(3.215.180.226) 您好!臺灣時間:2021/03/09 02:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:卓吟樺
研究生(外文):Yin-Hua Cho
論文名稱:都市道路組成與行人熱舒適關係之研究
論文名稱(外文):The study of the relationship between urban road composition and pedestrian thermal comfort
指導教授:林寶秀林寶秀引用關係
口試日期:2017-06-10
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝暨景觀學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:115
中文關鍵詞:生理等效溫度ENVI-met道路走向植栽綠帶葉面積指數
外文關鍵詞:Physiological Equivalent TemperatureENVI-metroad orientationgreen beltLeaf Area Index
相關次數:
  • 被引用被引用:2
  • 點閱點閱:226
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
臺灣自1999年起推行「人本交通」的概念,期望能在都市中提供舒適的步行環境。但經過重新規劃設計後的道路是否真的能成為一個舒適的人本交通環境,則少有相關的研究討論。本研究的目的為探討不同的道路組成對行人的人體熱舒適之影響,量化不同道路組成下的行人熱舒適度,以供未來道路規劃設計之參考。
道路的微氣候會受到道路組成因子的影響,如道路走向、道路高寬比、車道數量、植栽綠帶數量、植栽種類等。本研究調查了臺北市區內所有40公尺的主要道路並歸納成10種道路組成類型做為方案發展參考,使用ENVI-met微氣候模擬軟體為研究工具,並選擇道路組成類型為類型一的一個路段為實測地點進行實測,驗證氣溫、平均輻射溫度、生理等效溫度等資料。經驗證確定為可信任的模型後,以驗證地點的模型修正後做為基礎方案模型,搭配不同道路走向、綠帶數量及植栽種類組合成12種道路組成方案,計算不同方案之熱舒適度。
研究結果發現道路走向、道路植栽綠帶數量、植栽種類皆會影響行人的熱舒適。其中道路走向對熱舒適的影響最大,在所有的道路類型中,南-北走向的道路皆比東-西走向的道路舒適。而在同樣走向的道路中,植栽綠帶道路組成也會影響熱舒適度。植栽綠帶數量越多的類型可提供較多遮蔭,其生理等效溫度(PET)比植栽綠帶較少的類型低。此外,植栽種類也會影響行人熱舒適,葉面積指數(LAI)較高的植栽可阻擋較多輻射,因此在相同走向及相同綠帶數量的情況下會比使用低LAI的植栽者舒適。
The concept of Humanity-Oriented Transportation had been applied in road design and construction in Taipei city since 1999. By manipulating the composition of a road, an accessible, wider, and more vegetation sidewalk can be created. Since then, some roads were remodeled to provide a more comfortable and preferable walking experience for pedestrians. However, there are a few studies assessing the benefits of the Humanity-Oriented Transportation design. The purpose of this study was to investigate the effect of road composition on pedestrian thermal comfort.
According to previous studies, the microclimate of a road was influenced by road compositions such as road orientation, aspect ratio, number of lanes, number of planting strips and tree species. This study surveyed all 40 m wide roads in Taipei city and concluded 10 types of road compositions. The ENVI-met microclimate simulation software was used to calculate PET for each scenario. The verification was done by comparing the measurement values with simulated values, including air temperature, mean radiant temperature, and PET. The site model we chose to validate was further varied by varying road orientation, greenbelts and LAI of trees to create 12 road composition scenarios.
The study results showed that road orientation had a significant effect on the thermal comfort of a road. Among the 12 scenarios, the thermal comfort of N-S roads was much more comfortable than E-W roads. Road type with greater vegetation performed a better thermal comfort than other road composition types, while road orientation was fixed. In addition, roads planted with high LAI trees revealed a better thermal comfort than roads planted with low LAI trees.
第一章 緒論 1
第一節 研究動機 1
第二節 研究目的 2
第三節 研究步驟與流程 3
第二章 文獻回顧 5
第一節 人體熱舒適 5
一、 熱舒適之定義 5
二、 熱舒適度評估方法 6
第二節 都市道路組成 11
一、 都市道路 11
二、 道路組成因子 12
第三節 道路微氣候影響因子 14
一、 道路走向 14
二、 道路高寬比 15
三、 天空可視率 15
四、 植栽與綠覆率 16
第四節 ENVI-met相關研究與應用 17
一、 ENVI-met軟體介紹 17
二、 ENVI-met軟體應用 23
第三章 研究方法 27
第一節 研究架構與內容 27
一、 研究流程 27
二、 研究假設 28
三、 研究變項定義 29
第二節 臺北市主要道路空間組成類型 30
一、 臺北市道路基礎資料 30
二、 臺北市40公尺寬主要道路內涵類型 32
第三節 ENVI-met模型設定與驗證 37
一、 模型建立 37
二、 模型驗證 39
第四節 都市道路組成模擬方案 49
一、 方案發展過程與原則 49
二、 方案說明 50
第五節 資料處理與分析 59
一、 資料處理 59
二、 研究假設檢定 59
第四章 研究結果 63
第一節 不同方案的模擬結果 63
一、各方案在不同時刻的PET表現 63
二、不同方案間之熱舒適度比較 65
第二節 不同方案對行人熱舒適影響之分析 78
一、各方案在不同時刻的PET降溫效果 78
二、道路走向對PET降溫之影響分析 79
三、道路植栽綠帶數量對PET降溫之影響分析 82
四、植栽LAI高低對PET降溫之影響分析 84
五、道路組成對PET降溫之影響分析 90
六、道路組成對PET降溫影響之分析 92
第三節 研究假設驗證 94
第五章 結論與建議 95
第一節 結論 95
第二節 建議 97
參 考 文 獻 99
附件一、各方案不同時段PET變化圖 103
1.內政部營建署,(2001),市區道路工程規劃及設計規範之研究,臺北:中華民國內政部營建署。
2.內政部營建署,(2003),市區道路人行道設計手冊,臺北:中華民國內政部營建署。
3.臺北市政府,(2010),臺北市既有市區道路景觀及人本環境改善綱要計畫,臺北;臺北市政府。
4.方瀅喬,(2009),都市公園微氣候對使用者熱舒適度影響之研究,碩士論文,臺灣大學園藝學系,臺北。
5.陳恩右,(2004),道路特性與都市局部熱島關係之研究-以臺北市主要道路為例,碩士論文,中國文化大學景觀學系,臺北。
6.黃柔嫚,(1999),臺北都市氣候特徵及其熱舒適度評估-以士林、萬華、古亭、松山為例,碩士論文,臺灣大學園藝學系,臺北。
7.葉佳靈,(2011),都市商業道路之型態研究,碩士論文,成功大學都市計劃學系,臺南。
8.譚安君,(2008),反映都市空間結構的人行空間系統規劃與規範之研究-以鳳山市為例,碩士論文,成功大學都市計劃學系,臺南。
9.Akbari, H., Pomerantz, M., & Taha, H. (2001). Cool surfaces and shade trees to reduceenergy use and improve air quality in urban areas. Solar Energy, 70(3), 295–310.
10.Ali-Toudert, F., & Mayer, H. (2006). Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Building and Environment, 41(2), 94-108.
11.Ali-Toudert, F., & Mayer, H. (2007). Effects of asymmetry, galleries, overhanging façades and vegetation on thermal comfort in urban street canyons. Solar Energy, 81(6), 742-754.
12.ASHRAE. (2004). ASHRAE Standard 55:Thermal Environmental Conditions for Human Occupancy. Atlanta:American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc.
13.Bourbia, F., & Awbi, H. B. (2004). Building cluster and shading in urban canyon for hot dry climate. Renewable Energy, 29(2), 249-262.
14.Brown, R. D. & Terry J. G. (1995). Microclimatic Landscape Design: Creating Thermal Comfort and Energy Efficiency .New York: John Wiley & Sons, Inc.
15.Emmanuel, R., Rosenlund, H., & Johansson, E. (2007). Urban shading—a design option for the tropics? A study in Colombo, Sri Lanka. International Journal of Climatology, 27(14), 1995-2004.
16.Fanger, P. O. (1970).Thermal comfort. Danish Technical Press, Copenhagen.
17.Fröhlich, D., & Matzarakis, A. (2012). Modeling of changes in thermal bioclimate: examples based on urban spaces in Freiburg, Germany. Theoretical and Applied Climatology, 111(3-4), 547-558.
18.Gagge, A. P., Fobelets, A. P., & Berglund, L. G.(1986). A standard predictive index of human response to the thermal environment. ASHRAE Transactions, 92(pt 2B), 709-731.
19.Grimmond, C. S. B., Potter, S. K., Zutter, H. N., & Souch, C. (2001). Rapid methods to estimate sky-view factors applied to urban areas. International Journal of Climatology, 21(7), 903-913.
20.He, X., Miao, S., Shen, S., Li, J., Zhang, B., Zhang, Z., & Chen, X. (2015). Influence of sky view factor on outdoor thermal environment and physiological equivalent temperature. Int J Biometeorol, 59(3), 285-297.
21.Höppe, P. (1999). The physiological equivalent temperature - A universal index for the biometeorological assessment of the thermal environent. Int J Biometeorol, 43(2), 71-75.
22.Huttner, S. (2012). Further development and application of the 3D microclimate simulation ENVI-met. PhD thesis. Johannes Gutenberg- Universität, Mainz.
23.Jefferson, C., Rowe, J., & Brebbia, C. (2001). The Sustainable Street the Environmental: Human and Economic Aspects of Street Design and Management”, Bonston: WIT Press.
24.Jesionek, K.& Bruse, M. (2003). Impacts of vegetation on the microclimate: Modelling standardized building structures with different greening level. ICUC5.
25.Ketterer, C., & Matzarakis, A. (2014). Human-biometeorological assessment of heat stress reduction by replanning measures in Stuttgart, Germany. Landscape and Urban Planning, 122, 78-88.
26.Lee, H., Mayer, H., & Chen, L. (2016). Contribution of trees and grasslands to the mitigation of human heat stress in a residential district of Freiburg, Southwest Germany. Landscape and Urban Planning, 148, 37-50.
27.Lillebye, E. (1996). Architectural and functional relationships in street planning,an history view,Landscape and Urban Planning, 35 , 85-105.
28.Lillebye, E. (2001). The Sustainable Street the Environmental, Human and Economic Aspects of Street Design and Management, Boston: WIT Press.
29.Lin, B.S. & Lin, C.T. (2016). Preliminary study of the influence of the spatial arrangement of urban parks on local temperature reduction. Urban Forestry & Urban Greening, 20, 348-357.
30.Lin, T. P., & Matzarakis, A. (2008). Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int J Biometeorol, 52(4), 281-290.
31.Mayer, H., & Höppe, P. (1987). Thermal comfort of man in different urban environment. Theoretical and Applied Climatology, 38(1), 43-49.
32.Oke, T. R. (1981). Canyon geometry and the nocturnal urban heat island: Comparison of scale model and field observations. J. Climatol., 1, 237–254.
33.Oke, T. R. (1988). Street Design and Urban Canopy Layer Climate. Energy and Building, 11(1-3), 103-113.
34.Qaid, A., & Ossen, D. R. (2015). Effect of asymmetrical street aspect ratios on microclimates in hot, humid regions. Int J Biometeorol, 59(6), 657-677.
35.Shahidan, M. F., Shariff, M. K. M., Jones, P., Salleh, E., & Abdullah, A. M. (2010). A comparison of Mesua ferrea L. and Hura crepitans L. for shade creation and radiation modification in improving thermal comfort. Landscape and Urban Planning, 97(3), 168-181.
36.Sun, C.Y. (2011). A street thermal environment study in summer by the mobile transect technique. Theoretical and Applied Climatology, 106(3-4), 433-442.
37.Taleb, H., & Taleb, D. (2014). Enhancing the thermal comfort on urban level in a desert area: Case study of Dubai, United Arab Emirates. Urban Forestry & Urban Greening, 13(2), 253-260.
38.Taleghani, M., Kleerekoper, L., Tenpierik, M., & van den Dobbelsteen, A. (2015). Outdoor thermal comfort within five different urban forms in the Netherlands. Building and Environment, 83, 65-78.
39.Touchaei, A. G., & Wang, Y. (2015). Characterizing urban heat island in Montreal (Canada)—Effect of urban morphology. Sustainable Cities and Society, 19, 395-402.
40.Watson, I. D. & Johnson, G. T. (1987). Graphical estimation of sky view-factors in urban environments. J. Climatol., 7, 193–197.
41.Willmot, C. J.(1981).On the validation of models, Physical Geography, 2,184–194.
42.Yahia, M. W., & Johansson, E. (2013a). Influence of urban planning regulations on the microclimate in a hot dry climate: The example of Damascus, Syria. Journal of Housing and the Built Environment, 28(1), 51-65.
43.Yahia, M. W., & Johansson, E. (2014). Landscape interventions in improving thermal comfort in the hot dry city of Damascus, Syria—The example of residential spaces with detached buildings. Landscape and Urban Planning,
44.Ye., G., Yang., C., Chen., Y., & Li., Y. (2003). A new approach for measuring predicted mean vote (PMV) and standard effective temperature (SET∗). Building and Environment, 38(1), 33-44.
45.Zeng, Y., & Dong, L. (2015). Thermal human biometeorological conditions and subjective thermal sensation in pedestrian streets in Chengdu, China. Int J Biometeorol, 59(1), 99-108.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔