跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/06 01:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳昱欣
研究生(外文):Yu-Hsin Chen
論文名稱:C型肝炎病毒NS3-4A蛋白質增強博來黴素誘導的DNA損傷
論文名稱(外文):Hepatitis C Virus NS3-4A Protein Enhances Bleomycin-Induced DNA Damage
指導教授:張鑫張鑫引用關係
口試日期:2017-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:微生物學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:49
中文關鍵詞:C型肝炎病毒NS3蛋白質NS4A蛋白質博來黴素DNA損傷
外文關鍵詞:hepatitis C virusNS3 proteinNS4A proteinbleomycinDNA damage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
已知感染C型肝炎病毒和肝細胞癌形成有關。而病毒感染造成的DNA損傷增加以及DNA修復下降,是導致癌症的可能原因之ㄧ。先前研究指出C型肝炎病毒非結構性蛋白質NS3會使細胞產生NO以及ROS並且造成細胞DNA的損傷以及DNA修復能力下降,導致表現NS3的細胞經遺傳毒物 (genotoxic agents)作用後的存活率下降。而NS4A是NS3蛋白酶的輔因子,NS4A也可以增加細胞轉型能力。本實驗使用可誘導NS3-4A表現的穩定細胞株,來探討表現NS3-4A的細胞經過DNA雙股斷裂的遺傳毒物的作用後是否會影響細胞的存活率。MTT細胞存活率的結果顯示,誘導NS3-4A表現會使得細胞在博來黴素 (bleomycin)作用後的存活率下降。接下來探討NS3-4A在遺傳毒物的作用下對DNA損傷修復造成的影響,利用西方墨點法觀察細胞內代表雙股斷裂的γ-H2AX表現量,結果顯示NS3-4A表現會增加細胞經博來黴素處理後的γ-H2AX表現量,代表DNA的損傷修復受到影響,並且γ-H2AX表現量增加的現象具有博來黴素劑量反應關係 (dose response),另外,結果顯示不管有無誘導NS3-4A,在移除博來黴素後的1小時DNA即修復完畢。最後使用NS3以及缺乏NS3蛋白酶活性的NS3pd-4A穩定細胞株進一步探討,結果顯示NS3以及NS3pd-4A皆會增加博來黴素作用後的γ-H2AX的表現量,因此NS3-4A使細胞在博來黴素的作用下γ-H2AX的表現量增加可能不需要NS4A以及NS3蛋白酶活性的參與。NS3-4A使細胞在博來黴素的作用下存活率下降以及γ-H2AX的表現量增加的確切機制還需要更進一步的研究。
Hepatitis C virus (HCV) infection is associated with the development of hepatocellular carcinoma. Increase of DNA damage and/or decrease of DNA repair caused by viral infection are associated with an increased risk of tumor formation. The HCV nonstructural protein 3 (NS3) was shown to be responsible for the increase of DNA damage and inhibition of DNA repair, mediated by NO and ROS. The effect of NS3 on DNA damage and repair resulted in a decrease in the survival rate of cells response to genotoxic agents. NS4A is a cofactor of NS3 protease. In addition, NS4A facilitates the transforming activity of NS3. In this study, NS3-4A stable cell line was used to investigate whether the expression of NS3-4A would affect cell viability in response to genotoxic agents that generate DNA double strand breaks. The data showed that NS3-4A decreased cell viability in response to bleomycin. To investigate the effect of NS3-4A on DNA damage and repair in response to bleomycin, γ-H2AX level that represents DNA double strand breaks was analyzed by western blotting. The results showed that NS3-4A increased the γ-H2AX level in response to bleomycin in a dose dependent manner. To examine whether the effect of NS3-4A on γ-H2AX level is associated with NS4A or NS3 protease activity, NS3 and NS3 protease activity deficiency NS3pd-4A stable cell lines were used. The data showed that both expressing NS3 and NS3pd-4A increased the γ-H2AX level in response to bleomycin. The results indicated that the effect of NS3-4A on γ-H2AX level is independent of NS4A and NS3 protease activity. Further study is required for the detailed mechanism of NS3-4A-mediated decrease of cell viability and increase of γ-H2AX level in response to bleomycin.
中文摘要………………………………………………………………..……………….i
英文摘要………………………………………………………………….…………….ii
目錄…….……………………………………………………………………………. ...iii
圖表目錄………………………………………………………………….…………….v
緒論...…………………...……………………………………………………..…...…...1
一、C型肝炎病毒 ...………………….....………………………...………….......1
二、C型肝炎病毒的基因體構造及功能…..……………………..…………........1
三、非結構性蛋白質NS3的特性……………….……………………………........4
四、非結構性蛋白質NS4A的特性……………………………..……...……........7
五、C型肝炎病毒與肝細胞癌………..…………………………..………............8
研究目的………………………………………….………………………………........11
實驗材料………………………………………….……………………………………12
一、藥品...………………………….……………………………………...……..12
二、抗體...…………………………………………….…………………...……..14
三、細胞培養液及轉染試劑 ...………………………………………..………..14
四、套組試劑...……………………………….………………….…..…………..14
五、其他材料...……………………………….………………..….………….… 15
六、細胞株...………………………………….………………...…………….… 15
實驗方法………………………………………….……………………………………17
一、 細胞全蛋白質收取...………….…………………………..….……………..17
二、 蛋白質定量…………………………………….………..………………..…17
三、 正十二烷硫酸鈉-聚丙醯胺板膠電泳(SDS-polyacrylamide gel electrophoresis, SDS-PAGE)……………………..…………..………..….17
四、 西方墨點法 (Western blotting)…………………….………...…………..…18
五、 細胞存活率分析 (MTT assay)…………………………………………..…19
六、 γ-游離輻射 (γ-ray)………………………………...…………………..……20
實驗結果………………………………………….……………………………………21
一、 表現NS3-4A對細胞存活率沒有影響…….……………………...……...21
二、 表現NS3-4A,降低細胞經博來黴素作用後的存活率…………………...21
三、 表現NS3-4A,增加細胞經博來黴素作用後的γ-H2AX表現量…………22
四、 表現NS3-4A,不影響細胞經博來黴素作用後的DNA修復………….23
五、 表現NS3或NS(3pd-4A),增加細胞經博來黴素作用後的γ-H2AX表現量………………………………………………………………………….23
討論……………………………………………….……………………………………25
一、 不同genotoxic agents刺激,NS3-4A對細胞存活率的影響……………….25
二、 NS3-4A對細胞生長調控的影響…………………………………………...26
三、 NS3-4A對細胞DNA損傷以及修復的影響………………………………26
四、 NS3-4A對細胞凋亡的影響………………………………………………...27
圖表……………………………………………….………………………………….. 29
參考文獻…………………………………………………………………….…… 42
Aizaki, H., Lee, K.J., Sung, V.M., Ishiko, H., Lai, M.M., 2004. Characterization of the hepatitis C virus RNA replication complex associated with lipid rafts. Virology 324, 450-461.
Appel, N., Pietschmann, T., Bartenschlager, R., 2005. Mutational analysis of hepatitis C virus nonstructural protein 5A: potential role of differential phosphorylation in RNA replication and identification of a genetically flexible domain. J Virol 79, 3187-3194.
Arzumanyan, A., Reis, H.M., Feitelson, M.A., 2013. Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer 13, 123-135.
Bartenschlager, R., Ahlborn-Laake, L., Mous, J., Jacobsen, H., 1993. Nonstructural protein 3 of the hepatitis C virus encodes a serine-type proteinase required for cleavage at the NS3/4 and NS4/5 junctions. J Virol 67, 3835-3844.
Bartosch, B., Cosset, F.L., 2006. Cell entry of hepatitis C virus. Virology 348, 1-12.
Beran, R.K., Lindenbach, B.D., Pyle, A.M., 2009. The NS4A protein of hepatitis C virus promotes RNA-coupled ATP hydrolysis by the NS3 helicase. J Virol 83, 3268-3275.
Bernstein, H., Bernstein, C., Payne, C.M., Dvorakova, K., Garewal, H., 2005. Bile acids as carcinogens in human gastrointestinal cancers. Mutat Res 589, 47-65.
Chang, S.C., Cheng, J.C., Kou, Y.H., Kao, C.H., Chiu, C.H., Wu, H.Y., Chang, M.F., 2000. Roles of the AX(4)GKS and arginine-rich motifs of hepatitis C virus RNA helicase in ATP- and viral RNA-binding activity. J Virol 74, 9732-9737.
Chang, S.C., Yen, J.H., Kang, H.Y., Jang, M.H., Chang, M.F., 1994. Nuclear localization signals in the core protein of hepatitis C virus. Biochem Biophys Res Commun 205, 1284-1290.
Cheng, J.C., Chang, M.F., Chang, S.C., 1999. Specific interaction between the hepatitis C virus NS5B RNA polymerase and the 3'' end of the viral RNA. J Virol 73, 7044-7049.
Choo, Q.L., Kuo, G., Weiner, A.J., Overby, L.R., Bradley, D.W., Houghton, M., 1989. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244, 359-362.
Choo, Q.L., Richman, K.H., Han, J.H., Berger, K., Lee, C., Dong, C., Gallegos, C., Coit, D., Medina-Selby, R., Barr, P.J., et al., 1991. Genetic organization and diversity of the hepatitis C virus. Proc Natl Acad Sci U S A 88, 2451-2455.
Egger, D., Wolk, B., Gosert, R., Bianchi, L., Blum, H.E., Moradpour, D., Bienz, K., 2002. Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J Virol 76, 5974-5984.
Failla, C., Tomei, L., De Francesco, R., 1994. Both NS3 and NS4A are required for proteolytic processing of hepatitis C virus nonstructural proteins. J Virol 68, 3753-3760.
Feng, D.Y., Sun, Y., Cheng, R.X., Ouyang, X.M., Zheng, H., 2005. Effect of hepatitis C virus nonstructural protein NS3 on proliferation and MAPK phosphorylation of normal hepatocyte line. World J Gastroenterol 11, 2157-2161.
Fujita, T., Ishido, S., Muramatsu, S., Itoh, M., Hotta, H., 1996. Suppression of actinomycin D-induced apoptosis by the NS3 protein of hepatitis C virus. Biochem Biophys Res Commun 229, 825-831.
Grakoui, A., McCourt, D.W., Wychowski, C., Feinstone, S.M., Rice, C.M., 1993. A second hepatitis C virus-encoded proteinase. Proc Natl Acad Sci U S A 90, 10583-10587.
Griffin, S.D., Beales, L.P., Clarke, D.S., Worsfold, O., Evans, S.D., Jaeger, J., Harris, M.P., Rowlands, D.J., 2003. The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug, Amantadine. FEBS Lett 535, 34-38.
Han, J., Won, E.J., Lee, B.Y., Hwang, U.K., Kim, I.C., Yim, J.H., Leung, K.M., Lee, Y.S., Lee, J.S., 2014. Gamma rays induce DNA damage and oxidative stress associated with impaired growth and reproduction in the copepod Tigriopus japonicus. Aquat Toxicol 152, 264-272.
Hassan, M., Ghozlan, H., Abdel-Kader, O., 2005. Activation of c-Jun NH2-terminal kinase (JNK) signaling pathway is essential for the stimulation of hepatitis C virus (HCV) non-structural protein 3 (NS3)-mediated cell growth. Virology 333, 324-336.
He, Q.Q., Cheng, R.X., Sun, Y., Feng, D.Y., Chen, Z.C., Zheng, H., 2003. Hepatocyte transformation and tumor development induced by hepatitis C virus NS3 C-terminal deleted protein. World J Gastroenterol 9, 474-478.
Hecht, S.M., 2000. Bleomycin: new perspectives on the mechanism of action. J Nat Prod 63, 158-168.
Higgs, M.R., Lerat, H., Pawlotsky, J.M., 2013. Hepatitis C virus-induced activation of beta-catenin promotes c-Myc expression and a cascade of pro-carcinogenetic events. Oncogene 32, 4683-4693.
Inchauspe, G., Zebedee, S., Lee, D.H., Sugitani, M., Nasoff, M., Prince, A.M., 1991. Genomic structure of the human prototype strain H of hepatitis C virus: comparison with American and Japanese isolates. Proc Natl Acad Sci U S A 88, 10292-10296.
Ishido, S., Hotta, H., 1998. Complex formation of the nonstructural protein 3 of hepatitis C virus with the p53 tumor suppressor. FEBS Lett 438, 258-262.
Jeong, S.W., Jang, J.Y., Chung, R.T., 2012. Hepatitis C virus and hepatocarcinogenesis. Clin Mol Hepatol 18, 347-356.
Jirasko, V., Montserret, R., Appel, N., Janvier, A., Eustachi, L., Brohm, C., Steinmann, E., Pietschmann, T., Penin, F., Bartenschlager, R., 2008. Structural and functional characterization of nonstructural protein 2 for its role in hepatitis C virus assembly. J Biol Chem 283, 28546-28562.
Kaneko, T., Tanji, Y., Satoh, S., Hijikata, M., Asabe, S., Kimura, K., Shimotohno, K., 1994. Production of two phosphoproteins from the NS5A region of the hepatitis C viral genome. Biochem Biophys Res Commun 205, 320-326.
Kao, J.H., Chen, P.J., Lai, M.Y., Yang, P.M., Sheu, J.C., Wang, T.H., Chen, D.S., 1995. Genotypes of hepatitis C virus in Taiwan and the progression of liver disease. J Clin Gastroenterol 21, 233-237.
Koc, A., Wheeler, L.J., Mathews, C.K., Merrill, G.F., 2004. Hydroxyurea arrests DNA replication by a mechanism that preserves basal dNTP pools. J Biol Chem 279, 223-230.
Kou, Y.H., Chang, M.F., Wang, Y.M., Hung, T.M., Chang, S.C., 2007. Differential requirements of NS4A for internal NS3 cleavage and polyprotein processing of hepatitis C virus. J Virol 81, 7999-8008.
Kuo, G., Choo, Q.L., Alter, H.J., Gitnick, G.L., Redeker, A.G., Purcell, R.H., Miyamura, T., Dienstag, J.L., Alter, M.J., Stevens, C.E., et al., 1989. An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science 244, 362-364.
Kwun, H.J., Jung, E.Y., Ahn, J.Y., Lee, M.N., Jang, K.L., 2001. p53-dependent transcriptional repression of p21(waf1) by hepatitis C virus NS3. J Gen Virol 82, 2235-2241.
Lai, M.M., 2002. Hepatitis C virus proteins: direct link to hepatic oxidative stress, steatosis, carcinogenesis and more. Gastroenterology 122, 568-571.
Lam, A.M., Frick, D.N., 2006. Hepatitis C virus subgenomic replicon requires an active NS3 RNA helicase. J Virol 80, 404-411.
Ma, Y., Yates, J., Liang, Y., Lemon, S.M., Yi, M., 2008. NS3 helicase domains involved in infectious intracellular hepatitis C virus particle assembly. J Virol 82, 7624-7639.
Machida, K., Cheng, K.T., Lai, C.K., Jeng, K.S., Sung, V.M., Lai, M.M., 2006. Hepatitis C virus triggers mitochondrial permeability transition with production of reactive oxygen species, leading to DNA damage and STAT3 activation. J Virol 80, 7199-7207.
Machida, K., Cheng, K.T., Sung, V.M., Lee, K.J., Levine, A.M., Lai, M.M., 2004. Hepatitis C virus infection activates the immunologic (type II) isoform of nitric oxide synthase and thereby enhances DNA damage and mutations of cellular genes. J Virol 78, 8835-8843.
Machida, K., McNamara, G., Cheng, K.T., Huang, J., Wang, C.H., Comai, L., Ou, J.H., Lai, M.M., 2010. Hepatitis C virus inhibits DNA damage repair through reactive oxygen and nitrogen species and by interfering with the ATM-NBS1/Mre11/Rad50 DNA repair pathway in monocytes and hepatocytes. J Immunol 185, 6985-6998.
Moradpour, D., Englert, C., Wakita, T., Wands, J.R., 1996. Characterization of cell lines allowing tightly regulated expression of hepatitis C virus core protein. Virology 222, 51-63.
Mottola, G., Cardinali, G., Ceccacci, A., Trozzi, C., Bartholomew, L., Torrisi, M.R., Pedrazzini, E., Bonatti, S., Migliaccio, G., 2002. Hepatitis C virus nonstructural proteins are localized in a modified endoplasmic reticulum of cells expressing viral subgenomic replicons. Virology 293, 31-43.
Nomura-Takigawa, Y., Nagano-Fujii, M., Deng, L., Kitazawa, S., Ishido, S., Sada, K., Hotta, H., 2006. Non-structural protein 4A of Hepatitis C virus accumulates on mitochondria and renders the cells prone to undergoing mitochondria-mediated apoptosis. J Gen Virol 87, 1935-1945.
Pal, S., Polyak, S.J., Bano, N., Qiu, W.C., Carithers, R.L., Shuhart, M., Gretch, D.R., Das, A., 2010. Hepatitis C virus induces oxidative stress, DNA damage and modulates the DNA repair enzyme NEIL1. J Gastroenterol Hepatol 25, 627-634.
Prikhod''ko, E.A., Prikhod''ko, G.G., Siegel, R.M., Thompson, P., Major, M.E., Cohen, J.I., 2004. The NS3 protein of hepatitis C virus induces caspase-8-mediated apoptosis independent of its protease or helicase activities. Virology 329, 53-67.
Sakamuro, D., Furukawa, T., Takegami, T., 1995. Hepatitis C virus nonstructural protein NS3 transforms NIH 3T3 cells. J Virol 69, 3893-3896.
Satoh, S., Tanji, Y., Hijikata, M., Kimura, K., Shimotohno, K., 1995. The N-terminal region of hepatitis C virus nonstructural protein 3 (NS3) is essential for stable complex formation with NS4A. J Virol 69, 4255-4260.
Shimoike, T., Mimori, S., Tani, H., Matsuura, Y., Miyamura, T., 1999. Interaction of hepatitis C virus core protein with viral sense RNA and suppression of its translation. J Virol 73, 9718-9725.
Shoji, I., Suzuki, T., Sato, M., Aizaki, H., Chiba, T., Matsuura, Y., Miyamura, T., 1999. Internal processing of hepatitis C virus NS3 protein. Virology 254, 315-323.
Siavoshian, S., Abraham, J.D., Thumann, C., Kieny, M.P., Schuster, C., 2005. Hepatitis C virus core, NS3, NS5A, NS5B proteins induce apoptosis in mature dendritic cells. J Med Virol 75, 402-411.
Simmonds, P., Bukh, J., Combet, C., Deleage, G., Enomoto, N., Feinstone, S., Halfon, P., Inchauspe, G., Kuiken, C., Maertens, G., Mizokami, M., Murphy, D.G., Okamoto, H., Pawlotsky, J.M., Penin, F., Sablon, E., Shin, I.T., Stuyver, L.J., Thiel, H.J., Viazov, S., Weiner, A.J., Widell, A., 2005. Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. Hepatology 42, 962-973.
Tai, C.L., Chi, W.K., Chen, D.S., Hwang, L.H., 1996. The helicase activity associated with hepatitis C virus nonstructural protein 3 (NS3). J Virol 70, 8477-8484.
Tanaka, M., Nagano-Fujii, M., Deng, L., Ishido, S., Sada, K., Hotta, H., 2006. Single-point mutations of hepatitis C virus NS3 that impair p53 interaction and anti-apoptotic activity of NS3. Biochem Biophys Res Commun 340, 792-799.
Tanaka, T., Kato, N., Cho, M.J., Shimotohno, K., 1995. A novel sequence found at the 3'' terminus of hepatitis C virus genome. Biochem Biophys Res Commun 215, 744-749.
Tanji, Y., Hijikata, M., Satoh, S., Kaneko, T., Shimotohno, K., 1995. Hepatitis C virus-encoded nonstructural protein NS4A has versatile functions in viral protein processing. J Virol 69, 1575-1581.
Wolk, B., Sansonno, D., Krausslich, H.G., Dammacco, F., Rice, C.M., Blum, H.E., Moradpour, D., 2000. Subcellular localization, stability, and trans-cleavage competence of the hepatitis C virus NS3-NS4A complex expressed in tetracycline-regulated cell lines. J Virol 74, 2293-2304.
Yang, S.H., Lee, C.G., Song, M.K., Sung, Y.C., 2000. Internal cleavage of hepatitis C virus NS3 protein is dependent on the activity of NS34A protease. Virology 268, 132-140.
You, S., Stump, D.D., Branch, A.D., Rice, C.M., 2004. A cis-acting replication element in the sequence encoding the NS5B RNA-dependent RNA polymerase is required for hepatitis C virus RNA replication. J Virol 78, 1352-1366.
Zekri, A.R., Sabry, G.M., Bahnassy, A.A., Shalaby, K.A., Abdel-Wahabh, S.A., Zakaria, S., 2005. Mismatch repair genes (hMLH1, hPMS1, hPMS2, GTBP/hMSH6, hMSH2) in the pathogenesis of hepatocellular carcinoma. World J Gastroenterol 11, 3020-3026.
Zemel, R., Gerechet, S., Greif, H., Bachmatove, L., Birk, Y., Golan-Goldhirsh, A., Kunin, M., Berdichevsky, Y., Benhar, I., Tur-Kaspa, R., 2001. Cell transformation induced by hepatitis C virus NS3 serine protease. J Viral Hepat 8, 96-102.
Zhong, W., Uss, A.S., Ferrari, E., Lau, J.Y., Hong, Z., 2000. De novo initiation of RNA synthesis by hepatitis C virus nonstructural protein 5B polymerase. J Virol 74, 2017-2022.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top