(44.192.112.123) 您好!臺灣時間:2021/03/07 17:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉馨
研究生(外文):Sin Ye
論文名稱:紫錐菊之栽培與開花調節
論文名稱(外文):Cultivation and Regulation of Flowering in Echinacea purpurea
指導教授:葉德銘葉德銘引用關係
指導教授(外文):Der-Ming Yeh
口試日期:2017-06-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝暨景觀學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:107
中文關鍵詞:紫錐菊養液氮濃度溫度GA3光週期光積值介質水分含量盆器大小
外文關鍵詞:Echinacea purpureanitrogen concentrationtemperaturegibberlin acid (GA3)hotoperiodaily light integral (DLI)water volumetric contentcontainter size
相關次數:
  • 被引用被引用:0
  • 點閱點閱:113
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
紫錐菊(Echinacea sp.)為多年生草本植物,具有藥用與觀賞價值,以種子繁殖為主,育苗期長,合適的養液氮濃度對紫錐菊穴盤苗生長之影響仍不清楚。於臺灣地區盆花生產約需5-7個月,以溫度、激勃素及光週期調節開花之方法及適合之盆器大小尚待研究。紫錐菊可做為景觀使用,評估是否能適應臺灣夏季多雨淹水的環境為重要的課題。
紫錐菊‘Purple Red’子葉展開後栽培於25/20oC,每週施用含0-28 mM氮(N)之強生氏養液1次,連續施用6週,結果顯示葉片數、葉面積、全株、地上部乾重隨養液N濃度由0提升至20 mM增加,高N處理(>24 mM)使植株產生鹽害徵狀。根數及根活性隨養液N濃度由0增加至16 mM而增加,於24及28 mM N處理則下降,4-12 mM N處理根較長。全株淨光合作用速率於N濃度處理間無顯著差異,光飽和點隨養液N濃度由0增加至28 mM有上升之趨勢,暗呼吸作用速率則隨養液N濃度提升而有下降之趨勢。以20 mM N處理之植體氮、磷、鉀、鈣及鎂濃度分別為34.5、4.6、32.9、16.7及6.5 g·kg-1,在前人之建議值範圍內。
將具3-4片葉之E. purpurea、‘PowWow Wild Berry’、‘Purple Red’及‘White Swan’置於日夜溫15/13、20/15、25/20、30/25、35/30oC之自然光照室,試驗自然日長為12-13.6 h。四參試品種於15/13oC處理之葉片形成慢,溫度上升至30/25oC可加速葉片形成,於高溫35/30及30/25oC植株簇生且莖不伸長,全株乾重亦減少。四參試品種於20/15及15/13oC開花率較高,到莖伸長及開花天數亦較少。35/30oC處理使‘PowWow Wild Berry’與‘White Swan’開花率下降,使E. purpurea與‘Purple Red’則幾乎不開花,‘PowWow Wild Berry’及‘White Swan’之分支數、花朵數及花朵大小隨溫度由15/13oC上升至35/30oC而減少。
於日長12-13.3 h、30/25oC環境下取10-14片葉之紫錐菊‘PowWow Wild Berry’及‘PowWow White’,自頂芽澆灌5 mL之100、200及300 mg·L-1 GA3。結果顯示未施用GA3處理者則簇生,施用GA3處理約8-11天可觀察到莖部伸長而,且可使紫錐菊之分枝數、花朵數及株高增加。
取12-14片葉之紫錐菊‘PowWow Wild Berry’、‘PowWow White’及‘Purple Red’在20/15oC進行1)每日9 h自然日照(ND)、2) 9 h自然日照+ 5 h省電燈泡延長日照(DE),(3) 9 h自然日照+省電燈泡暗期中斷(NB)等3種不同光周處理。結果顯示三參試品種於DE及NB之可見花苞及到花天數較SD短,且在SD處理植株之株高較矮,花朵數較少。
取3-4片葉之紫錐菊‘PowWow White’及‘Purple Red’種植於25/20oC之人工光照室,處理35天期間以高壓鈉燈每日光照12 h,光積值3.2、6.1、9.5及11.7 mol·m-2·d-1,處理36-50天將每日光照延長至14 h,光積值為3.8、7.1、11.1及13.6 mol·m-2·d-1等處理。結果顯示二參試品種以3.8 mol·m-2·d-1處理之葉片形成速率最慢,隨光積值增加葉片形成速率有上升的趨勢。二參試品種之葉片光合作用速率在光強度220 μmol·m-2·s-1最高,於光強度75 μmol·m-2·s-1光合作用速率降低,為非氣孔限制因子;葉片數及乾重隨光積值提高而增加,葉面積、葉柄長、植株寬度隨光積值下降而增加,葉片厚度則隨光積值下降而減少。‘PowWow White’之可見莖伸長及花苞天數於低光積值3.8 mol·m-2·d-1處理最長,到花天數隨光積值增加而減少,花朵乾重隨光值上升而增加。
取5-6片葉之紫錐菊‘Purple Red’定植後分別給予20%、20%/60%、40%及70% 體積含水量(volumetric water content, VWC)處理。在20% VWC乾旱處理生長植株與葉面積減少,在70% VWC淹水處之植株生長嚴重受阻且葉片黃化、萎凋、落葉,存活率降低。以20% VWC及70% VWC處理之葉片光合作用速率較低,為非氣孔限制因子。20% VWC乾旱處理之花朵發育較慢,但有較多花苞,而70% VWC處理則開花率低,總花朵數最少,花朵乾重低。
取3-4片紫錐菊‘Purple Red’分別定植於容積350、500、800及1400 mL的容器處理117天,各處理間葉片數、側芽數、根活性無顯著差異。地上部及地下部乾重以1400 mL處理者最多,根冠比則隨容積增加而下降。栽培於350 mL容器中的植株,花朵發育較慢且花朵數較少,植株亦較矮小。
Purple coneflower (Echinacea spp.) are perennials with medical and ornamental uses. Seed propagation for plug production is time-consuming, white suitable nutrient solution nitrogen (N) concentration during plug production is unclear. Regulation of flowering through temperature, gibberellin application, and photoperiod, and suitable container size is still required for production in subtropical Taiwan conditions. Evaluation coneflower for landscape uses is crucial especially during rainy summer in Taiwan.
Echinacea ‘Purple Red’ seedlings after cotyledon expansion were grown under day/night temperature of 25/20oC, and fertilized weekly with Johnson’s solution containing 0-28 mM N for six weeks. Results showed leaf number, leaf area, whole plant and shoot dry weights increased with increasing N from 0 to 20 mM, but decreased at 24 mM or 28 mM N that caused salt injury. Root number and root activity increased when N increased from 0 to 16 mM, but decreased at 24-28 mM N. Plants treated with 4-12 mM N had longer roots. Whole plant net photosynthesis did not differ between treatments, however, light saturation point increased and dark respiration decreased with increasing N. Nitrogen-deficient plants had the higher plant carbon concentration. Plant nitrogen, phosphorus, calcium, and magnesium concentrations in 20 mM N were 34.5、4.6、32.9、16.7及6.5 g·kg-1 respectively.
Plants of E. purpurea, ‘PowWow Wild Berry’, ‘Purple Red’, and ‘White Swan’ with 3-4 leaves were grown in phytotrons with day/night temperatures of 15/13, 20/15, 25/20, 30/25, and 35/30oC under 12.0-13.6 h natural daylengths. Results showed that leaf formation was slow at 15/13oC, and increased with increasing temperature up to 30/25oC. Plants were rosette with decreased plant dry weights at 35/30 and 30/25oC. Flowering percentage was higher, and time to stem elongation and flowering were earlier at 15/13 and 20/15oC. Flowering percentage decreased with increasing temperatures, and E. purpurea and ‘Purple Red’ did not flower at 35/30oC treatment for 140 days. Branch, flower number, and flower diameter decreased with increased temperature from 15/13 to 35/30oC in ‘PowWow Wild Berry’ and ‘White Swan’.
Plants of ‘PowWow Wild Berry’ and ‘PowWow White’ with 10-14 leaves were dripped with 5 mL of 100, 200, and 300 mg·L-1 GA3 under 30/25oC and 12-13.3 h daylengths. Both cultivars showed stem elongation at 8-11 d after treatments, while plants with out GA3 were rosette. Branch number, flower number and plant height increased with GA3.
Plants of ‘PowWow Wild Berry’, ‘PowWow White’, and ‘Purple Red’ with 12-14 leaves were treated with 9 h natural daylength (ND), ND plus 5 h day extension by fluorescent lamp (DE), and ND plus night break by fluorescent lamp (NB) under 20/15oC. Flowering percentages were higher in plants with DE and NB, and ‘PowWow White’ produced flowers earlier with DE and NB treatments. Plant height and flower number were low with SD treatment.
Plants of ‘PowWow White’ and ‘Purple Red’ with 3-4 leaves were grown in artificial light room with 12 h photoperiod at 25/20oC. By altering distance between light, plants received 3.2, 6.1, 9.5, and 11.7 mol·m-2·d-1 during the first 35 days, and subsequently received 3.8, 7.1, 11.1, 13.6 mol·m-2·d-1 from day 36 to 50 with 14 h photoperiods. Results showed that both cultivars formed leaves slower when grown at 3.8 mol·m-2·d-1, and increased with increasing light integral. Leaf photosynthetic rate in both cultivars was the highest under 220 μmol·m-2·s-1, and the lowest under 75 μmol·m-2·s-1, that resulted in non-stomata limitation.
Leaf number and dry weight increased with increasing light integral. Leaf area, petiole length and plant width increased with decreasing light integral; while leaf thickness decreased wigh decreasing light integral. Days to stem elongation, visible flower bud, and flowering took the longerst time with 3.8 mol·m-2·d-1 in ‘PowWow White’, and decreased wigh increaseing light integral as well as increased flower dry weight.
Plants of ‘Purple Red’ with 5-6 leaves were treated with 20%, 20%/60%, 40%, and 70% volumetric water content (VWC) treatments. Plants under drought (20% VWC) were smaller, while those under waterlogging (70% VWC) grew poorly and exhibited leaf chlorosis, wilting, leaf drop, and low survival percentage. Leaf photosynthetic rates were lower in plant with 20% and 70% VWC treatments, that resulted in limited non-stomata limitation. Plants with 20% VWC flowered slowly but with more flowers, while those with 70%VWC had lower flowering percentage, flower number, and flower dry weight.
Plants of ‘Purple Red’ with 3-4 leaves were planted in container with 350, 500, 800, and 1400 mL volume. Leaf, lateral bud number, and root activity were not significantly different between treatments. Shoot and root dry weights were higher in plants grown with 1400 mL container. Root to shoot ratio decreased with increasing container volume. Plants grown with 350 mL container were shorter, took longer time to flower, and produced fewer flowers.
摘要 i
目錄 vi
表目錄 viii
圖目錄 x
前言 1
前人研究 3
一、紫錐菊外部形態及生長習性 3
二、紫錐菊之分類及利用 3
三、養液氮濃度穴盤苗生長之影響 4
四、溫度對草本花卉生長及發育之影響 5
五、激勃素對草本花卉開花之影響 8
六、光週對紫錐菊開花之影響 8
七、光積值對草本花卉生長及開花之影響 10
八、介質水分含量對生長與開花之影響 12
九、容器大小對生長與開花之影響 14
材料方法 18
試驗一、養液氮濃度對紫錐菊穴盤苗光合作用及生長之影響 18
試驗二、溫度對紫錐菊生長與開花之影響 21
試驗三、激勃素對紫錐菊開花之影響 22
試驗四、日長與光週期對紫錐菊開花之影響 23
試驗五、光積值對紫錐菊生長及開花之影響 24
試驗六、介質含水量對紫錐菊生長及開花之影響 25
試驗七、盆器大小對紫錐菊生長及開花之影響 28
結果 29
試驗一、養液氮濃度對紫錐菊穴盤苗光合作用及生長之影響 29
試驗二、溫度對紫錐菊生長與開花之影響 30
試驗三、激勃素對紫錐菊開花之影響 32
試驗四、日長及光週期對紫錐菊開花之影響 33
試驗五、光積值對紫錐菊生長及開花之影響 34
試驗六、介質含水量對紫錐菊生長及開花之影響 35
試驗七、盆器大小對紫錐菊生長及開花之影響 37
討論 85
參考文獻 97
參考文獻
朱德民 1993 植物與照光逆境. p.237-264 植物與環境逆境. 國立編譯館編. 臺北. 臺灣.
邱奕璇. 2012. 菊花耐淹水指標與水分生理. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北. 臺灣.
洪嘉樺、葉德銘. 2015. 介質體積含水量對夏秋季花壇植物生長與光合作用之影響. 臺灣園藝. 61:263-280.
徐輝妃 1994 洋桔梗苗期生育、溫度與Gibberellic Acid對其生長與開花之影響.國立臺灣大學園藝系碩士論文. 臺北. 臺灣.
張致盛、易美秀. 1996. 遮陰栽培對多花型夏菊生長及切花品質之影響. 臺中區農業改良場研究彙報. 52:1-11.
陳錦木. 2007. 盆徑及摘心對盆菊生育之影響. 桃園區農業改良場研究彙報. 62: 30-36.
陳慈華. 2013. 溫度與光積值對洋桔梗生長與開花之影響模式. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北. 臺灣.
陳裕星、張隆仁、秦昊宸. 2012. 認識紫錐花. 臺中區農業專訊. 78:4-6.
黃群哲、魏子耀、葉德銘. 2015. 養液氮濃度對洋桔梗穴盤苗生長及後續開花之影響. 臺灣園藝. 61:177-196.
葉德銘、洪惠娟、林和鋒、許謙信. 2002. 臺灣中部地區春夏季定植菊花之開花習性. 臺中區農業改良場研究彙報. 77:65-75.
蔡宜峰、洪惠娟、楊旻憲、王茗慧. 2012. 有機紫錐花栽培技術. 臺中區農業專訊. 78:11-15.
Adams, S.R., S. Pearson, and P. Hadley. 1997. The effects of temperature, photoperiod and light integral on the time to flowering of pansy cv. Universal Violet (Viola × wittrockiana Gams.). Ann. Bot. 80:107-112.
Adams, S.R., S. Pearson, and P. Hadley. 1998. The effect of temperature on inflorescence initiation and subsequent development in chrysanthemum cv. Snowdon (Chrysanthemum ×morifolium Ramat.). Scientia Hort. 77:59-72.
Aliyu, O.M., O.O. Adeigbe and J. A. Awopetu. 2011. Foliar application of the exogenous plant hormones at pre-blooming stage improves flowering and fruiting in Cashew (Anacardium occidentale L.) J. Crop Sci. Biotech. 14:143-150.
Álvarez, S. and M.J. Sánchez-Blanco. 2013. Changes in growth rate, root morphology and water use efficiency of potted Callistemon citrinus plants in response to different levels of water deficit. Scientia Hort. 156:54-62.
Anyia, A.O. and H. Herzog. 2004. Water-use efficiency, leaf area, and leaf gas exchange of cowpeas under mid-season drought. Europ. J. Agr. 20:327-339.
Atherton, J.G., D.M .Yeh, J. Craigon, and G.A. Tucker. 1998. Leaf initiation and shoot apical diameter in relation to phase transition in cineraria. J. Hort. Sci. Biotechnol. 73:45-51.
Augé, R.M., A.J.W. Stodola, J.L. Moore, W.E. Klingeman, and X.R. Duan. 2003. Comparative dehydration tolerance of foliage of several ornamental crops. Scientia Hort. 98:511-516.
Ault, J.R. 2007. Coneflower Echinacea species, p. 801-824. In: N.O. Anderson. (Ed.). 2006. Flower breeding and genetics: Issues, challenges and opportunities for the 21st century. Springer. Netherlands.
Baghalian, K., Sh. Abdoshah, F. Khalighi-Sigarodi, and F. Paknejad. 2011. Physiological and phytochemical response to drought stress of German chamomile (Matricaria recutita L.). Plant Physiol. Biochem. 49:201-207.
Bernier, G. and J.M. Kinet. 1986. The control of flower initiation and development, p. 293-302. In: M. Bopp (ed.), Plant growth substances 1985. Springer-Verlag, Heidelberg, Germany.
Blanusa, T., E. Vysini, and R.W. Cameron. 2009. Growth and flowering of petunia and impatiens: Effects of competition and reduced water content within a container. HortScience 44:1302-1307.
Bradford, K.J. 1983. Effects of soil flooding on leaf gas exchange of tomato plants. Plant Physiol. 73:475-479.
Brian, P. W. 1958. Role of gibberellin-like hormones in regulation of plant growth and flowering. Nature 181:1122-1123.
Brooks, A. and G.D. Farquhar. 1985. Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Estimates from gas-exchange measurements on spinach. Planta 165:397-406.
Burnett, S.E., and M.W. van Iersel. 2008. Morphology and irrigation efficiency of Gaura lindheimeri grown with capacitance sensor-controlled irrigation. HortScience 43:1555-1560.
Carmi, A. and B. Heuer, 1981. The role of roots in control of bean shoot growth. Ann. Bot. 48:519-527.
Cameron, A.C., S.R. Padhye, and C.M. Whitman 2007. The control of flowering in herbaceous perennials. Acta Hort. 755:113-119.
Chaves, M.M., J.S. Pereira, J. Maroco, M.L. Rodrigues, C.P.P. Ricardo, M.L. Osório, I. Carvalho, T. Faria, and C. Pinheiro. 2002. How plants cope with water stress in the field. photosynthesis and growth. Ann. Bot. 89:907-916.
Chyliński, W.K., A.J. Łukaszewska, and K. Kutnik. 2007. Drought response of two bedding plants. Acta. Physiol. Plant 29:399-406.
Di Benedetto, A.H. and R. Klasman, 2004. The effect of plug cell volume on the post-transplant growth for Impatiens walleriana pot plant. Europ. J. Hort. Sci. 82-86.
De Jong, J. 1989. The flowering of Chrysanthemum moriflorium seedlings and cuttings in relation to seasonal fluctuation in light. Scientia Hort. 41:117-124.
Dinar, M. and J. Rudich. 1985. Effect of heat stress on assimilate partitioning in tomato. Ann. Bot. (Lond.) 56:239-248.
Du Preez, D. and G. Bate. 1989. A simple method for the quantitative recovery of nitrate-N during Kjeldahl analysis of dry soil and plant samples. Commun. Soil Sci. Plant Anal. 20:345-357.
Dufault, R.J. and L. Waters, Jr. 1985. Container size influences broccoli and cauliflower transplant growth but not yield. HortScience 20:682-684.
Epstein, E. and A. Bloom. 2005. Mineral nutrition of plants: Principles and perspectives Sinauer Sunderland, MA., U.S.
Evan, J.R. 1989. Photosynthesis and nitrogen relationship in leaf of C3 plants, Oecologia 79:9-19
Fariman, Z.K., M. Azizi, and S. Noori. 2011. Seed germination and dormancy breaking techniques for Echinacea purpurea L. J. Biol. Environ. Sci. 5:7-10.
Feghahati, S.J. and R.N. Reese. 1994. Ethylene-, light-, and prechill-enhanced germination of Echinacea angustifolia seeds. J. Amer. Soc. for Hort. Sci. 119:853-858.
Finical, L., E.S. Runkle, R.D. Heins, A. Cameron, and W. Carlson. 1998. Forcing perennials crop by crop. Species: Echinacea purpurea ‘Bravado’. Greenhouse Grower 16:49-52.
Harkess, R.L. and R.E. Lyons. 1994. Gibberellin- and cytokinin-induced growth and flowering responses in Rudbeckia hirta L. HortScience 29:141-142.
Hsiao, T.C. 1973. Plant responses to water stress. Annu. Rev. Plant Physiol. 24:519-570.
Haver, D. and U. Schuch, 2001. Influence of root restriction and ethylene exposure on apical dominance of petunia (Petunia ×hybrida Hort. Vilm.-Andr.). Plant Growth Regulat. 35:187-196.
Heide, O.M. 2004. Dual induction rather than intermediate daylength response of flowering in Echinacea purpurea. Physiologia Plant. 120:298-302.
Ismail, M.R. and K.M. Noor. 1996. Growth and physiological processes of young starfruit (Averrhoa carambola L.) plants under soil flooding. Scientia Hort. 65:229-238.
Jackson, M.B. 1990. Communication between the roots and shoots of flooded plants. Monograph-Brit. Soc. Plant Growth Regulat. 21:115-133.
Kang, J.G. and M.W. van Iersel. 2004. Nutrient solution concentration affects shoot: root ratio, leaf area ratio, and growth of subirrigated salvia (Salvia splendens). HortScience 39:49-54.
Karlsson, M.G., R.D. Heins, J.E. Erwin, R.D. Berghage, W.H. Carlson, and J.A. Biernbaum. 1989. Irradiance and temperature effects on time of development and flower size in chrysanthemum. Scientia Hort. 39:257-267.
King, R.W. and O.M. Heide. 2009. Seasonal flowering and evolution: the heritage from Charles Darwin. Functional Plant Biol. 36:1027-1036.
Klamkowski, K. and W. Treder. 2008. Response to drought stress of three strawberry cultivars grown under greenhouse conditions. J. Fruit Orna. Plant Res. 16:179-188.
Kramer, P.J. 1951. Causes of injury to plants resulting from flooding of the soil. Plant Physiol. 26:722-736.
Ku, S.B. and G.E. Edwards. 1977. Oxygen inhibition of photosynthesis. 1. Temperature dependence and relation to O2/CO2 solubility ratio. Plant Physiol. 59:986-990.
Latimer, J.G. 1991. Container size and shape influence growth and landscape performance of marigold seedlings. HortScience 26:124-126.
Lang, A. 1957. The effect of gibberellin upon flower formation. Proc. Natl. Acad. Sci. 43:709-717.
Li, T.S.C. 1998. Echinacea: cultivation and medicinal value. HortTechnology 8: 123-129.
Liao, C.T. and C.H. Lin. 2001. Physiological adaptation of crop plants to flooding stress. Proc. Natl. Sci. Council, R.O.C. 25:148-157.
Mak, A.T. and D.M. Yeh. 2001. Nitrogen nutrition of Spathiphyllum ''Sensation'' grown in Sphagnum peat-and coir-based media with two irrigation methods. HortScience 36:645-649.
McComb, A. J. 1967. The control by gibberellic acid of stem elongation and flowering in biennial plants of Centaurium minus Moench. Planta (Berl.) 76:242-251.
McKeown, K.A. 1999. A review of the taxonomy of the genus Echinacea. Perspectives on new crops and new uses. ASHS Press. 482-489.
Mengel, K. and E.A. Kirkby. 2001. Principles of plant nutrition. 5th ed. Kluwer Academic Pubblishers, MA., USA.
Mills, H.A. 1996. Plant Analysis Handbook II: A practical preparation, Analysis, and Interpretation Guide. MicroMacro Publishing, Athens, U.S.A.
Moccaldi, L.A. and E.S. Runkle. 2007. Modeling the effects of temperature and photosynthetic daily light integral on growth and flowering of Salvia splendens and Tagetes patula. J. Amer. Soc. Hort. Sci.132:83-288.
Mortensen, L.M. and R. Moe. 1995. Effects of temperature, carbon dioxide concentration, day length and photon flux density on growth, morphogenesis and flowering of miniature roses. Acta Hort. 378:63–70.
Nezamia, A., H.R. Khazaeia, Z. Boroumand Rezazadehb, A. Hosseinic. 2008. Effects of drought stress and defoliation on sunflower (Helianthus annuus) in controlled conditions. Desert 12:99-104.
Nau, J. 1996. Echinacea purpurea, p 208-210. In: J. Nau. (ed.). Ball perennial manual: propagation and production. Chicago Review Press. U.S.A.
Nemali, K.S. and M.W. van Iersel. 2004. Light effects on wax begonia: Photosynthesis, growth respiration, maintenance respiration, and carbon use efficiency. J. Amer. Soc. Hort. Sci. 129:416-424.
Nezami, A., H.R. Khazaei, Z. Boroumand Rezazadeh, and A. Hosseini. 2008. Effects of drought stress and defoliation on sunflower (Helianthus annuus) in controlled conditions. Desert 12:99-104.
NeSmith, D.S. and J.R. Duval. 1998. The effect of container size. HortTechnology 8: 495-498.
Niu, G., R.D. Heins, A.C .Cameron, and W.H. Carlson. 2000. Day and night temperatures, daily light integral, and CO2 enrichment affect growth and flower development of pansy (Viola ×wittrockiana). J. Amer. Soc. Hort. Sci. 125:436-441.
Niu, G., R.D. Heins, A.C .Cameron, and W.H. Carlson. 2001. Day and night temperatures, daily light integral, and CO2 enrichment affect growth and flower development of Campanula carpatica ‘Blue Clips’. Scientia Hort. 87:93-105.
Niu, G., D.S. Rodriguez, and Y.T. Wang, 2006. Impact of drought and temperature on growth and leaf gas exchange of six bedding plant species under greenhouse conditions. HortScience 41:1408-1411.
Oh, W., I.H. Cheon, K.S. Kim, and E.S. Runkle. 2009. Photosynthetic daily light integral influences flowering time and crop characteristics of Cyclamen persicum. HortScience 44:341-344.
Ohkawa, K., A. Kano, K. Kanematsu, and M. Korenaga. 1991. Effects of air temperature and time on rosette formation in seedlings of Eustoma grandiflorum (Raf.) Shinn. Scientia Hort. 48:171-176.
PanAmerican Seed. 2015. PanAmerican Seed 2015 catalogue. West Chicago, IL, U.S.A.
Park, B.H., N. Oliveira, and S. Pearson. 1998. Temperature affects growth and flowering of the balloon flower [Platycodon grandiflorus (Jacq.) A. DC. cv. Astra Blue]. HortScience 33:233-236.
Peterson T.A., J.D. Cohen, Buta J., and D.T. Krizek 1991. Influence of root restriction on tomato: Changes in leaf cell expansion, abscisic acid and indole-3-acetic acid. Plant Physiol. 96:78.
Peterson T.A., M.D Reinsel., and D.T. Krizek. 1991a. Tomato (Lycopersicon esculentum Mill., cv. ‘Better Bush’) plant response to root restriction. 1. Alteration of plant morphology. J. Expt. Bot. 42:1233-1240.
Peterson T.A., M.D. Reinsel, and D.T. Krizek. 1991b. Tomato (Lycopersicon esculentum Mill., cv. ‘Better Bush’) plant response to root restriction. 2. Root respiration and ethylene generation. J. Expt. Bot. 42:1241-1249.
Pien, H., R. Lemeur, and M.C. Labeke. 2000. Influence of PAR flux and temperature on the flower bud abortion of rose (Rosa hybrida ‘Frisco’) and the carbon balance of the shoot. Acta Hort. 515:119-127.
Pietsch, G.M., W.H. Carlson, R.D .Heins, and J.E. Faust. 1995. The effect of day and night temperature and irradiance on development of Catharanthus roseus (L.) ‘Grape Cooler''. J. Amer. Soc. Hort. Sci. 120:877-881.
Pramuk, L.A. and E.S. Runkle. 2005a. Modeling growth and development of Celosia and Impatiens in response to temperature and photosynthetic daily light integral. J. Amer. Soc. Hort. Sci. 130:813-818.
Pramuk, L.A. and E.S. Runkle. 2005b. Photosynthetic daily light integral during the seedling stage influences subsequent growth and flowering of Celosia, Impatiens, Salvia, Tagetes, and Viola. HortScience 40:1099-1099.
Rodrigues, M.L., C.M.A. Pacheco, and M.M. Chaves. 1995. Soil-plant water relations, root distribution and biomass partitioning in Lupinus albus L. under drought conditions. J. Expt. Bot. 46:947-956.
Romero, F.R., K. Delate, and D.J. Hannapel. 2005. The effect of seed source, light during germination, and cold-moist stratification on seed germination in three species of Echinacea for organic production. HortScience 40:1751-1754.
Runkle, E.S., R.D. Heins, A.C. Cameron, and W.H. Carlson. 1998. Flowering of herbaceous perennials under various night interruption and cyclic lighting treatments. HortScience 33:672-677.
Runkle, E.S., R.D. Heins, A.C. Cameron, and W.H. Carlson. 2001. Photocontrol of flowering and stem extension of the intermediate‐day plant Echinacea purpurea. Physiologia Plant. 112:433-441.
Samfield, D.M., J.M. Zajicek, and B.G. Cobb. 1990. Germination of Coreopsis lanceolata and Echinacea purpurea seeds following priming and storage. HortScience 25:1605-1606.
Sánchez-Rodríguez, E., M. Rubio-Wilhelmi, L.M. Cervilla, B. Blasco, J.J. Rios, R. Leyva, L. Romero, and J.M. Ruiz. 2010. Study of the ionome and uptake fluxes in cherry tomato plants under moderate water stress conditions. Plant Soil 335:339-347.
Scoggins, H.L., D.A. Bailey, and P.V. Nelson. 2002. Efficacy of the press extraction method for bedding plant plug nutrient monitoring. HortScience 37:108-112.
Shi, K., X.T .Ding, D.K. Dong, Y.H. Zhou, and J.Q. Yu. 2008. Root restriction-induced limitation to photosynthesis in tomato (Lycopersicon esculentum Mill.) leaves. Scientia Hort. 117:197-202.
Smethurst, C.F. and S. Shabala. 2003. Screening methods for waterlogging tolerance in lucerne: Comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll content. Funct. Plant Biol. 30:335-343.
Thomas, T.H. 1993. Effects of root restriction and growth regulator treatments on the growth of carrot (Daucus carota L.) seedlings. Plant Growth Regulat. 13:95-101.
Thomas, B. 2006. Light signals and flowering. J. Expt. Bot. 57:3387-3393.
Trudgill, D.L., A. Honek, D. Li, and N.M. van Straalen. 2005. Thermal time-concepts and utility. Ann. Appl. Biol. 146:1-14.
Ueda, A., M. Kanechi, Y. Uno, and N. Inagaki. 2003. Photosynthetic limitations of a halophyte sea aster (Aster tripolium L) under water stress and NaCl stress. J. Plant Res. 116:65-70.
Vaid, T.M. and E.S. Runkle, 2013. Developing flowering rate models in response to mean temperature for common annual ornamental crops. Scientia Hort. 161:15-23.
Vaid, T.M., Runkle, E.S., and Frantz, J.M. 2014. Mean daily temperature regulates plant quality attributes of annual ornamental plants. HortScience, 49:574-580.
van Iersel, M. 1997. Root restriction effects on growth and development of salvia (Salvia splendens). HortScience 32:1186-1190.
van Iersel, M.W., R.B. Beverly, P.A. Thomas, J.G. Latimer, and H.A. Mills. 1998a. Fertilizer effects on the growth of impatiens, petunia, salvia, and vinca plug seedlings. HortScience 33:678-682.
van Iersel, M.W., R.B. Beverly, P.A. Thomas, J.G. Latimer, and H.A. Mills. 1998b. Nutrition affects pre-and posttransplant growth of impatiens and petunia plugs. HortScience 3:1014-1018.
van Iersel, M.W., S. Dove, J.G. Kang, and S.E. Burnett. 2010. Growth and water use of petunia as affected by substrate water content and daily light integral. HortScience 45:277-282.
Visser, E., L. Voesenek, B. Vartapetian, and M. Jackson. 2003. Flooding and plant growth. Ann. Bot. 91:107-109.
Webb, J.A. and R. Fletcher. 1996. Paclobutrazol protects wheat seedlings from injury due to waterlogging. Plant Growth Regulat. 18:201-206.
Whitman, C. and E.S. Runkle. 2011. Flowering of newly introduced herbaceous perennial ornamentals in response to photoperiod and low-temperature treatments. VII International Symposium on New Floricultural Crops 1000:353-360.
Woltz, S.S. 1969. Effects of accumlation of excess photosynthate in chrysanthemum leaves. Fla. Sta. Hort. Soc. 81:208-211.
Xu, Z., G. Zhou, and H. Shimizu. 2010. Plant responses to drought and rewatering. Plant Signaling Behavior 5:649-654.
Yeh, D.M., J.G. Atherton, and J. Craigon. 1997. Manipulation of flowering in cineraria. III. Cardinal temperatures and thermal times for vernalization. J. Hort. Sci. 72: 379-387.
Yeh, D.M., J.G. Atherton, and J. Craigon. 1999. A thermal time model of post‐initiation flower development in the shade plant, cineraria. Ann. Appl. Biol. 134: 335-340.
Yuan, M., W.H. Carlson, R.D. Heins, and A.C. Cameron. 1998. Effect of forcing temperature on time to flower of Coreopsis grandiflora, Gaillardia ×grandiflora, Leucanthemum ×superbum, and Rudbeckia fulgida. HortScience 33:663-667.
Zeevaart, J. A. D. 1968. Vernalization and gibberellins in Lunaria annua L. Amer. J. Bot. 55:1357-1370.
Zhang, M.Q., G.J. Li, and R.K. Chen. 2001. Photosynthesis characteristics in eleven cultivars of sugarcane and their responses to water stress during the elongation stage. Proc. Intl. Soc. Sugar Cane Technol. 24:642-643.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔