(3.239.192.241) 您好!臺灣時間:2021/03/02 18:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張雅嵐
研究生(外文):Ya-Lan Chang
論文名稱:壓力環境下Mcm1和Msn2/4調控酵母菌Cip1對細胞週期之抑制
論文名稱(外文):Yeast Cip1 is activated by environmental stress to inhibit Cdk1-G1 cyclins via Mcm1 and Msn2/4
指導教授:鄧述諄
指導教授(外文):Shu-Chun Teng
口試日期:2017-07-21
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:微生物學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:107
中文關鍵詞:細胞週期滲透壓力磷酸化
外文關鍵詞:cell cycleosmotic stressphosphorylationCKICdk1Mcm1Msn2/4p21p53
相關次數:
  • 被引用被引用:0
  • 點閱點閱:70
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在環境變化之下,增生中的細胞延緩細胞週期以防止進一步的損傷積累。酵母菌的Cip1蛋白已知與Cdk1和Cln2具有交互作用;然而Cip1的功能和調控目前還仍有許多的未知。在本篇論文中,Cip1的表現由細胞週期調控因子Mcm1和壓力調控因子Msn2/4所共同調節。過表現Cip1透過抑制G1時期的Cdk1-G1細胞週期蛋白複合物,且在滲透壓壓力刺激下的Cip1蛋白T65、T69和T73磷酸化可以增強Cip1蛋白和Cdk1-G1細胞週期蛋白複合物的相互作用,從而抑制細胞週期。Cip1蛋白的主要抑制目標為Cdk1-Cln3複合物,從而阻止Whi5蛋白的磷酸化並抑制早期G1時期的進行。在滲透壓力下,Cip1的表現引發暫時性的G1時期延遲,而這與另一種被高滲透壓活化的CKI,Sic1蛋白在功能上是冗餘的。這些研究結果顯示,Cip1蛋白的功能類似於哺乳動物p21蛋白,皆作為壓力誘導的CDK抑制物,藉由抑制G1時期來減緩細胞週期,以利細胞應對外在環境的壓力。
Upon environmental changes, proliferating cells delay cell cycle to prevent further damage accumulation. Yeast Cip1 is a Cdk1 and Cln2 associated protein. However, the function and regulation of Cip1 are still poorly understood. Here we report that Cip1 expression is co-regulated by the cell cycle-mediated factor Mcm1 and the stress-mediated factors Msn2/4. Overexpression of Cip1 arrests cell cycle through inhibition of Cdk1-G1 cyclin complexes at G1 stage and the stress-activated protein kinase-dependent Cip1 T65, T69, and T73 phosphorylation may strengthen the Cip1 and Cdk1-G1 cyclin interaction. Cip1 accumulation mainly targets Cdk1-Cln3 complex to prevent Whi5 phosphorylation and inhibit early G1 progression. Under osmotic stress, Cip1 expression triggers transient G1 delay which plays a functionally redundant role with another hyperosmolar activated CKI, Sic1. These findings indicate that Cip1 functions similar to mammalian p21 as a stress induced CDK inhibitor to decelerate cell cycle through G1 cyclins to cope with environmental stresses.
CONTENTS i
口試委員會審定書 vi
致謝 vii
中文摘要 viii
ABSTRACT ix
INTRODUCTION 1
Environmental stress and cellular response 1
Yeast G1 cell cycle regulation 1
Cyclin-dependent kinase inhibitor in yeast 2
The regulation of Mcm1 3
The stress-responsive transcription factors, Msn2/4 4
The new G1 CKI in yeast 4
RESULTS 6
Overexpression of Cip1 induces G1 arrest 6
Cip1 is a CKI of all G1 cyclins 7
CIP1 is expressed by Mcm1 with peak expression at G1 7
CIP1 expression is induced upon stress 9
Stress-driven CIP1 expression depends on Msn2/4 10
Cip1 is phosphorylated under osmotic stress 12
Hog1 phosphorylates Cip1 T65 and T73 under osmotic stress 13
Cip1 contributes to osmostress-induced transitory G1 delay 15
Cip1 phosphorylation may enhance the binding to Cdk1-Clns 18
Cip1 impedes G1 through inhibiting Cdk1-Cln3 activity 18
Cdk1-Cln3 interaction prevents Cip1-Cln3 binding 20
Cip1 localizes to the nucleus upon osmotic stress 20
Human p21 expression stimulates G1 arrest in yeast cells 21
DISCUSSION 22
MATERIALS & METHODS 28
Yeast strains and plasmids 28
RNA preparation and Northern blotting 29
Cell growth media and condition for stress response 30
EMSA 30
RNA purification and quantitative reverse transcription PCR 31
ChIP analysis 31
α-factor/nocodazole trap assay 32
Budding index under osmotic stress 33
Isolation of newborn cells by elutriation 33
Co-immunoprecipitation 33
MS analysis 34
Phosphor-specific antibody preparation 35
Dot blot analysis 36
Western blot analysis 36
In vitro kinase assay 37
Fluorescence microscopy 38
FIGURES AND FIGURE LEGENDS 39
Figure 1. Overexpression of CIP1 causes cell cycle arrest at G1 through inhibition of all Cdk1-G1 cyclin complexes. 39
Figure 2. CIP1 expression at M/G1 is mediated by Mcm1 through ECB elements on CIP1 promoter. 41
Figure 3. Mcm1 binds to the CIP1 promoter at late M phase. 43
Figure 4. CIP1 expression is induced under several stresses. 44
Figure 5. CIP1 expression is induced under several stresses. 46
Figure 6. CIP1 single deleted cells are not sensitive to stresses. 48
Figure 7. Deletion of Msn2/4 upstream suppressors slightly increases CIP1 expression in the absence of stress. 49
Figure 8. Msn2/4 regulate CIP1 expression through two STRE binding sites. 51
Figure 9. Mass analysis of the phosphorylation on Cip1. 53
Figure 10. Cip1 is phosphorylated by Hog1 kinase directly under osmotic stress. 55
Figure 11. Characterization of the phosphor-specific antibodies against Cip1 T65 and T73. 57
Figure 12. The phosphorylation of Cip1 is responsible for hyperosmotic stress induced transitory G1 delay. 59
Figure 13. Cell cycle progression in Cip1 overexpressed or deleted cells. 61
Figure 14. Cip1 regulates G1/S progression by inhibiting Cdk1-Cln3 complex activity. 62
Figure 15. Cip1 localizes to the nucleus after osmotic stress. 65
Figure 16. Human p21 expression stimulates G1 arrest in yeast cells. 66
Figure 17. Mcm1 and Mbf1 drive CIP1 transcription at different cell cycle stages. 67
Figure 18. A model of Cip1-involved regulations. 69
TABLES 72
Table 1. Strains Used in This Study. 72
Table 2. Constructs Used in This Study. 74
Table 3. Primers Used in This Study 76
REFERENCES 79
APPENDIXES 85
Appendix I. Contribution Table 85
Appendix II. Instability of Succinate Dehydrogenase in SDHD Polymorphism Connects Reactive Oxygen Species Production to Nuclear and Mitochondrial Genomic Mutations in Yeast 86
Adrover, M.A., Zi, Z., Duch, A., Schaber, J., Gonzalez-Novo, A., Jimenez, J., Nadal-Ribelles, M., Clotet, J., Klipp, E., and Posas, F. (2011). Time-dependent quantitative multicomponent control of the G(1)-S network by the stress-activated protein kinase Hog1 upon osmostress. Science signaling 4, ra63.
Alexander, M.R., Tyers, M., Perret, M., Craig, B.M., Fang, K.S., and Gustin, M.C. (2001). Regulation of cell cycle progression by Swe1p and Hog1p following hypertonic stress. Molecular biology of the cell 12, 53-62.
Belli, G., Gari, E., Aldea, M., and Herrero, E. (2001). Osmotic stress causes a G1 cell cycle delay and downregulation of Cln3/Cdc28 activity in Saccharomyces cerevisiae. Molecular microbiology 39, 1022-1035.
Benton, M.G., Somasundaram, S., Glasner, J.D., and Palecek, S.P. (2006). Analyzing the dose-dependence of the Saccharomyces cerevisiae global transcriptional response to methyl methanesulfonate and ionizing radiation. BMC Genomics 7, 305.
Berry, D.B., and Gasch, A.P. (2008). Stress-activated genomic expression changes serve a preparative role for impending stress in yeast. Molecular biology of the cell 19, 4580-4587.
Bishop, A.C., Ubersax, J.A., Petsch, D.T., Matheos, D.P., Gray, N.S., Blethrow, J., Shimizu, E., Tsien, J.Z., Schultz, P.G., Rose, M.D., et al. (2000). A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407, 395-401.
Brachmann, C.B., Davies, A., Cost, G.J., Caputo, E., Li, J., Hieter, P., and Boeke, J.D. (1998). Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115-132.
Bradley, P.H., Brauer, M.J., Rabinowitz, J.D., and Troyanskaya, O.G. (2009). Coordinated concentration changes of transcripts and metabolites in Saccharomyces cerevisiae. PLoS Comput Biol 5, e1000270.
Brauer, M.J., Huttenhower, C., Airoldi, E.M., Rosenstein, R., Matese, J.C., Gresham, D., Boer, V.M., Troyanskaya, O.G., and Botstein, D. (2008). Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast. Molecular biology of the cell 19, 352-367.
Braun, E.L., Fuge, E.K., Padilla, P.A., and Werner-Washburne, M. (1996). A stationary-phase gene in Saccharomyces cerevisiae is a member of a novel, highly conserved gene family. Journal of bacteriology 178, 6865-6872.
Breeden, L. (1996). Start-specific transcription in yeast. Curr Top Microbiol Immunol 208, 95-127.
Causton, H.C., Ren, B., Koh, S.S., Harbison, C.T., Kanin, E., Jennings, E.G., Lee, T.I., True, H.L., Lander, E.S., and Young, R.A. (2001). Remodeling of yeast genome expression in response to environmental changes. Molecular biology of the cell 12, 323-337.
Chang, F., and Herskowitz, I. (1990). Identification of a gene necessary for cell cycle arrest by a negative growth factor of yeast: FAR1 is an inhibitor of a G1 cyclin, CLN2. Cell 63, 999-1011.
Costanzo, M., Nishikawa, J.L., Tang, X., Millman, J.S., Schub, O., Breitkreuz, K., Dewar, D., Rupes, I., Andrews, B., and Tyers, M. (2004). CDK activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast. Cell 117, 899-913.
Cross, F.R. (1995). Starting the cell cycle: what''s the point? Current opinion in cell biology 7, 790-797.
Cuadrado, A., and Nebreda, A.R. (2010). Mechanisms and functions of p38 MAPK signalling. The Biochemical journal 429, 403-417.
de Bruin, R.A., McDonald, W.H., Kalashnikova, T.I., Yates, J., 3rd, and Wittenberg, C. (2004). Cln3 activates G1-specific transcription via phosphorylation of the SBF bound repressor Whi5. Cell 117, 887-898.
de Nadal, E., Ammerer, G., and Posas, F. (2011). Controlling gene expression in response to stress. Nat Rev Genet 12, 833-845.
de Nadal, E., and Posas, F. (2015). Osmostress-induced gene expression--a model to understand how stress-activated protein kinases (SAPKs) regulate transcription. FEBS J 282, 3275-3285.
Dirick, L., Bohm, T., and Nasmyth, K. (1995). Roles and regulation of Cln-Cdc28 kinases at the start of the cell cycle of Saccharomyces cerevisiae. The EMBO journal 14, 4803-4813.
Escote, X., Zapater, M., Clotet, J., and Posas, F. (2004). Hog1 mediates cell-cycle arrest in G1 phase by the dual targeting of Sic1. Nat Cell Biol 6, 997-1002.
Estruch, F., and Carlson, M. (1993). Two homologous zinc finger genes identified by multicopy suppression in a SNF1 protein kinase mutant of Saccharomyces cerevisiae. Mol Cell Biol 13, 3872-3881.
Ferrigno, P., Posas, F., Koepp, D., Saito, H., and Silver, P.A. (1998). Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin beta homologs NMD5 and XPO1. The EMBO journal 17, 5606-5614.
Forsburg, S.L., and Nurse, P. (1991). Cell cycle regulation in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Annual review of cell biology 7, 227-256.
Gartel, A.L., and Radhakrishnan, S.K. (2005). Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res 65, 3980-3985.
Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D., and Brown, P.O. (2000). Genomic expression programs in the response of yeast cells to environmental changes. Molecular biology of the cell 11, 4241-4257.
Gonzalez-Novo, A., Jimenez, J., Clotet, J., Nadal-Ribelles, M., Cavero, S., de Nadal, E., and Posas, F. (2015). Hog1 targets Whi5 and Msa1 transcription factors to downregulate cyclin expression upon stress. Mol Cell Biol 35, 1606-1618.
Gorner, W., Durchschlag, E., Martinez-Pastor, M.T., Estruch, F., Ammerer, G., Hamilton, B., Ruis, H., and Schuller, C. (1998). Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes & development 12, 586-597.
Gubern, A., Joaquin, M., Marques, M., Maseres, P., Garcia-Garcia, J., Amat, R., Gonzalez-Nunez, D., Oliva, B., Real, F.X., de Nadal, E., et al. (2016). The N-Terminal Phosphorylation of RB by p38 Bypasses Its Inactivation by CDKs and Prevents Proliferation in Cancer Cells. Mol Cell 64, 25-36.
Hohmann, S. (2002). Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66, 300-372.
Joaquin, M., Gubern, A., Gonzalez-Nunez, D., Josue Ruiz, E., Ferreiro, I., de Nadal, E., Nebreda, A.R., and Posas, F. (2012). The p57 CDKi integrates stress signals into cell-cycle progression to promote cell survival upon stress. The EMBO journal 31, 2952-2964.
Jones, E.W. (1977). Proteinase mutants of Saccharomyces cerevisiae. Genetics 85, 23-33.
Kim, G.Y., Mercer, S.E., Ewton, D.Z., Yan, Z., Jin, K., and Friedman, E. (2002). The stress-activated protein kinases p38 alpha and JNK1 stabilize p21(Cip1) by phosphorylation. The Journal of biological chemistry 277, 29792-29802.
Kuo, M.H., and Grayhack, E. (1994). A library of yeast genomic MCM1 binding sites contains genes involved in cell cycle control, cell wall and membrane structure, and metabolism. Mol Cell Biol 14, 348-359.
Lee, P., Cho, B.R., Joo, H.S., and Hahn, J.S. (2008). Yeast Yak1 kinase, a bridge between PKA and stress-responsive transcription factors, Hsf1 and Msn2/Msn4. Molecular microbiology 70, 882-895.
Lengronne, A., and Schwob, E. (2002). The yeast CDK inhibitor Sic1 prevents genomic instability by promoting replication origin licensing in late G(1). Mol Cell 9, 1067-1078.
Li, X., and Cai, M. (1999). Recovery of the yeast cell cycle from heat shock-induced G(1) arrest involves a positive regulation of G(1) cyclin expression by the S phase cyclin Clb5. The Journal of biological chemistry 274, 24220-24231.
Lydall, D., Ammerer, G., and Nasmyth, K. (1991). A new role for MCM1 in yeast: cell cycle regulation of SW15 transcription. Genes & development 5, 2405-2419.
MacKay, V.L., Mai, B., Waters, L., and Breeden, L.L. (2001). Early cell cycle box-mediated transcription of CLN3 and SWI4 contributes to the proper timing of the G(1)-to-S transition in budding yeast. Mol Cell Biol 21, 4140-4148.
Martinez-Pastor, M.T., Marchler, G., Schuller, C., Marchler-Bauer, A., Ruis, H., and Estruch, F. (1996). The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). The EMBO journal 15, 2227-2235.
McInerny, C.J., Partridge, J.F., Mikesell, G.E., Creemer, D.P., and Breeden, L.L. (1997). A novel Mcm1-dependent element in the SWI4, CLN3, CDC6, and CDC47 promoters activates M/G1-specific transcription. Genes & development 11, 1277-1288.
McKinney, J.D., Chang, F., Heintz, N., and Cross, F.R. (1993). Negative regulation of FAR1 at the Start of the yeast cell cycle. Genes & development 7, 833-843.
Miller, M.E., Cross, F.R., Groeger, A.L., and Jameson, K.L. (2005). Identification of novel and conserved functional and structural elements of the G1 cyclin Cln3 important for interactions with the CDK Cdc28 in Saccharomyces cerevisiae. Yeast 22, 1021-1036.
Mullen, J.R., Kaliraman, V., and Brill, S.J. (2000). Bipartite structure of the SGS1 DNA helicase in Saccharomyces cerevisiae. Genetics 154, 1101-1114.
Newcomb, L.L., Diderich, J.A., Slattery, M.G., and Heideman, W. (2003). Glucose regulation of Saccharomyces cerevisiae cell cycle genes. Eukaryotic cell 2, 143-149.
Peter, M., and Herskowitz, I. (1994). Direct inhibition of the yeast cyclin-dependent kinase Cdc28-Cln by Far1. Science 265, 1228-1231.
Ren, P., Malik, A., and Zeng, F. (2016). Identification of YPL014W (Cip1) as a novel negative regulator of cyclin-dependent kinase in Saccharomyces cerevisiae. Genes Cells 21, 543-552.
Rep, M., Krantz, M., Thevelein, J.M., and Hohmann, S. (2000). The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. The Journal of biological chemistry 275, 8290-8300.
Riechmann, J.L., and Meyerowitz, E.M. (1997). MADS domain proteins in plant development. Biological chemistry 378, 1079-1101.
Rodriguez, R., and Meuth, M. (2006). Chk1 and p21 cooperate to prevent apoptosis during DNA replication fork stress. Molecular biology of the cell 17, 402-412.
Saito, H., and Posas, F. (2012). Response to hyperosmotic stress. Genetics 192, 289-318.
Santhanam, A., Hartley, A., Duvel, K., Broach, J.R., and Garrett, S. (2004). PP2A phosphatase activity is required for stress and Tor kinase regulation of yeast stress response factor Msn2p. Eukaryotic cell 3, 1261-1271.
Schmitt, A.P., and McEntee, K. (1996). Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America 93, 5777-5782.
Schuller, C., Brewster, J.L., Alexander, M.R., Gustin, M.C., and Ruis, H. (1994). The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. The EMBO journal 13, 4382-4389.
Schwob, E., Bohm, T., Mendenhall, M.D., and Nasmyth, K. (1994). The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell 79, 233-244.
Shackelford, R.E., Kaufmann, W.K., and Paules, R.S. (2000). Oxidative stress and cell cycle checkpoint function. Free radical biology & medicine 28, 1387-1404.
Shen, Z.J., Hsu, P.H., Su, Y.T., Yang, C.W., Kao, L., Tseng, S.F., Tsai, M.D., and Teng, S.C. (2014). PP2A and Aurora differentially modify Cdc13 to promote telomerase release from telomeres at G2/M phase. Nat Commun 5, 5312.
Shore, P., and Sharrocks, A.D. (1995). The MADS-box family of transcription factors. European journal of biochemistry / FEBS 229, 1-13.
Smith, A., Ward, M.P., and Garrett, S. (1998). Yeast PKA represses Msn2p/Msn4p-dependent gene expression to regulate growth, stress response and glycogen accumulation. The EMBO journal 17, 3556-3564.
Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., and Futcher, B. (1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular biology of the cell 9, 3273-3297.
Strickfaden, S.C., Winters, M.J., Ben-Ari, G., Lamson, R.E., Tyers, M., and Pryciak, P.M. (2007). A mechanism for cell-cycle regulation of MAP kinase signaling in a yeast differentiation pathway. Cell 128, 519-531.
Tkach, J.M., Yimit, A., Lee, A.Y., Riffle, M., Costanzo, M., Jaschob, D., Hendry, J.A., Ou, J., Moffat, J., Boone, C., et al. (2012). Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat Cell Biol 14, 966-976.
Todd, D.E., Densham, R.M., Molton, S.A., Balmanno, K., Newson, C., Weston, C.R., Garner, A.P., Scott, L., and Cook, S.J. (2004). ERK1/2 and p38 cooperate to induce a p21CIP1-dependent G1 cell cycle arrest. Oncogene 23, 3284-3295.
Treisman, R., and Ammerer, G. (1992). The SRF and MCM1 transcription factors. Curr Opin Genet Dev 2, 221-226.
Tseng, S.F., Shen, Z.J., Tsai, H.J., Lin, Y.H., and Teng, S.C. (2009). Rapid Cdc13 turnover and telomere length homeostasis are controlled by Cdk1-mediated phosphorylation of Cdc13. Nucleic Acids Res 37, 3602-3611.
Tyers, M., Tokiwa, G., Nash, R., and Futcher, B. (1992). The Cln3-Cdc28 kinase complex of S. cerevisiae is regulated by proteolysis and phosphorylation. The EMBO journal 11, 1773-1784.
Verma, R., Feldman, R.M., and Deshaies, R.J. (1997). SIC1 is ubiquitinated in vitro by a pathway that requires CDC4, CDC34, and cyclin/CDK activities. Molecular biology of the cell 8, 1427-1437.
Wilson, T.E., Fahrner, T.J., Johnston, M., and Milbrandt, J. (1991). Identification of the DNA binding site for NGFI-B by genetic selection in yeast. Science 252, 1296-1300.
Wittenberg, C., Sugimoto, K., and Reed, S.I. (1990). G1-specific cyclins of S. cerevisiae: cell cycle periodicity, regulation by mating pheromone, and association with the p34CDC28 protein kinase. Cell 62, 225-237.
Wong, C.W., Hou, P.S., Tseng, S.F., Chien, C.L., Wu, K.J., Chen, H.F., Ho, H.N., Kyo, S., and Teng, S.C. (2010). Kruppel-like transcription factor 4 contributes to maintenance of telomerase activity in stem cells. Stem Cells 28, 1510-1517.
Wysocki, R., Javaheri, A., Kristjansdottir, K., Sha, F., and Kron, S.J. (2006). CDK Pho85 targets CDK inhibitor Sic1 to relieve yeast G1 checkpoint arrest after DNA damage. Nat Struct Mol Biol 13, 908-914.
Xu, H., and Freitas, M.A. (2009). MassMatrix: a database search program for rapid characterization of proteins and peptides from tandem mass spectrometry data. Proteomics 9, 1548-1555.
Xu, H., Hsu, P.H., Zhang, L., Tsai, M.D., and Freitas, M.A. (2010). Database search algorithm for identification of intact cross-links in proteins and peptides using tandem mass spectrometry. J Proteome Res 9, 3384-3393.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔