|
1Adegbola, R. A., Obaro, S. K., Biney, E. & Greenwood, B. M. Evaluation of Binax now Streptococcus pneumoniae urinary antigen test in children in a community with a high carriage rate of pneumococcus. Pediatr Infect Dis J 20, 718-719 (2001). 2Bogaert, D., De Groot, R. & Hermans, P. W. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. The Lancet. Infectious diseases 4, 144-154, doi:10.1016/s1473-3099(04)00938-7 (2004). 3Casey, J. R., Adlowitz, D. G. & Pichichero, M. E. New patterns in the otopathogens causing acute otitis media six to eight years after introduction of pneumococcal conjugate vaccine. Pediatr Infect Dis J 29, 304-309, doi:10.1097/INF.0b013e3181c1bc48 (2010). 4Kadioglu, A., Weiser, J. N., Paton, J. C. & Andrew, P. W. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol 6, 288-301, doi:10.1038/nrmicro1871 (2008). 5Centers for Disease, C. & Prevention. Direct and indirect effects of routine vaccination of children with 7-valent pneumococcal conjugate vaccine on incidence of invasive pneumococcal disease--United States, 1998-2003. MMWR Morb Mortal Wkly Rep 54, 893-897 (2005). 6Huang, S. S. et al. Post-PCV7 changes in colonizing pneumococcal serotypes in 16 Massachusetts communities, 2001 and 2004. Pediatrics 116, e408-413, doi:10.1542/peds.2004-2338 (2005). 7Steenhoff, A. P., Shah, S. S., Ratner, A. J., Patil, S. M. & McGowan, K. L. Emergence of vaccine-related pneumococcal serotypes as a cause of bacteremia. Clin Infect Dis 42, 907-914, doi:10.1086/500941 (2006). 8Pettigrew, M. M., Fennie, K. P., York, M. P., Daniels, J. & Ghaffar, F. Variation in the presence of neuraminidase genes among Streptococcus pneumoniae isolates with identical sequence types. Infect Immun 74, 3360-3365, doi:10.1128/IAI.01442-05 (2006). 9Camara, M., Boulnois, G. J., Andrew, P. W. & Mitchell, T. J. A neuraminidase from Streptococcus pneumoniae has the features of a surface protein. Infection and immunity 62, 3688-3695 (1994). 10King, S. J., Hippe, K. R. & Weiser, J. N. Deglycosylation of human glycoconjugates by the sequential activities of exoglycosidases expressed by Streptococcus pneumoniae. Mol Microbiol 59, 961-974, doi:10.1111/j.1365-2958.2005.04984.x (2006). 11Wren, J. T. et al. Pneumococcal Neuraminidase A (NanA) Promotes Biofilm Formation and Synergizes with Influenza A Virus in Nasal Colonization and Middle Ear Infection. Infect Immun 85, doi:10.1128/IAI.01044-16 (2017). 12Corrales-Medina, V. F. & Musher, D. M. Immunomodulatory agents in the treatment of community-acquired pneumonia: a systematic review. J Infect 63, 187-199, doi:10.1016/j.jinf.2011.06.009 (2011). 13Chang, Y. C., Uchiyama, S., Varki, A. & Nizet, V. Leukocyte inflammatory responses provoked by pneumococcal sialidase. mBio 3, doi:10.1128/mBio.00220-11 (2012). 14Macauley, M. S., Crocker, P. R. & Paulson, J. C. Siglec-mediated regulation of immune cell function in disease. Nature reviews. Immunology 14, 653-666, doi:10.1038/nri3737 (2014). 15Crocker, P. R., Paulson, J. C. & Varki, A. Siglecs and their roles in the immune system. Nature reviews. Immunology 7, 255-266, doi:10.1038/nri2056 (2007). 16Ando, M., Tu, W., Nishijima, K. & Iijima, S. Siglec-9 enhances IL-10 production in macrophages via tyrosine-based motifs. Biochem Biophys Res Commun 369, 878-883, doi:10.1016/j.bbrc.2008.02.111 (2008). 17Ando, M. et al. Lectin-dependent localization of cell surface sialic acid-binding lectin Siglec-9. Cytotechnology 67, 601-608, doi:10.1007/s10616-014-9691-6 (2015). 18Avril, T., Floyd, H., Lopez, F., Vivier, E. & Crocker, P. R. The membrane-proximal immunoreceptor tyrosine-based inhibitory motif is critical for the inhibitory signaling mediated by Siglecs-7 and -9, CD33-related Siglecs expressed on human monocytes and NK cells. J Immunol 173, 6841-6849 (2004). 19Avril, T., Freeman, S. D., Attrill, H., Clarke, R. G. & Crocker, P. R. Siglec-5 (CD170) can mediate inhibitory signaling in the absence of immunoreceptor tyrosine-based inhibitory motif phosphorylation. J Biol Chem 280, 19843-19851, doi:10.1074/jbc.M502041200 (2005). 20Sato, S. et al. CD22 is both a positive and negative regulator of B lymphocyte antigen receptor signal transduction: altered signaling in CD22-deficient mice. Immunity 5, 551-562 (1996). 21An, H. et al. SHP-2 phosphatase negatively regulates the TRIF adaptor protein-dependent type I interferon and proinflammatory cytokine production. Immunity 25, 919-928, doi:10.1016/j.immuni.2006.10.014 (2006). 22Hardin, A. O., Meals, E. A., Yi, T., Knapp, K. M. & English, B. K. SHP-1 inhibits LPS-mediated TNF and iNOS production in murine macrophages. Biochem Biophys Res Commun 342, 547-555, doi:10.1016/j.bbrc.2006.02.005 (2006). 23Kawasaki, N., Rademacher, C. & Paulson, J. C. CD22 regulates adaptive and innate immune responses of B cells. J Innate Immun 3, 411-419, doi:10.1159/000322375 (2011). 24Ikehara, Y., Ikehara, S. K. & Paulson, J. C. Negative regulation of T cell receptor signaling by Siglec-7 (p70/AIRM) and Siglec-9. J Biol Chem 279, 43117-43125, doi:10.1074/jbc.M403538200 (2004). 25Ishida, A. et al. Negative regulation of Toll-like receptor-4 signaling through the binding of glycosylphosphatidylinositol-anchored glycoprotein, CD14, with the sialic acid-binding lectin, CD33. J Biol Chem 289, 25341-25350, doi:10.1074/jbc.M113.523480 (2014). 26Boyd, C. R. et al. Siglec-E is up-regulated and phosphorylated following lipopolysaccharide stimulation in order to limit TLR-driven cytokine production. J Immunol 183, 7703-7709, doi:10.4049/jimmunol.0902780 (2009). 27McMillan, S. J. et al. Siglec-E is a negative regulator of acute pulmonary neutrophil inflammation and suppresses CD11b beta2-integrin-dependent signaling. Blood 121, 2084-2094, doi:10.1182/blood-2012-08-449983 (2013). 28Angata, T., Hayakawa, T., Yamanaka, M., Varki, A. & Nakamura, M. Discovery of Siglec-14, a novel sialic acid receptor undergoing concerted evolution with Siglec-5 in primates. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 20, 1964-1973, doi:10.1096/fj.06-5800com (2006). 29Angata, T. et al. Loss of Siglec-14 reduces the risk of chronic obstructive pulmonary disease exacerbation. Cellular and molecular life sciences : CMLS 70, 3199-3210, doi:10.1007/s00018-013-1311-7 (2013). 30Ali, S. R. et al. Siglec-5 and Siglec-14 are polymorphic paired receptors that modulate neutrophil and amnion signaling responses to group B Streptococcus. J Exp Med 211, 1231-1242, doi:10.1084/jem.20131853 (2014). 31Fong, J. J. et al. Immunomodulatory activity of extracellular Hsp70 mediated via paired receptors Siglec-5 and Siglec-14. EMBO J 34, 2775-2788, doi:10.15252/embj.201591407 (2015). 32Ono, M., Bolland, S., Tempst, P. & Ravetch, J. V. Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor Fc(gamma)RIIB. Nature 383, 263-266, doi:10.1038/383263a0 (1996). 33Malbec, O. et al. Fc epsilon receptor I-associated lyn-dependent phosphorylation of Fc gamma receptor IIB during negative regulation of mast cell activation. J Immunol 160, 1647-1658 (1998). 34Huang, J. H. et al. CR3 and Dectin-1 Collaborate in Macrophage Cytokine Response through Association on Lipid Rafts and Activation of Syk-JNK-AP-1 Pathway. PLoS Pathog 11, e1004985, doi:10.1371/journal.ppat.1004985 (2015). 35Chen, G. Y., Tang, J., Zheng, P. & Liu, Y. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science 323, 1722-1725, doi:10.1126/science.1168988 (2009). 36Liu, Y., Chen, G. Y. & Zheng, P. CD24-Siglec G/10 discriminates danger- from pathogen-associated molecular patterns. Trends Immunol 30, 557-561, doi:10.1016/j.it.2009.09.006 (2009). 37Chen, G. Y. et al. Amelioration of sepsis by inhibiting sialidase-mediated disruption of the CD24-SiglecG interaction. Nat Biotechnol 29, 428-435, doi:10.1038/nbt.1846 (2011). 38Chen, G. Y. et al. Broad and direct interaction between TLR and Siglec families of pattern recognition receptors and its regulation by Neu1. Elife 3, e04066, doi:10.7554/eLife.04066 (2014). 39Yamanaka, M., Kato, Y., Angata, T. & Narimatsu, H. Deletion polymorphism of SIGLEC14 and its functional implications. Glycobiology 19, 841-846, doi:10.1093/glycob/cwp052 (2009). 40Silva, M. et al. Sialic acid removal from dendritic cells improves antigen cross-presentation and boosts anti-tumor immune responses. Oncotarget 7, 41053-41066, doi:10.18632/oncotarget.9419 (2016). 41Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1, 31-39, doi:10.1038/35036052 (2000). 42Triantafilou, M., Miyake, K., Golenbock, D. T. & Triantafilou, K. Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation. J Cell Sci 115, 2603-2611 (2002). 43Zidovetzki, R. & Levitan, I. Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim Biophys Acta 1768, 1311-1324, doi:10.1016/j.bbamem.2007.03.026 (2007). 44Qu, C. K. The SHP-2 tyrosine phosphatase: signaling mechanisms and biological functions. Cell Res 10, 279-288, doi:10.1038/sj.cr.7290055 (2000). 45Tamir, I., Dal Porto, J. M. & Cambier, J. C. Cytoplasmic protein tyrosine phosphatases SHP-1 and SHP-2: regulators of B cell signal transduction. Curr Opin Immunol 12, 307-315 (2000). 46Liu, X. & Qu, C. K. Protein Tyrosine Phosphatase SHP-2 (PTPN11) in Hematopoiesis and Leukemogenesis. J Signal Transduct 2011, 195239, doi:10.1155/2011/195239 (2011). 47Lowenstein, E. J. et al. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell 70, 431-442 (1992). 48Jellusova, J. & Nitschke, L. Regulation of B cell functions by the sialic acid-binding receptors siglec-G and CD22. Front Immunol 2, 96, doi:10.3389/fimmu.2011.00096 (2011). 49Jounai, N., Kobiyama, K., Takeshita, F. & Ishii, K. J. Recognition of damage-associated molecular patterns related to nucleic acids during inflammation and vaccination. Front Cell Infect Microbiol 2, 168, doi:10.3389/fcimb.2012.00168 (2012). 50Tang, D., Kang, R., Coyne, C. B., Zeh, H. J. & Lotze, M. T. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev 249, 158-175, doi:10.1111/j.1600-065X.2012.01146.x (2012). 51Wu, Y., Ren, D. & Chen, G. Y. Siglec-E Negatively Regulates the Activation of TLR4 by Controlling Its Endocytosis. J Immunol 197, 3336-3347, doi:10.4049/jimmunol.1600772 (2016). 52Le Drean, E. et al. Inhibition of antigen-induced T cell response and antibody-induced NK cell cytotoxicity by NKG2A: association of NKG2A with SHP-1 and SHP-2 protein-tyrosine phosphatases. Eur J Immunol 28, 264-276, doi:10.1002/(SICI)1521-4141(199801)28:01<264::AID-IMMU264>3.0.CO;2-O (1998). 53Kim, E. J., Lee, S. M., Suk, K. & Lee, W. H. CD300a and CD300f differentially regulate the MyD88 and TRIF-mediated TLR signalling pathways through activation of SHP-1 and/or SHP-2 in human monocytic cell lines. Immunology 135, 226-235, doi:10.1111/j.1365-2567.2011.03528.x (2012). 54Drzeniek, R. Viral and bacterial neuraminidases. Curr Top Microbiol Immunol 59, 35-74 (1972). 55Jedrzejas, M. J. Pneumococcal virulence factors: structure and function. Microbiol Mol Biol Rev 65, 187-207 ; first page, table of contents, doi:10.1128/MMBR.65.2.187-207.2001 (2001). 56Air, G. M. & Laver, W. G. The neuraminidase of influenza virus. Proteins 6, 341-356, doi:10.1002/prot.340060402 (1989). 57Matrosovich, M. N., Matrosovich, T. Y., Gray, T., Roberts, N. A. & Klenk, H. D. Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J Virol 78, 12665-12667, doi:10.1128/JVI.78.22.12665-12667.2004 (2004). 58Cao, H. & Crocker, P. R. Evolution of CD33-related siglecs: regulating host immune functions and escaping pathogen exploitation? Immunology 132, 18-26, doi:10.1111/j.1365-2567.2010.03368.x (2011). 59Wang, X. et al. Evolution of siglec-11 and siglec-16 genes in hominins. Mol Biol Evol 29, 2073-2086, doi:10.1093/molbev/mss077 (2012). 60Schwarz, F. et al. Paired Siglec receptors generate opposite inflammatory responses to a human-specific pathogen. EMBO J 36, 751-760, doi:10.15252/embj.201695581 (2017).
|