跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:45cf:c86b:e393:b18b) 您好!臺灣時間:2025/01/13 08:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王怡茹
研究生(外文):Yi-Ju Wang
論文名稱:以功能性磁振造影探討景觀設計的腦區與心流體驗之關係
論文名稱(外文):The Correlation between Brain Activation and Flow Experience by Landscape Design.
指導教授:張俊彥
口試日期:2017-05-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝暨景觀學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:121
中文關鍵詞:景觀設計心流體驗功能性磁振造影創造力腦區心流體驗腦區
外文關鍵詞:Landscape designFlow experienceFunctional magnetic resonance imaging (fMRI)Creativity brainFlow brain.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:260
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
創造力是一種以新穎且實用的方式來解決問題。在眾多創造中,景觀設計也為一運用創造力的過程,經由發想設計到最終對環境改善呈現,在這樣的設計中經歷創作的發想、精煉到實體表現,最後以在設計過程中的腦區,來解釋心流體驗對設計者的影響。而在心流體驗(Flow Experience)人們非常了解自己的行為,而不是意識本身,最終產生一個最優經驗。
本研究以功能性磁振造影測量腦區以及心流體驗量表(Engeser, 2008)測量心流的流暢度與沈浸度。不同於以往設計腦區功能性區位的討論方式,本研究加上神經網路的方式進行討論。主要分為五組腦區來討論景觀設計:空間辨識、語意傳遞、視覺辨識路徑、注意力神經網路以及核心腦區。
空間辨識包含兩側海馬旁腦迴,主要與空間記憶有關。語意傳遞則是以左下額葉腦迴的布洛卡區(Broca’s area)以及左顳葉顳上迴的韋尼克區(Wernicke’s area),兩個腦區中語意辨識及語意理解所延伸的訊息傳遞作為解釋。視覺辨識路徑則是走腹側視覺辨識路徑,功能為辨識與鑑定物體細節,以左枕葉上溝、左顳葉上溝與右中顳腦迴為結果腦區。注意力神經網路以腹側注意力網路,功能包含注意力轉換以及問題定位後在搜尋及發現新想法,以左內額側腦迴、左下額葉腦迴以及左顳葉顳上迴。核心腦區為右豆狀核,包含殼核以及蒼白球,與GABA神經激素、調節動作與各式的學習有關。在設計腦區與心流體驗的關係,發現核心腦區右豆狀核的活化強度與心流體驗流暢度呈現正相關。
本研究以神經網路的方式來討論景觀設計的腦區結果,並以腦區結果推論設計所帶來的愉悅感與右豆狀核相關。
Creativity is the ability to produce work that is both novel and appropriate (Sternberg, 1999). Flow is defined as the experience of merging action and awareness. A person in flow does not operate with a dualistic perspective: one is very aware of one’s actions, but not of the awareness itself (Csikszentmihalyi, 2014). This paper focused on two parts of flow, mainly fluency of performance and absorption by activity.
Landscape design is one of process bound with creativity. The process includes targeting the problem, preparation, incubation, illumination and verification. What happens in the brain when people perform (landscape) design? Does the creative process make people feel happy?
Our research focused on brain activation in landscape design and the mechanisms in which they work. We also tried to explain brain activation with neural network systems by categorizing the brain into five active groups: spatial and memory (bilateral parahippocampal gyrus), conveyance of semantic information (left inferior frontal gyrus and superior temporal gyrus), visual neural network (ventral visual network), attention neural network (ventral attention network) and basal nucleus (right lentiform nucleus). We found a correlation between active brain groups and fluency of performance in the right lentiform nucleus.
The research attempts to show a new way of explaining the neural correlations with landscape design. Furthermore, the result can also inference flow in landscape design related to the right lentiform nucleus which the main function is movement regulation and various types of learning related to neurotransmitters (e.g. GABA).
誌謝 I
摘要 III
Abstract IV
目錄 V
圖目錄 VII
表目錄 IX
第一章 緒論 1
第一節 研究緣起及背景說明 1
第二節 研究問題與目的 3
一、 研究問題 3
二、 研究目的 3
第二章 文獻回顧 4
第一節 景觀設計與創造力 4
一、 創造力理論 4
二、 創造力過程與設計表現 6
三、 創造力與腦區 6
四、 小結 11
第二節 心流體驗 12
一、 心流體驗理論 12
二、 心流體驗的特徵 13
三、 心流體驗過程 14
四、 心流與創造力 15
五、 小結 17
第三節 心流體驗的生理測量 18
一、 心跳變化率 18
二、 瞳孔大小與心流 19
三、 心流體驗與腦 19
第三章 研究方法與程序 21
第一節 研究方法 22
一、 研究架構與研究假設 22
二、 實驗概念與變項操作化定義 23
第二節 研究流程與分析方法 28
一、 正式實驗流程 28
二、 fMRI實驗設計 31
三、 研究工具與研究地點 35
第三節 研究受測者選擇標準和危害及利益說明 38
一、 受測者選擇 38
二、 可能產生之危害及利益說明 39
第四節 資料之蒐集處理評估及統計分析方法 40
一、 前製作業分析 42
二、 腦區模組設定(Localizing Brain Activity) 46
三、 腦區定位與成像 47
四、 研究假設驗證方法 47
第四章 資料分析結果與討論 51
第一節 樣本特性分析 51
第二節 實驗結果 51
一、 合理性測驗(Sanity check) 51
二、 景觀設計之腦區 54
三、 景觀設計腦區與心流體驗 71
第五章 結論與建議 75
第一節 結論 75
第二節 後續研究建議 79
參考文獻 81
1.趙一平。fMRI教育講習課程II。取自https://sites.google.com/site/catpin/fmri
2.蔡宇平(2015)。以功能性磁振造影分析景觀設計創造力之腦區反應。臺灣大學園藝暨景觀學系學位論文。1-60。
3.Aboitiz, F., Ossandón, T., Zamorano, F., Palma, B., & Carrasco, X. (2014). Irrelevant stimulus processing in ADHD: catecholamine dynamics and attentional networks. Frontiers in psychology, 5, 183.
4.Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual review of neuroscience, 9(1), 357-381.
5.Aminoff, E. M., Kveraga, K., & Bar, M. (2013). The role of the parahippocampal cortex in cognition. Trends in cognitive sciences, 17(8), 379-390.
6.Anthony J. B. (2015 September). Homunculus: Somatosensory and Somatomotor Cortex. Retrieved from: https://www.ebmconsult.com/articles/homunculus-sensory-motor-cortex (2017 May)
7.Arden, R., Chavez, R. S., Grazioplene, R., & Jung, R. E. (2010). Neuroimaging creativity: a psychometric view. Behavioural brain research, 214(2), 143-156.
8.Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in cognitive sciences, 20(2), 87-95.
9.Bhattacharya, J., & Petsche, H. (2005). Drawing on mind''s canvas: Differences in cortical integration patterns between artists and non‐artists. Human brain mapping, 26(1), 1-14.
10.Brosschot, J. F., & Thayer, J. F. (2003). Heart rate response is longer after negative emotions than after positive emotions. International journal of psychophysiology, 50(3), 181-187.
11.Buschman, T. J., & Miller, E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. science, 315(5820), 1860-1862.
12.Chavez, R. A., Graff-Guerrero, A., Garcia-Reyna, J. C., Vaugier, V., & Cruz-Fuentes, C. (2004). Neurobiology of creativity: preliminary results from a brain activation study. Salud Mental, 27(3), 38-46.
13.Chen, H., Wigand, R. T., & Nilan, M. (2000). Exploring web users'' optimal flow experiences. Information Technology & People, 13(4), 263-281.
14.Chen, H., Wigand, R., & Nilan, M. S. (1999). Optimal experience of web activities. Computers in Human Behavior, 15(5), 585-608.
15.ChuDuc, H., NguyenPhan, K., & NguyenViet, D. (2013). A review of heart rate variability and its applications. APCBEE Procedia, 7, 80-85.
16.Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature reviews neuroscience, 3(3), 201-215.
17.Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: from environment to theory of mind. Neuron, 58(3), 306-324.
18.Cotterill, R. M. (2001). Cooperation of the basal ganglia, cerebellum, sensory cerebrum and hippocampus: possible implications for cognition, consciousness, intelligence and creativity. Progress in Neurobiology, 64(1), 1-33.
19.Csikszentmihalyi, M. (1996). Flow and the psychology of discovery and invention. New Yprk: Harper Collins.
20.Csikszentmihalyi, M. (1997). Finding flow. New York: Basic.
21.Csikszentmihalyi, M. (1997). Flow and the Psychology of Discovery and Invention. HarperPerennial, New York, 39.
22.Csikszentmihalyi, M. (2014). Toward a psychology of optimal experience (pp. 209-226). Springer Netherlands.
23.Csikszentmihalyi, M., & Robinson, R. E. (1990). The art of seeing: An interpretation of the aesthetic encounter. Getty Publications.
24.Dawoud, H. M., Al-Samarraie, H., & Zaqout, F. (2015). The role of flow experience and CAD tools in facilitating creative behaviours for architecture design students. International Journal of Technology and Design Education, 25(4), 541-561.
25.De Manzano, Ö., Theorell, T., Harmat, L., & Ullén, F. (2010). The psychophysiology of flow during piano playing. Emotion, 10(3), 301.
26.Dietrich, A. (2004). The cognitive neuroscience of creativity. Psychonomic bulletin & review, 11(6), 1011-1026.
27.Dietrich, A., & Kanso, R. (2010). A Review of EEG, ERP, and Neuroimaging Studies of Creativity and Insight. Psychological Bulletin, 136(5), 822-848.

28.Do, E. Y. L., & Gross, M. D. (2001). Thinking with diagrams in architectural design. In Thinking with diagrams (pp. 135-149). Springer Netherlands.
29.Ellamil, M., Dobson, C., Beeman, M., & Christoff, K. (2012). Evaluative and generative modes of thought during the creative process. Neuroimage, 59(2), 1783-1794.
30.Engeser, S. (2012). Advances in flow research. New York, NY: Springer.
31.Engeser, S., & Rheinberg, F. (2008). Flow, performance and moderators of challenge-skill balance. Motivation and Emotion, 32(3), 158-172.
32.Fadiga, L., Craighero, L., & D’Ausilio, A. (2009). Broca''s area in language, action, and music. Annals of the New York Academy of Sciences, 1169(1), 448-458.
33.Fink, A., Grabner, R. H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., ... & Neubauer, A. C. (2009). The creative brain: Investigation of brain activity during creative problem solving by means of EEG and fMRI. Human brain mapping, 30(3), 734-748.
34.Fink, A., Koschutnig, K., Benedek, M., Reishofer, G., Ischebeck, A., Weiss, E. M., & Ebner, F. (2012). Stimulating creativity via the exposure to other people''s ideas. Human brain mapping, 33(11), 2603-2610.
35.Fujimura, T., & Okanoya, K. (2012). Heart rate variability predicts emotional flexibility in response to positive stimuli. Psychology, 3(8), 578.
36.Gao, Y., & Zhang, H. (2014). Unconscious processing modulates creative problem solving: Evidence from an electrophysiological study. Consciousness and cognition, 26, 64-73.
37.Gaser, C., & Schlaug, G. (2003). Brain structures differ between musicians and non-musicians. Journal of Neuroscience, 23(27), 9240-9245.
38.Goel, V. (2014). Creative brains: designing in the real world. Frontiers in human neuroscience, 8, 241.
39.Guilford, J. P. (1967). Creativity: Yesterday, today and tomorrow. The Journal of Creative Behavior, 1(1), 3-14.
40.Guilford, J. P. (1977). Way Behond the IQ: Guide to Improving Intelligence and Creativity. Creative Education Foundation.
41.Guilford, J.P. (1950) Creativity, American Psychologist, Volume 5, Issue 9, 444–454.
42.Hadamard, J. (1945). An Eassay On The Psychology Of Invention In The Mathematical Field.
43.Ho, C. H., & Lu, Y. N. (2014). Can pupil size be measured to assess design products?. International Journal of Industrial Ergonomics, 44(3), 436-441.
44.Jennett, C., Cox, A. L., Cairns, P., Dhoparee, S., Epps, A., Tijs, T., & Walton, A. (2008). Measuring and defining the experience of immersion in games. International journal of human-computer studies, 66(9), 641-661.
45.Jing, L. (2004). NEURAL CORRELATES OF INSIGHT [J]. Acta Psychologica Sinica, 2, 014.
46.Jung, R. E., Grazioplene, R., Caprihan, A., Chavez, R. S., & Haier, R. J. (2010). White matter integrity, creativity, and psychopathology: disentangling constructs with diffusion tensor imaging. PloS one, 5(3), e9818.
47.Keller, J., Bless, H., Blomann, F., & Kleinböhl, D. (2011). Physiological aspects of flow experiences: Skills-demand-compatibility effects on heart rate variability and salivary cortisol. Journal of Experimental Social Psychology, 47(4), 849-852.
48.Kerestes R, Ladouceur CD, Meda S et al. (January 2012). "Abnormal prefrontal activity subserving attentional control of emotion in remitted depressed patients during a working memory task with emotional distracters".Psychological Medicine 42 (1): 29-40.
49.Khanna, A. J. (2014). MRI essentials for the spine specialist. Thieme,.
50.Klasen, M., Weber, R., Kircher, T. T., Mathiak, K. A., & Mathiak, K. (2011). Neural contributions to flow experience during video game playing. Social cognitive and affective neuroscience, nsr021.
51.Kowatari, Y., Lee, S. H., Yamamura, H., Nagamori, Y., Levy, P., Yamane, S., & Yamamoto, M. (2009). Neural networks involved in artistic creativity. Human brain mapping, 30(5), 1678-1690.
52.Kravitz, D. J., Saleem, K. S., Baker, C. I., Ungerleider, L. G., & Mishkin, M. (2013). The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends in cognitive sciences, 17(1), 26-49.
53.Li, M., Lu, S., & Zhong, N. (2016). The Parahippocampal Cortex Mediates Contextual Associative Memory: Evidence from an fMRI Study. BioMed research international, 2016.
54.Lindquist, M. A. (2008). The statistical analysis of fMRI data. Statistical Science, 439-464.
55.Lubart, T. I. (2001). Models of the creative process: Past, present and future. Creativity Research Journal, 13(3-4), 295-308.
56.Martindale, C., & Mines, D. (1975). Creativity and cortical activation during creative, intellectual and EEG feedback tasks. Biological psychology, 3(2), 91-100.
57.Mauri, M., Cipresso, P., Balgera, A., Villamira, M., & Riva, G. (2011). Why is Facebook so successful? Psychophysiological measures describe a core flow state while using Facebook. Cyberpsychology, Behavior, and Social Networking, 14(12), 723-731.
58.Moneta, G. B., & Csikszentmihalyi, M. (1996). The effect of perceived challenges and skills on the quality of subjective experience. Journal of personality, 64(2), 275-310.
59.Nakamura, J., & Csikszentmihalyi, M. (2002). The concept of flow. In: C. R. Snyder, S. J. Lopez (Eds.). Handbook of positive psychology (pp. 89–105). New York: Oxford University Press.
60.Nakamura, J., & Csikszentmihalyi, M. (2014). The concept of flow. In Flow and the foundations of positive psychology (pp. 239-263). Springer Netherlands.
61.Norman, J. (2002). Two visual systems and two theories of perception: An attempt to reconcile the constructivist and ecological approaches. Behavioral and brain sciences, 25(01), 73-96.
62.Peifer, C. (2012). Psychophysiological correlates of flow-experience. InAdvances in flow research (pp. 139-164). Springer New York.
63.Peifer, C., Schulz, A., Schächinger, H., Baumann, N., & Antoni, C. H. (2014). The relation of flow-experience and physiological arousal under stress—Can u shape it?. Journal of Experimental Social Psychology, 53, 62-69.
64.Pessoa, L. (2008). On the relationship between emotion and cognition. Nature reviews neuroscience, 9(2), 148-158.
65.Pinto, Y., van der Leij, A. R., Sligte, I. G., Lamme, V. A., & Scholte, H. S. (2013). Bottom-up and top-down attention are independent. Journal of Vision, 13(3), 16-16.
66.Posner, M. I., Petersen, S. E., Fox, P. T., & Raichle, M. E. (1988). Localization of cognitive operations in the human brain. Science, 240(4859), 1627.
67.Price, C. J., & Friston, K. J. (1997). Cognitive conjunction: a new approach to brain activation experiments. Neuroimage, 5(4), 261-270.
68.Razzouk, R., & Shute, V. (2012). What is design thinking and why is it important?. Review of Educational Research, 82(3), 330-348.
69.Rheinberg, F., Vollmeyer, R., & Engeser, S. (2003). Die erfassung des flow-erlebens. na.
70.Saggar, M., Quintin, E. M., Kienitz, E., Bott, N. T., Sun, Z., Hong, W. C., ... & Hawthorne, G. (2015). Pictionary-based fMRI paradigm to study the neural correlates of spontaneous improvisation and figural creativity. Scientific reports, 5.
71.Shah, C., Erhard, K., Ortheil, H. J., Kaza, E., Kessler, C., & Lotze, M. (2013). Neural correlates of creative writing: an fMRI study. Human brain mapping,34(5), 1088-1101.
72.Sternberg, R. J., & Lubart, T. I. (1999). The concept of creativity: Prospects and paradigms. Handbook of creativity, 1, 3-15.
73.Suwa, M., & Tversky, B. (1997). What do architects and students perceive in their design sketches? A protocol analysis. Design studies, 18(4), 385-403.
74.Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., & Kawashima, R. (2010). Regional gray matter volume of dopaminergic system associate with creativity: evidence from voxel-based morphometry. Neuroimage, 51(2), 578-585.
75.Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., & Kawashima, R. (2010). White matter structures associated with creativity: evidence from diffusion tensor imaging. Neuroimage, 51(1), 11-18.
76.Talati, A., & Hirsch, J. (2005). Functional specialization within the medial frontal gyrus for perceptual go/no-go decisions based on “what,”“when,” and “where” related information: an fMRI study. Journal of cognitive neuroscience, 17(7), 981-993.
77.Tang, Y. Y., Hölzel, B. K., & Posner, M. I. (2015). The neuroscience of mindfulness meditation. Nature Reviews Neuroscience, 16(4), 213-225.
78.Torrance, E. P. (1974). The Torrance tests of creative thinking-TTCT Manual and Scoring Guide: Verbal test A, figural test. Lexington, KY: Ginn.
79.Tozman, T., Magdas, E. S., MacDougall, H. G., & Vollmeyer, R. (2015). Understanding the psychophysiology of flow: A driving simulator experiment to investigate the relationship between flow and heart rate variability. Computers in Human Behavior, 52, 408-418.
80.Vossel, S., Geng, J. J., & Fink, G. R. (2014). Dorsal and ventral attention systems distinct neural circuits but collaborative roles. The Neuroscientist, 20(2), 150-159.
81.Wu, T., Chan, P., & Hallett, M. (2010). Effective connectivity of neural networks in automatic movements in Parkinson''s disease. Neuroimage, 49(3), 2581-2587.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top