|
Anders, R.F., Adda, C.G., Foley, M., and Norton, R.S. (2010). Recombinant protein vaccines against the asexual blood stages of Plasmodium falciparum. Hum Vaccin 6, 39-53. Assenberg, R., Mastrangelo, E., Walter, T.S., Verma, A., Milani, M., Owens, R.J., Stuart, D.I., Grimes, J.M., and Mancini, E.J. (2009). Crystal structure of a novel conformational state of the flavivirus NS3 protein: implications for polyprotein processing and viral replication. J Virol 83, 12895-12906. Bale, J.F., Jr. (2012). Emerging viral infections. Semin Pediatr Neurol 19, 152-157. Bhatt, S., Gething, P.W., Brady, O.J., Messina, J.P., Farlow, A.W., Moyes, C.L., Drake, J.M., Brownstein, J.S., Hoen, A.G., Sankoh, O., et al. (2013). The global distribution and burden of dengue. Nature 496, 504-507. Broutet, N., Krauer, F., Riesen, M., Khalakdina, A., Almiron, M., Aldighieri, S., Espinal, M., Low, N., and Dye, C. (2016). Zika Virus as a Cause of Neurologic Disorders. N Engl J Med 374, 1506-1509. Center for Disease Control and Prevention. (2016). Chikungunya virus. https://www.cdc.gov/chikungunya/ Center for Disease Control and Prevention. (2013). Parasites-Lymphatic filariasis. https://www.cdc.gov/parasites/lymphaticfilariasis/ Center for Disease Control and Prevention. (2015). Japanese encephalitis. https://www.cdc.gov/japaneseencephalitis/index.html Center for Disease Control and Prevention. (2017). Yellow book Chapter3 Infectious Diseases Related to Travel -Yellow fever https://wwwnc.cdc.gov/travel/yellowbook/2016/infectious-diseases-related-to-travel/yellow-fever# Center for Disease Control and Prevention. (2017). Zika virus. https://www.cdc.gov/zika/index.html Chen, J.S., and Raikhel, A.S. (1996). Subunit cleavage of mosquito pro-vitellogenin by a subtilisin-like convertase. Proc Natl Acad Sci U S A 93, 6186-6190. Christophers, S. R. (1960). Aëdes aegypti (L.) the Yellow Fever Mosquito: its Life History, Bionomics and Structure. New York: Cambridge University Press Cowman, A.F., Berry, D., and Baum, J. (2012). The cellular and molecular basis for malaria parasite invasion of the human red blood cell. J Cell Biol 198, 961-971. de Alwis, R., Williams, K.L., Schmid, M.A., Lai, C.Y., Patel, B., Smith, S.A., Crowe, J.E., Wang, W.K., Harris, E., and de Silva, A.M. (2014). Dengue viruses are enhanced by distinct populations of serotype cross-reactive antibodies in human immune sera. PLoS Pathog 10, e1004386. Dhadialla, T.S., and Raikhel, A.S. (1990). Biosynthesis of mosquito vitellogenin. J Biol Chem 265, 9924-9933. Duffy, M.R., Chen, T.H., Hancock, W.T., Powers, A.M., Kool, J.L., Lanciotti, R.S., Pretrick, M., Marfel, M., Holzbauer, S., Dubray, C., et al. (2009). Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med 360, 2536-2543. Goldberg, D.E., Siliciano, R.F., and Jacobs, W.R., Jr. (2012). Outwitting evolution: fighting drug-resistant TB, malaria, and HIV. Cell 148, 1271-1283. Guy, B., Briand, O., Lang, J., Saville, M., and Jackson, N. (2015). Development of the Sanofi Pasteur tetravalent dengue vaccine: One more step forward. Vaccine 33, 7100-7111. Guzman, M.G., Alvarez, M., and Halstead, S.B. (2013). Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection. Arch Virol 158, 1445-1459. Guzman, M.G., Halstead, S.B., Artsob, H., Buchy, P., Farrar, J., Gubler, D.J., Hunsperger, E., Kroeger, A., Margolis, H.S., Martinez, E., et al. (2010). Dengue: a continuing global threat. Nat Rev Microbiol 8, S7-16. Hadinegoro, S.R., Arredondo-Garcia, J.L., Capeding, M.R., Deseda, C., Chotpitayasunondh, T., Dietze, R., Muhammad Ismail, H.I., Reynales, H., Limkittikul, K., Rivera-Medina, D.M., et al. (2015). Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of Endemic Disease. N Engl J Med 373, 1195-1206. Hallenberger, S., Bosch, V., Angliker, H., Shaw, E., Klenk, H.D., and Garten, W. (1992). Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160. Nature 360, 358-361. Halstead, S.B. (2008). Dengue virus-mosquito interactions. Annu Rev Entomol 53, 273-291. Halstead, S.B., and Thomas, S.J. (2011). New Japanese encephalitis vaccines: alternatives to production in mouse brain. Expert Rev Vaccines 10, 355-364. Hayflick, J.S., Wolfgang, W.J., Forte, M.A., and Thomas, G. (1992). A unique Kex2-like endoprotease from Drosophila melanogaster is expressed in the central nervous system during early embryogenesis. J Neurosci 12, 705-717. Kindhauser, M.K., Allen, T., Frank, V., Santhana, R.S., and Dye, C. (2016). Zika: the origin and spread of a mosquito-borne virus. Bull World Health Organ 94, 675-686C. Kistler, K.E., Vosshall, L.B., and Matthews, B.J. (2015). Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti. Cell Rep 11, 51-60. Klase, Z.A., Khakhina, S., Schneider Ade, B., Callahan, M.V., Glasspool-Malone, J., and Malone, R. (2016). Zika Fetal Neuropathogenesis: Etiology of a Viral Syndrome. PLoS Negl Trop Dis 10, e0004877. Komiyama, T., Swanson, J.A., and Fuller, R.S. (2005). Protection from anthrax toxin-mediated killing of macrophages by the combined effects of furin inhibitors and chloroquine. Antimicrob Agents Chemother 49, 3875-3882. Molloy, S.S., Anderson, E.D., Jean, F., and Thomas, G. (1999). Bi-cycling the furin pathway: from TGN localization to pathogen activation and embryogenesis. Trends Cell Biol 9, 28-35. Molloy, S.S., Bresnahan, P.A., Leppla, S.H., Klimpel, K.R., and Thomas, G. (1992). Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen. J Biol Chem 267, 16396-16402. Moulard, M., Hallenberger, S., Garten, W., and Klenk, H.D. (1999). Processing and routage of HIV glycoproteins by furin to the cell surface. Virus Res 60, 55-65. Mukherjee, S., Sirohi, D., Dowd, K.A., Chen, Z., Diamond, M.S., Kuhn, R.J., and Pierson, T.C. (2016). Enhancing dengue virus maturation using a stable furin over-expressing cell line. Virology 497, 33-40. Mukhopadhyay, S., Kuhn, R.J., and Rossmann, M.G. (2005). A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3, 13-22. Noble, C.G., Seh, C.C., Chao, A.T., and Shi, P.Y. (2012). Ligand-bound structures of the dengue virus protease reveal the active conformation. J Virol 86, 438-446. Petersen, L.R., Jamieson, D.J., Powers, A.M., and Honein, M.A. (2016). Zika Virus. N Engl J Med 374, 1552-1563. Raikhel, A.S., Kokoza, V.A., Zhu, J., Martin, D., Wang, S.F., Li, C., Sun, G., Ahmed, A., Dittmer, N., and Attardo, G. (2002). Molecular biology of mosquito vitellogenesis: from basic studies to genetic engineering of antipathogen immunity. Insect Biochem Mol Biol 32, 1275-1286. Screaton, G., Mongkolsapaya, J., Yacoub, S., and Roberts, C. (2015). New insights into the immunopathology and control of dengue virus infection. Nat Rev Immunol 15, 745-759. Siler, J. F., Hall, M. W. and Hitchens, A. P. (1926). Dengue: its history, epidemiology, mechanism of transmission, etiology, clinical manifestations, immunity and prevention. Philippine J. Sci 29, 1-304 Soderhall, K. (1999). Invertebrate immunity. Dev Comp Immunol 23, 263-266. Song, B.H., Yun, S.I., Woolley, M., and Lee, Y.M. (2017). Zika virus: History, epidemiology, transmission, and clinical presentation. J Neuroimmunol 308, 50-64. Stieneke-Grober, A., Vey, M., Angliker, H., Shaw, E., Thomas, G., Roberts, C., Klenk, H.D., and Garten, W. (1992). Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO J 11, 2407-2414. Thomas, G. (2002). Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat Rev Mol Cell Biol 3, 753-766. Tolle, M.A. (2009). Mosquito-borne diseases. Curr Probl Pediatr Adolesc Health Care 39, 97-140. Tse, L.V., Hamilton, A.M., Friling, T., and Whittaker, G.R. (2014). A novel activation mechanism of avian influenza virus H9N2 by furin. J Virol 88, 1673-1683. Vasilakis, N., Cardosa, J., Hanley, K.A., Holmes, E.C., and Weaver, S.C. (2011). Fever from the forest: prospects for the continued emergence of sylvatic dengue virus and its impact on public health. Nat Rev Microbiol 9, 532-541. Volchkov, V.E., Feldmann, H., Volchkova, V.A., and Klenk, H.D. (1998). Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proc Natl Acad Sci U S A 95, 5762-5767. Wang, S.F., Chang, K., Lu, R.W., Wang, W.H., Chen, Y.H., Chen, M., Wu, D.C., and Chen, Y.M. (2015). Large Dengue virus type 1 outbreak in Taiwan. Emerg Microbes Infect 4, e46. Wang, S.F., Wang, W.H., Chang, K., Chen, Y.H., Tseng, S.P., Yen, C.H., Wu, D.C., and Chen, Y.M. (2016). Severe Dengue Fever Outbreak in Taiwan. Am J Trop Med Hyg 94, 193-197. World Health Organization. (2016). Dengue and severe dengue. WHO. http://www.who.int/mediacentre/factsheets/fs117/en/ Yu, I.M., Zhang, W., Holdaway, H.A., Li, L., Kostyuchenko, V.A., Chipman, P.R., Kuhn, R.J., Rossmann, M.G., and Chen, J. (2008). Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 319, 1834-1837. Zeldenryk, L., Gordon, S., Gray, M., Speare, R., and Melrose, W. (2012). Disability measurement for lymphatic filariasis: a review of generic tools used within morbidity management programs. PLoS Negl Trop Dis 6, e1768. Zybert, I.A., van der Ende-Metselaar, H., Wilschut, J., and Smit, J.M. (2008). Functional importance of dengue virus maturation: infectious properties of immature virions. J Gen Virol 89, 3047-3051.
|