………..……..……………….97
第七章 結論………………………………………………………………………….104
參考文獻(References) . ………………………………………………………………106
附錄(Appendix) ………………………………………………………………………113
毛王杰、黃瑞彰. 2016. 雲嘉南蔬菜生產區之蔬菜重金屬含量之安全性評估. 臺南區農業改良場研究彙報 67:49-61.
王錦堂、陳鴻堂、賴惠珍. 1994. 中部多作蔬菜栽培區土壤重金屬含量調查. 臺中區農業改良場研究彙報 42:11-20.
王仕賢、鄭安秀、陳文雄. 1999. 小果番茄栽培管理. 台南區農業改良場技術專刊 108:1-14.
王裕權、謝桑煙、陳博惠. 2002. 不同苗齡之甘藍及結球白菜移植對育苗品質及產量之影響. 台南區農業改良場研究彙報 39:32-41.
王仙民. 2007. 屋頂綠化. 華中科技大學出版社. 武漢.
王毓華、林子凱、林照能. 2011. 農業環境變遷對葫蘆科蔬菜育種與栽培技術之挑戰. 因應氣候變遷作物育種及生產環境管理研討會專刊153-162.
王富榮、沈建宇、宋彬. 2013. 白蘿蔔優良品種及套袋栽培技術. 北方園藝 5:45-47.
司亞平、何佛明、陳殿奎. 1998. 基質物理性質對番茄穴盤育苗質量的影響. 中國蔬菜2:30-31.
李哖. 1987. 花卉之無土栽培. 花卉生產改進研討會專集 16-26.
李文汕. 2005. 蘿蔔. 臺灣農家要覽農作篇(二). p.247-252. 財團法人豐年社. 臺北.
李中原. 2008. 綠屋頂介紹:觀念與案例. 綠屋頂推廣交流討論會資料. p.3-9.
李子能、肖日新. 2012. 蔬菜工廠化育苗基質及其研究發展. 吉林蔬菜 6:58-59.
青鹿四郎. 1935. 農業經濟地理. p.127-154. 叢文閣出版社. 東京.
林瑞松. 1989. 穴盤育苗系統之介紹. 第二屆設施園藝研討會專集. p83-92. 臺灣農業試驗所鳳山熱帶園藝試驗分所.
林梓聯. 2002. 都市農業的發展與願景. 農業經營管理會訊 30:4-10.
林棟樑. 2005. 萵苣. 臺灣農家要覽農作篇(二). p.409-412. 財團法人豐年社. 臺北.
林錦松. 2007. 什麼是綠屋頂. p.3-11刊於:林錦松等編著. 你也能有綠屋頂. 財團法人台北市錫瑠環境綠化基金會. 台北.
林學詩. 2007. 蔬菜農業氣象災害與因應策略. 作物、環境與生物資訊 4:23-34.
林毓雯、劉滄棽、陳吉村、湯雪溶、陳鴻堂、卓家榮、蔡正賢、林永鴻、張繼中、蔡淑珍、黃維廷. 2012. 台灣地區蔬菜鎘、鉛濃度調查. 台灣農業研究 61:38-5.
林靜芳. 2014. 國家環境毒物研究中心公告民國102-103年新聞整理. 國家衛生研究院. 苗栗.
郭俊毅. 1995. 豆類蔬菜產業之現況與展望. 臺灣蔬菜產業改進研討會專集 111-131.
翁愫慎、莊育鳳. 2009. 從農場到餐桌-皇宮菜. 豐年社鄉間小路 4:4-16.
高雄區農業改良場. 2008. 茄子良好農業規範. 行政院農業委員會 p.8.
馬振耀. 1997. 高雄巿大氣懸浮微粒及重金屬成份分佈之特性研究. 國立中山大學環境工程與科學系碩士論文. 高雄.
崔秀敏、王秀峰、孫春華、崔全友. 2001. 番茄育苗基質特性及其育苗效果. 上海農業學報17:68-71.
望作文. 1994. 蔬菜育苗p.34-36. 蔬菜栽培學. 中國農業出版社. 北京.
陳尊賢. 2002. 土壤污染管制標準規定之探討. 國立臺灣大學農業化系計畫資料. 臺北.
陳正次. 2005. 番茄. 臺灣農家要覽農作篇(二). p.517-532. 財團法人豐年社. 臺北.
陳昱心. 2012. 介質特性與栽培管理對綠屋頂植物生育之影響. 國立台灣大學園 藝學系碩士論文. 台北.
許啟誠. 2005. 球莖甘藍. 臺灣農家要覽農作篇(二). p.283-286. 財團法人豐年社. 臺北.
曹幸之、廖瑞生、黃涵. 2005. 芹菜. 臺灣農家要覽農作篇(二). p.419-422. 財團法人豐年社. 臺北.
曹建康, 姜微波, 趙玉梅. 2007. 果蔬採後生理生化實驗指導. p.29-30. 中國輕工業出版社. 北京.
張元聰、王仕賢. 2002. 西洋香草介紹(一)薄荷. 農業世界 221:100-107.
張世超、陳少雄、彭彦. 2006. 無土栽培基質研究概况. 桉樹科技 23:49-54.
張銘文. 2017. 食用甘藷栽培技術. 苗栗區農業改良場農業知識. 2017年3月
< http://www.mdais.gov.tw/ws.php?id=204>
黃文、應芳卿. 2005. 櫻桃蘿蔔栽培技術. 中國種業 5-8.
黃致霖. 2012. 整合實測與基準劑量模擬結果評估新竹地區周界重金屬之健康風險.逢甲大學環境工程與科學學系碩士論文. 臺中.
葛曉光. 1995. 壯苗指標的研究與應用. 蔬菜育苗大全. p.15-20. 中國農業出版社. 北京.
楊昆憲. 2008. 不同粒徑與保水性顆粒介質之物理性質. 國立成功大學土木工程研究所碩士論文. 台南.
楊小鋒、李勁松、楊沐、黃植、許如意. 2012. 不同覆蓋材料對熱帶夏季空心菜生長和小氣候環境的影響. 湖北農業科學 51:302-305.
廖乾華. 1996. 蔬菜栽培介質-桃改一號. 桃園區農業專訊 16:3-5.
臺北市交通管制工程處. 2016. 交通資料. 交通流量調查資料.
< http://www.bote.gov.taipei/ct.asp?xItem=660485&CtNode=71101&mp=117031>
蔡月夏. 2002. 香草植物羅勒的栽培與利用. 花蓮區農業專訊41:7-10.
蔡蜜綺. 2013. 盆器與植物間的美麗關係. p. 70. 花草遊戲-資材萬用術!鮮活你的風格花園. 城邦文化事業股份有限公司. 麥浩斯出版. 臺北.
劉敏莉. 2005. 黃秋葵. 臺灣農家要覽農作篇(二). p.581-585. 財團法人豐年社. 臺北.
薛佑光、李文汕、張武男. 2000. 介質對番茄台中亞蔬四號穴盤苗及其定植後生育後初期生育之影響. 興大園藝 25:59-72.
錢春元、湯輝. 2015. 黃秋葵的採收技巧. 基層農技推廣 3:23.
謝明憲、許涵鈞、劉依昌、黃圓滿、林棟樑、王仕賢. 2009. 設施蕹菜周年生產. 臺南區農業專訊 3:10-12.
謝明憲. 2015. 辣椒盆植栽培. 園藝之友 172:46-49.
戴振洋、蔡宜峰、郭孚燿. 1996. 肥料對不同品種甘藍穴盤苗生長之影響. 臺中區
農業改良場研究彙報50:11-20.
戴振洋. 2005. 芫荽. 臺灣農家要覽農作篇(二). p.415-418. 財團法人豐年社. 臺北.
羅秋雄. 2005. 蔬菜穴盤育苗介質之開發. 桃園區農業改良場研究彙報57:31-39.
羅秋雄. 2010. 設施葉菜類蔬菜合理化施肥. 臺中區農業改良場特刊 100:121-123.
龔財立、姜金龍. 2007. 甘藷栽培管理技術. 桃園區農業專訊 60:16-19.
Abad, M., P. Noguera, R. Puchades, A. Maquieira, and V. Noguera. 2002. Physicochemical and chemical properties of some coconut dusts for use as a peat substitute for containerized ornamental plants. Biores. Technol. 82:241-245.
Abad, M., F. Fornes, C. Carrión, V. Noguera, P. Noguera, Á. Maquieira, and R.
Puchades. 2005. Physical properties of various coconut coir dusts compared to
peat. Hort. Sci. 40:2138-2144.
Altland, J. 2006. Physical properties of container media. 3 May 2015. <http://oregonstate.edu/dept/nursery-weeds/feature_articles/physical_properties/physical_properties.html>
Alexander, P.D., B.J. Alloway, and A.M. Dourado. 2006. Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables. Environ. Pollution 144:736-745.
Alexandri, E., J. Phil. 2008. Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Building and Environ. 43:480–93.
Bilderback, T. E. 1982. Nursery crops production manual. Container soils and soilless media. North Carolina Agricultural Extension Service. NCPM no.9.
Bunt, A.C. 1983. Physical properties of mixtures of peats and minerals of different particle size and bulk density for potting substrates. Acta Hort. 150:143-153.
Brown, K. H., and A. L. Jameton. 2000. Public health implications of urban agriculture. J. of Public Health Policy 21:20-39.
Bohn, K., and A. Viljoen. 2011. The edible city: envisioning the continuous productive urban landscape. Field J. 4:149–161.
Carmi, A., and B. Heuer. 1981. The role of roots in control of bean shoot growth. Ann. Bet. 48:519-527.
Casadesus, J., R. Caceres, and O. Marfa. 2007. Dynamics of CO2 efflux from the substrate root system of container-grown plants associated with irrigation cycles. Plant Soil 300:71–82.
De Boodt, M., and O. Verdonck. 1972. The physical properties of the substrates in horticulture. Acta Hortic 26:37-44.
Dole, J.M. and H.F. Wilkins. 2005. Floriculture : principles and species. 2nd ed.
Prentice Hall, Upper Saddle River, N.J.
De Nicola, F., G. Maisto, M. V. Prati, and A. Alfani. 2008. Leaf accumulation of trace elements and polycyclic aromatic hydrocarbons (PAHs) in Quercus ilexL. Environ. Pollution 153:376-383.
Department of Health, Executive Yuan. 2011. Standards for the tolerance of heavy metals in edible plant origin. The Executive Gazette Online vol.17 no.99. <http://gazette.nat.gov.tw/egFront/eng/engSearch.jsp>. (in Chinese)
Eigenbrod, C. and N. Gruda, 2015. Urban vegetable for food security in cities. A review. Agron. Sustain. Dev. 35:483–498.
Fleming, G. A., and P. J. Parle. 1977. Heavy metals in soils, herbage and vegetables from an industrial area West of Dublin City. Irish J. of Agr. and Food Res. 16:35-48.
Fonteno, W. C., and T. E. Bilderback. 1993. Impact of hydrogel on physical properties of coarse-structured horticultural substrates. J. Amer. Soc. Hort. 118:217-222.
Fonteno, W. C. 1990. Know your media. Growertalks on plugs. Growertalks Mag. 84-92.
Finster, M. E., A.G. Kimberly, and J. B. Helen. 2004. Lead levels of edibles grown in contaminated residential soils: a field survey. Sci. of the Total Environ. 320:245–257.
Gilman, E. F. 2001. Effect of nursery production method, irrigation, and inoculation with mycorrhizae-forming fungi on establishment of Quercus virginiana. J. Arboriculture 27:30–39.
Grillas, S., M. Lucas, E. Bardopolou, S. Sarafopoulos, and M. Voulgari. 2001. Perlite
based soilless culture system : current commercial applications and prospects.
Acta Hort. 548:105-113.
Gopal, R. and A. H. Rizvi. 2008. Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere 70:1539–1544.
Gelman, V. L. 2014. Rooptop vegetables and urban contamination :trace elements and polycyclic aromatic hydrocarbons in crops from Helsinki rooftops. Environ. MS thesis. Helsinki univ. Helsinki, Finland.
Handreck, K. A. 1993. Properties of coir dust, and its use in the formulation of soilless
potting media. Commun. Soil. Sci. Plant Anal. 24:349-33.
Heiskanen, J. 1995. Water status of sphagnum peat and a peat–perlite mixture in containers subjected to irrigation regimes. Hort. Sci. 30:281–284.
Islam, K. M. S. 2004. Rooftop gardening as a strategy of urban agriculture for food security: the case of Dhaka city, Bangladesh. Acta Hort. 643:241-246.
Jones, L. H., and H. D. Haskuns. 1935. Distribution of roots in porous and nonporous plant containers. Plant Physiol. 10:511-519.
Koranski, D. S. 1993. Plug production technique. Proceedings of 2nd symposium on seed industry and marketing of horticultural crops. Taiwan Seed Improvement and Propagation Station. pp.15-27.
Lagerwerf, J. V., and A. W. Specht. 1970. Contamination of roadside vegetation with
cadmium, nickel, lead and zinc. Environ. Sci. & Technol. 4:583-586.
Latimer, J. G. 1991. Container size and shape influence growth and landscape performance of Marigold seedlings. Hort.Sci. 26:124-126.
Liptay, A. and D. Edwards. 1994. Tomato seedling growth in response to variation in root container shape. Hort.Sci.29:633–635.
Lin, Y. W., T. S. Liu, and C. H. Wang. 2003. Study on nitrogen mineralization characteristics of organic materials. Jour. Agric. Res. China 53:178–190.
Liu, T. S., H. Y. Guo, J. L. Chu, and S. Lian. 2007. Pre-liminary study on heavy metal characteristics in serpentinite-developed soil regions in eastern Tai-wan. J. Taiwan Agric. Res. 56:65–78. (in Chinese with English abstract).
Liu, W., Q. Zhou, Y. Zhang, and S. Wei. 2010. Lead ac-cumulation in different Chinese cabbage cultivars and screening for pollution-safe cultivars. J. Environ. Manage. 91:781–788.
Milks, R. R., W.C. Fonteno, and R.A. Larson. 1989. Hydrology of horticultural substrates:III. Predicting air and water content of limited-volume plug cells. J. Amer. Soc. Hort.Sci. 114:57–61.
Mielke, H. W. 1994. Lead in new-orleans soils: new images of an urban environment. Environ. Geochem Health 16:123–128.
Mathers, H. M., S. B. Lowe, C. Scagel, D. K. Struve, and L. T. Case. 2007. Abiotic factors influencing root growth of woody nursery plants in containers. Hort. Technol. 17:151-162.
Nillson, U. and G. O¨ rlander. 1995. Effects of regeneration methods on drought damage to newly planted Nor-way spruce seedlings. Can. J. for. Res. 25:790–802.
Noguera, P., A. Manuel, P. Rosa, M. Amgel., and N. Vicente. 2003. Influence of particle size on physical and chemical properties of coconut coir dust as container medium. Commun. in Soil Sci. and Plant Analysis 34 : 593-605.
Nelson, P.V. 2003. Greenhouse operation and management. Prentice Hall, Englewood
Cliffs, N. J.
Nabulo, G., H. Oryem-Origa, and M. Diamond. 2006. Assessment of lead, cadmium, and zinc contami-nation of roadside soils, surface films, and vegetables in Kampala city, Uganda. Environ. Res. 101:42–52.
Nabulo, G., S. D. Young, C. R. Black. 2010. Assessing risk to human health from tropical leafy vegetables grown on contaminated urban soils. Sci. of the Total Environ. 408:5338–5351.
Nriagu, J. O. 1998. Paleoenvironmental research-tales told in lead. Sci. 281:1622–1623.
Purves, D. 1967. Contamination of urban garden soils with copper, boron, and lead. Plant Soil 26:380-382.
Page , A., T. J.Ganje, and M. S. Joshi. 1971. Lead quantities in plants, soil, and air near some major highways in Southern California. Hilgardia 41: 1-31.
Pokorny, F. A. 1987. Available water and root development within the micropores of pine bark particles. J. Environ. Hort. 5:89–92.
Ruter, J.M. and H. van de Werken. 1991. Container design influences physical parameters of different media. Hort. Technol. 76-78.
Spomer, A. L. 1975. Small soil containers as experimental tools : soil water relations.
Commun. Soil Sci. Plant Anal. 6:21-26.
Sterrett, S. B., R. L. Chaney, C. H. Gifford, and H. W. Mielke. 1996. Influence of fertilizer and sewage sludge compost on yield and heavy metal accumulation by lettuce grown in urban soils. Environ. Geochemistry and Health 18:135-142.
Styer, R. C., and D. S. Koranski. 1997. Media quality. Plug and transplant production. Ball Publishing 101-128.
Sahi, S. V., N. L. Bryant, N. C. Sharma, and S. R. Singh. 2002. Characterization of a lead Hyperac-cumulator Shrub, Sesbania drummondii. Environ. Sci. Technol. 36:4676–4680.
Säumel, I., I. Kotsyuk, M. Hölscher, C. Lenkereit, F. Weber, and I. Kowarike. 2012. How healthy is urban horticulture in high traffic areas? Trace metalconcentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany. Environ. Pollution 165:124-132.
Uzu, G., S. Sobanska, G. Sarret, M. Muñoz, and C. Du-mat. 2010. Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environ. Sci. Technol. 44:1036–1042.
Voutsa, D., A. Gremanis, and C. Samara. 1996. Trace elements in vegetables grown in industrial areas in relation to soil and air particulate matter. Environ. Pollut 94:325–35.
Whitcomb, C.E. 1984. Plant production in containers. Lacebark Publ., Stillwater, Okla.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top