跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/26 01:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張鈞棋
研究生(外文):Chun-Chi Chang
論文名稱:肺炎鏈球菌NanA誘導之去唾液酸化對於Siglec-Toll-like receptor交互作用之影響
論文名稱(外文):Impact of pneumococcal NanA-mediated host desialylation in Siglec-Toll-like receptor crosstalk
指導教授:張永祺張永祺引用關係
口試日期:2017-07-06
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:微生物學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:51
中文關鍵詞:肺炎鏈球菌唾液酸酶類鐸受體-2Siglec-5Siglec-14
外文關鍵詞:Streptococcus pneumoniaeNanATLR-2Siglec-5Siglec-14
相關次數:
  • 被引用被引用:0
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
肺炎鏈球菌是全球單一致死率最高的病原菌之一,其感染能造成廣泛的疾病,包含了鼻竇炎、中耳炎、肺炎、菌血症以及腦膜炎等。在臨床上即使抗生素成功的清除病原菌本身,肺炎鏈球菌感染所造成的死亡與其所引起免疫反應的失衡有很大的關係。所有已被鑑定的肺炎鏈球菌株中,都能夠表現唾液酸酶(NanA)在細菌的表面,我們先前的結果顯示肺炎鏈球菌NanA能夠藉由移除表現在相同細胞上Siglec受體的順配體進而加劇白血球的發炎反應。免疫系統的細胞表面填充了各式各樣的凝集素與聚醣,而Siglec受體的辨認位置通常會被同個細胞表面其他唾液酸聚醣的配體覆蓋;而先天免疫系統上唾液酸廣泛且大量的表現以及其相對應具有免疫抑制模組受體的重要性,因此唾液酸通常被認為是self-associated molecular patterns來調控免疫細胞啟動的閾值。類鐸受體為模式識別受體(pattern recognition receptors)的一員,被廣泛地認為是對抗病原菌的第一道防線,當感染時,免疫細胞表面的模式識別受體感應外在的刺激,並藉由細胞內的訊息傳導來整合並引發適當的免疫反應來對抗外在的感染源,在本篇研究中我們將探討肺炎鏈球菌NanA誘導之唾液酸化對於Siglec與模式識別受體之間交互作用的影響。我們假設在肺炎鏈球菌感染情況下,NanA誘導的去唾液酸化會破壞類鐸受體以及Siglec之間的交互作用,使得類鐸受體下游的訊息傳遞失衡而產生大量的發炎物質。我們的結果顯示野生型的肺炎鏈球菌相比NanA缺失的肺炎鏈球菌更能引起腫瘤壞死因子-α的表現,而腫瘤壞死因子-α表現的增加仰賴部分細胞表面脂筏的構造以及一些參與在MAPK、PI3K/AKT以及NF-кB訊息路徑中分子的活化;這樣細胞活化過程,可能來自於類鐸受體-2與Siglec-5交互作用以及Siglec-5相關調控分子受到影響的結果。除了探討肺炎鏈球菌NanA誘導的發炎反應中,抑制性Siglec所扮演的角色外,我們也發現當人類巨噬細胞以及單核球細胞表現促進性Siglec在表面時,也會影響肺炎鏈球菌NanA誘導發炎反應的結果。
Streptococcus pneumoniae (SPN) is the single most deadly bacterial infection globally, capable of causing a wide spectrum of disease, including sinusitis, otitis media, pneumonia, bacteremia and meningitis. The mortality caused by pneumococcal disease is sometimes linked to imbalanced hyper-inflammatory responses of the host despite of successful pathogen clearance. All SPN strains identified so far produce a surface-associated sialidase (NanA) and we recently demonstrated that leukocyte inflammatory responses are aggravated by pneumococcal NanA through removing the cis-lignads of Siglec expressed on the same myeloid cells. Cell surface in the immune system are richly equipped with a complex mixture of various lectins and glycans. Siglec binding sites are typically ‘masked’ by cis interactions with other sialoglycan ligands expressed on the same cell. Given the ubiquitous and abundant expression of host Sias and the prominence of cognate ITIM-bearing receptors on innate immune cells, Sia is proposed to act as “self-associated molecular patterns” to control the activation threshold of immune cells. Toll-like receptor (TLR) family, a member of pattern recognition receptors (PRRs), are generally thought to be a first-line defense to recognize pathogens. Upon infection, immune cells sense the environment through their various PRRs, processing and integrating this external information through the intracellular signaling cascade and induce appropriate immune responses to combat infectious microbial agents. Thus, this study we aimed to further investigate how pneumococcal NanA-mediated cell desialylation affects the crosstalk between Siglec and PRR signaling pathway. We hypothesized NanA-mediated host cell desialylation may disrupt the interaction between TLR and Siglec, dysregulate the inflammatory signals downstream of TLR and cause excessive pro-inflammatory substance upon pneumococcal infection. Our data suggested that WT SPN was able to induce stronger TNF-α production that partially rely on lipid rafts structure on cell membrane and activation of signaling molecules involved in MAPK, PI3k/Akt and NF-кB pathways compared to ∆nanA SPN. This pneumococcal NanA-mediated cell activation may result from affecting TLR-2-Siglec-5 interaction and Sigelc-5-associated signaling molecules. In addition to dissect the role of inhibitory Siglec in NanA-mediated pneumococcal inflammation, we also found that expression of an activating Siglec, Siglec-14, on human primary macrophages and THP-1 cells also affects host immune responses upon cell surface desialylation by pneumococcal NanA.
口試委員審定書 i
致謝 ii
中文摘要 iii
Abstract iv
Content v
I. Introduction 1
A. Streptococcal neuraminidase 1
B. Sialic acid (Sia)-binding immunoglobulin-like lectins (Siglecs) 2
C. Siglec-5 and Siglec-14 paired receptors and their roles in immunity 3
D. Cell surface receptors synergize to cellular responses 4
E. Hypothesis 4
II. Materials and methods 6
1. Materials 6
A. Cell lines and culture conditions 6
B. Bacterial strains and culture conditions 6
C. Antibiotics 6
D. Antibodies 6
E. Antibodies for micro-western array 8
F. ELISA (enzyme-linked immunosorbent assay) kit 10
G. Real-time quantitative polymerase chain reaction (qRT-PCR) primers 10
2. Methods 10
A. Analysis of TNF-α mRNA expression in THP-1 cells upon SPN infection 10
B. Analysis of TNF-α protein secretion in THP-1 cells upon SPN infection 10
C. Measurement of THP-1 surface desialylation upon SPN infection 11
D. Sample preparation and validation for Micro-western array 11
E. Cholesterol depletion – methyl-β-cyclodextrin treatment 13
F. Lipid raft isolation – sucrose gradient ultra-centrifugation 13
G. Immunoprecipitiation and immunoblotting 13
H. Examination of direct interaction between pneumococcus and recombinant Siglec-5 or Siglec-14 14
I. Statistics 14
III. Results 15
IV. Discussion 22
V. Figures 27
VI. Appendix 44
VII. References 47
1Adegbola, R. A., Obaro, S. K., Biney, E. & Greenwood, B. M. Evaluation of Binax now Streptococcus pneumoniae urinary antigen test in children in a community with a high carriage rate of pneumococcus. Pediatr Infect Dis J 20, 718-719 (2001).
2Bogaert, D., De Groot, R. & Hermans, P. W. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. The Lancet. Infectious diseases 4, 144-154, doi:10.1016/s1473-3099(04)00938-7 (2004).
3Casey, J. R., Adlowitz, D. G. & Pichichero, M. E. New patterns in the otopathogens causing acute otitis media six to eight years after introduction of pneumococcal conjugate vaccine. Pediatr Infect Dis J 29, 304-309, doi:10.1097/INF.0b013e3181c1bc48 (2010).
4Kadioglu, A., Weiser, J. N., Paton, J. C. & Andrew, P. W. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol 6, 288-301, doi:10.1038/nrmicro1871 (2008).
5Centers for Disease, C. & Prevention. Direct and indirect effects of routine vaccination of children with 7-valent pneumococcal conjugate vaccine on incidence of invasive pneumococcal disease--United States, 1998-2003. MMWR Morb Mortal Wkly Rep 54, 893-897 (2005).
6Huang, S. S. et al. Post-PCV7 changes in colonizing pneumococcal serotypes in 16 Massachusetts communities, 2001 and 2004. Pediatrics 116, e408-413, doi:10.1542/peds.2004-2338 (2005).
7Steenhoff, A. P., Shah, S. S., Ratner, A. J., Patil, S. M. & McGowan, K. L. Emergence of vaccine-related pneumococcal serotypes as a cause of bacteremia. Clin Infect Dis 42, 907-914, doi:10.1086/500941 (2006).
8Pettigrew, M. M., Fennie, K. P., York, M. P., Daniels, J. & Ghaffar, F. Variation in the presence of neuraminidase genes among Streptococcus pneumoniae isolates with identical sequence types. Infect Immun 74, 3360-3365, doi:10.1128/IAI.01442-05 (2006).
9Camara, M., Boulnois, G. J., Andrew, P. W. & Mitchell, T. J. A neuraminidase from Streptococcus pneumoniae has the features of a surface protein. Infection and immunity 62, 3688-3695 (1994).
10King, S. J., Hippe, K. R. & Weiser, J. N. Deglycosylation of human glycoconjugates by the sequential activities of exoglycosidases expressed by Streptococcus pneumoniae. Mol Microbiol 59, 961-974, doi:10.1111/j.1365-2958.2005.04984.x (2006).
11Wren, J. T. et al. Pneumococcal Neuraminidase A (NanA) Promotes Biofilm Formation and Synergizes with Influenza A Virus in Nasal Colonization and Middle Ear Infection. Infect Immun 85, doi:10.1128/IAI.01044-16 (2017).
12Corrales-Medina, V. F. & Musher, D. M. Immunomodulatory agents in the treatment of community-acquired pneumonia: a systematic review. J Infect 63, 187-199, doi:10.1016/j.jinf.2011.06.009 (2011).
13Chang, Y. C., Uchiyama, S., Varki, A. & Nizet, V. Leukocyte inflammatory responses provoked by pneumococcal sialidase. mBio 3, doi:10.1128/mBio.00220-11 (2012).
14Macauley, M. S., Crocker, P. R. & Paulson, J. C. Siglec-mediated regulation of immune cell function in disease. Nature reviews. Immunology 14, 653-666, doi:10.1038/nri3737 (2014).
15Crocker, P. R., Paulson, J. C. & Varki, A. Siglecs and their roles in the immune system. Nature reviews. Immunology 7, 255-266, doi:10.1038/nri2056 (2007).
16Ando, M., Tu, W., Nishijima, K. & Iijima, S. Siglec-9 enhances IL-10 production in macrophages via tyrosine-based motifs. Biochem Biophys Res Commun 369, 878-883, doi:10.1016/j.bbrc.2008.02.111 (2008).
17Ando, M. et al. Lectin-dependent localization of cell surface sialic acid-binding lectin Siglec-9. Cytotechnology 67, 601-608, doi:10.1007/s10616-014-9691-6 (2015).
18Avril, T., Floyd, H., Lopez, F., Vivier, E. & Crocker, P. R. The membrane-proximal immunoreceptor tyrosine-based inhibitory motif is critical for the inhibitory signaling mediated by Siglecs-7 and -9, CD33-related Siglecs expressed on human monocytes and NK cells. J Immunol 173, 6841-6849 (2004).
19Avril, T., Freeman, S. D., Attrill, H., Clarke, R. G. & Crocker, P. R. Siglec-5 (CD170) can mediate inhibitory signaling in the absence of immunoreceptor tyrosine-based inhibitory motif phosphorylation. J Biol Chem 280, 19843-19851, doi:10.1074/jbc.M502041200 (2005).
20Sato, S. et al. CD22 is both a positive and negative regulator of B lymphocyte antigen receptor signal transduction: altered signaling in CD22-deficient mice. Immunity 5, 551-562 (1996).
21An, H. et al. SHP-2 phosphatase negatively regulates the TRIF adaptor protein-dependent type I interferon and proinflammatory cytokine production. Immunity 25, 919-928, doi:10.1016/j.immuni.2006.10.014 (2006).
22Hardin, A. O., Meals, E. A., Yi, T., Knapp, K. M. & English, B. K. SHP-1 inhibits LPS-mediated TNF and iNOS production in murine macrophages. Biochem Biophys Res Commun 342, 547-555, doi:10.1016/j.bbrc.2006.02.005 (2006).
23Kawasaki, N., Rademacher, C. & Paulson, J. C. CD22 regulates adaptive and innate immune responses of B cells. J Innate Immun 3, 411-419, doi:10.1159/000322375 (2011).
24Ikehara, Y., Ikehara, S. K. & Paulson, J. C. Negative regulation of T cell receptor signaling by Siglec-7 (p70/AIRM) and Siglec-9. J Biol Chem 279, 43117-43125, doi:10.1074/jbc.M403538200 (2004).
25Ishida, A. et al. Negative regulation of Toll-like receptor-4 signaling through the binding of glycosylphosphatidylinositol-anchored glycoprotein, CD14, with the sialic acid-binding lectin, CD33. J Biol Chem 289, 25341-25350, doi:10.1074/jbc.M113.523480 (2014).
26Boyd, C. R. et al. Siglec-E is up-regulated and phosphorylated following lipopolysaccharide stimulation in order to limit TLR-driven cytokine production. J Immunol 183, 7703-7709, doi:10.4049/jimmunol.0902780 (2009).
27McMillan, S. J. et al. Siglec-E is a negative regulator of acute pulmonary neutrophil inflammation and suppresses CD11b beta2-integrin-dependent signaling. Blood 121, 2084-2094, doi:10.1182/blood-2012-08-449983 (2013).
28Angata, T., Hayakawa, T., Yamanaka, M., Varki, A. & Nakamura, M. Discovery of Siglec-14, a novel sialic acid receptor undergoing concerted evolution with Siglec-5 in primates. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 20, 1964-1973, doi:10.1096/fj.06-5800com (2006).
29Angata, T. et al. Loss of Siglec-14 reduces the risk of chronic obstructive pulmonary disease exacerbation. Cellular and molecular life sciences : CMLS 70, 3199-3210, doi:10.1007/s00018-013-1311-7 (2013).
30Ali, S. R. et al. Siglec-5 and Siglec-14 are polymorphic paired receptors that modulate neutrophil and amnion signaling responses to group B Streptococcus. J Exp Med 211, 1231-1242, doi:10.1084/jem.20131853 (2014).
31Fong, J. J. et al. Immunomodulatory activity of extracellular Hsp70 mediated via paired receptors Siglec-5 and Siglec-14. EMBO J 34, 2775-2788, doi:10.15252/embj.201591407 (2015).
32Ono, M., Bolland, S., Tempst, P. & Ravetch, J. V. Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor Fc(gamma)RIIB. Nature 383, 263-266, doi:10.1038/383263a0 (1996).
33Malbec, O. et al. Fc epsilon receptor I-associated lyn-dependent phosphorylation of Fc gamma receptor IIB during negative regulation of mast cell activation. J Immunol 160, 1647-1658 (1998).
34Huang, J. H. et al. CR3 and Dectin-1 Collaborate in Macrophage Cytokine Response through Association on Lipid Rafts and Activation of Syk-JNK-AP-1 Pathway. PLoS Pathog 11, e1004985, doi:10.1371/journal.ppat.1004985 (2015).
35Chen, G. Y., Tang, J., Zheng, P. & Liu, Y. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science 323, 1722-1725, doi:10.1126/science.1168988 (2009).
36Liu, Y., Chen, G. Y. & Zheng, P. CD24-Siglec G/10 discriminates danger- from pathogen-associated molecular patterns. Trends Immunol 30, 557-561, doi:10.1016/j.it.2009.09.006 (2009).
37Chen, G. Y. et al. Amelioration of sepsis by inhibiting sialidase-mediated disruption of the CD24-SiglecG interaction. Nat Biotechnol 29, 428-435, doi:10.1038/nbt.1846 (2011).
38Chen, G. Y. et al. Broad and direct interaction between TLR and Siglec families of pattern recognition receptors and its regulation by Neu1. Elife 3, e04066, doi:10.7554/eLife.04066 (2014).
39Yamanaka, M., Kato, Y., Angata, T. & Narimatsu, H. Deletion polymorphism of SIGLEC14 and its functional implications. Glycobiology 19, 841-846, doi:10.1093/glycob/cwp052 (2009).
40Silva, M. et al. Sialic acid removal from dendritic cells improves antigen cross-presentation and boosts anti-tumor immune responses. Oncotarget 7, 41053-41066, doi:10.18632/oncotarget.9419 (2016).
41Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1, 31-39, doi:10.1038/35036052 (2000).
42Triantafilou, M., Miyake, K., Golenbock, D. T. & Triantafilou, K. Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation. J Cell Sci 115, 2603-2611 (2002).
43Zidovetzki, R. & Levitan, I. Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim Biophys Acta 1768, 1311-1324, doi:10.1016/j.bbamem.2007.03.026 (2007).
44Qu, C. K. The SHP-2 tyrosine phosphatase: signaling mechanisms and biological functions. Cell Res 10, 279-288, doi:10.1038/sj.cr.7290055 (2000).
45Tamir, I., Dal Porto, J. M. & Cambier, J. C. Cytoplasmic protein tyrosine phosphatases SHP-1 and SHP-2: regulators of B cell signal transduction. Curr Opin Immunol 12, 307-315 (2000).
46Liu, X. & Qu, C. K. Protein Tyrosine Phosphatase SHP-2 (PTPN11) in Hematopoiesis and Leukemogenesis. J Signal Transduct 2011, 195239, doi:10.1155/2011/195239 (2011).
47Lowenstein, E. J. et al. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell 70, 431-442 (1992).
48Jellusova, J. & Nitschke, L. Regulation of B cell functions by the sialic acid-binding receptors siglec-G and CD22. Front Immunol 2, 96, doi:10.3389/fimmu.2011.00096 (2011).
49Jounai, N., Kobiyama, K., Takeshita, F. & Ishii, K. J. Recognition of damage-associated molecular patterns related to nucleic acids during inflammation and vaccination. Front Cell Infect Microbiol 2, 168, doi:10.3389/fcimb.2012.00168 (2012).
50Tang, D., Kang, R., Coyne, C. B., Zeh, H. J. & Lotze, M. T. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev 249, 158-175, doi:10.1111/j.1600-065X.2012.01146.x (2012).
51Wu, Y., Ren, D. & Chen, G. Y. Siglec-E Negatively Regulates the Activation of TLR4 by Controlling Its Endocytosis. J Immunol 197, 3336-3347, doi:10.4049/jimmunol.1600772 (2016).
52Le Drean, E. et al. Inhibition of antigen-induced T cell response and antibody-induced NK cell cytotoxicity by NKG2A: association of NKG2A with SHP-1 and SHP-2 protein-tyrosine phosphatases. Eur J Immunol 28, 264-276, doi:10.1002/(SICI)1521-4141(199801)28:01<264::AID-IMMU264>3.0.CO;2-O (1998).
53Kim, E. J., Lee, S. M., Suk, K. & Lee, W. H. CD300a and CD300f differentially regulate the MyD88 and TRIF-mediated TLR signalling pathways through activation of SHP-1 and/or SHP-2 in human monocytic cell lines. Immunology 135, 226-235, doi:10.1111/j.1365-2567.2011.03528.x (2012).
54Drzeniek, R. Viral and bacterial neuraminidases. Curr Top Microbiol Immunol 59, 35-74 (1972).
55Jedrzejas, M. J. Pneumococcal virulence factors: structure and function. Microbiol Mol Biol Rev 65, 187-207 ; first page, table of contents, doi:10.1128/MMBR.65.2.187-207.2001 (2001).
56Air, G. M. & Laver, W. G. The neuraminidase of influenza virus. Proteins 6, 341-356, doi:10.1002/prot.340060402 (1989).
57Matrosovich, M. N., Matrosovich, T. Y., Gray, T., Roberts, N. A. & Klenk, H. D. Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J Virol 78, 12665-12667, doi:10.1128/JVI.78.22.12665-12667.2004 (2004).
58Cao, H. & Crocker, P. R. Evolution of CD33-related siglecs: regulating host immune functions and escaping pathogen exploitation? Immunology 132, 18-26, doi:10.1111/j.1365-2567.2010.03368.x (2011).
59Wang, X. et al. Evolution of siglec-11 and siglec-16 genes in hominins. Mol Biol Evol 29, 2073-2086, doi:10.1093/molbev/mss077 (2012).
60Schwarz, F. et al. Paired Siglec receptors generate opposite inflammatory responses to a human-specific pathogen. EMBO J 36, 751-760, doi:10.15252/embj.201695581 (2017).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top