跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/21 10:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝宜君
研究生(外文):Yi-Chun Hsieh
論文名稱:外吐小體中EB病毒蛋白激酶BGLF4特性之研究
論文名稱(外文):Characterization of Epstein-Barr virus infected cell-derived exosomal BGLF4 kinase
指導教授:陳美如陳美如引用關係
口試日期:2017-07-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:微生物學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:55
中文關鍵詞:外吐小體BGLF4 蛋白激酶EB病毒溶裂時期細胞骨架重新排列
外文關鍵詞:BGLF4exosomeEpstein-Barr viruslytic cyclecytoskeleton rearrangement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
外吐小體(exosomes)是一種從細胞質當中多泡體(multivesicular endosomes)形成而分泌出來具有雙層膜結構的微小膜泡,並且在細胞間的溝通扮演著不可或缺的角色。近年來已經有研究發現受EB病毒感染的細胞所分泌出的外吐小體可以包裹EB病毒潛伏期所表現病毒蛋白和miRNA,並且對其他細胞造成影響。然而外吐小體在EB病毒所感染細胞進入溶解期時所扮演的角色仍然是未知的。因此本研究是為了解當EB病毒近入缺損型型溶解期,外吐小體是否包裹EB病毒的溶解期所表現的病毒蛋白。Raji 細胞是帶有EB病毒的Burkitt’s 淋巴瘤細胞株,當Raji 細胞被刺激進入溶裂期時會表現溶裂期的病毒蛋白,但卻因為缺少了single-stranded-DNA binding protein (BALF2)而無法產生病毒。而我們發現Raji 細胞進入部分溶解期時所分泌出的外吐小體裡面包含了BGLF4 蛋白激酶、BFRF1/BFLF2病毒出核複合體蛋白、BMFR1 DNA聚合酶輔助因子。利用細胞轉染的方式,發現單獨表現的BGLF4 蛋白激酶可以被包裹在外吐小體當中,更有趣的是K102I也就是失去激酶活性的 BGLF4不會被包裹在外吐小體裡,因此BGLF4的激酶活性可以影響本身是否被包裹進去外吐小體當中,此外透過試管內激酶活性分析發現在外吐小體當中的BGLF4仍然保有激酶活性,接著我們發現HeLa細胞可以吸收帶有GFP-BGLF4的螢光外吐小體,外吐小體中的GFP-BGLF4可以促使細胞骨架重新排列而導致細胞皺縮圓起。Raji 細胞所分泌出的外吐小體被螢光標記後也會被HeLa細胞吸收。在我們的研究當中發現,當EB病毒進入溶裂時期所分泌出的外吐小體包裹著BGLF4,可以被細胞所吸收並造成細胞型態的改變。
Exosomes are membrane nano-vesicles secreted by most cells from multivesicular endosomes and participate in intercellular communications. A number of recent studies indicate that exosomes secreted from EBV latent cells contain latent viral proteins and miRNAs which induce various cellular changes in target cells. However, the characteristics of exosomes released from the lytic cycle of Epstein-Barr virus (EBV) infected cells are still unclear. Raji cells which is an EBV-genome positive Burkitt’s lymphoma cell line with the deletion of single-stranded-DNA binding protein (BALF2) express viral lytic proteins, but do not produce EBV virion after chemical induction into abortive lytic replication. Thus, in this study, we aimed to investigate whether EBV lytic proteins are packaged within exosomes secreted from Raji cells during abortive lytic cycle. Here, we showed that multiple EBV lytic viral proteins such as protein kinase BGLF4, the DNA polymerase processivity factors BMRF1, nuclear envelope-associated BFRF1 and intranuclear BFLF2 are packaged in exosomes secreted from Raji cells during abortive lytic replication. In transiently transfected HeLa cells, BGLF4 but not K102I (kinase dead mutant) is detected in exosomes. BGLF4 presented in exosomes is a kinase activity dependent manner. Furthermore, exosomal BGLF4 kinase carries kinase activity as demonstrated by in vitro kinase assay. We further show that fluorescently labelled exosomes containing GFP-BGLF4 are uptaken by HeLa cells and induce the reorgainzation of cytoskeleton which lead to cell rounding. Fluorescently labelled exosomes derived from non-induced and induced Raji cells were also uptaken by HeLa cells. Our findings suggest that exosome-carried active BGLF4 are taken up by the recipient cells and cause the rearrangement of cytoskeleton and cell morphology changes.
Contents
口試委員會審定書 ..................................................................................................... I
誌謝 ............................................................................................................................ II
中文摘要 ................................................................................................................... III
Abstract ..................................................................................................................... IV
Contents ..................................................................................................................... VI
1. Introduction ......................................................................................................... 1
1.1. Epstein-Barr virus ........................................................................................ 1
1.1.1. The classification, viral structure and genome of EBV ........................ 1
1.1.2. The life cycle of EBV ............................................................................ 2
1.1.3. Herpesviral homologues of BGLF4 kinase .......................................... 4
1.1.4. EBV BGLF4 protein kinase ................................................................. 6
1.2. Exosomes ........................................... 7
1.2.1. Characteristics of exosomes ................................................................. 8
1.2.2. Exosome biogenesis ............................................................................. 8
1.2.3. Functions of exosomes ........................................................................ 10
1.2.4. EBV and exosomes ............................................................................. 11
1.3. Aim of the study .......................................................................................... 12
2. Materials & Methods ........................................................................................ 14
2.1. Cell culture .................................................................................................. 14
2.2. Plasmids ...................................................................................................... 14
2.3. Cell transfection .......................................................................................... 15
2.4. Western blot analysis ................................................................................. 15
2.5. Indirect immunofluorescence assay (IFA) ............................................... 16
2.6. Exosome purification ................................................................................. 17
2.6.1. Exosome purification by ultracentrifugation ...................................... 17
2.6.2. Exosome purification by ExoQuick-TCTM Exosome Precipitation Solution .............................. 18
2.6.3. Exosomes-depleted medium ............................................................... 18
2.6.4. Nanoparticle tracking analysis (NTA) ................................................. 19
2.6.5. Fluorescent Exosomes Labeling and Exosome uptake assay .............. 19
2.7. Purification of bacterially expressed GST and GST-lamin A tail 2 fusion proteins ........................................................................................................ 20
2.8. Immunoprecipitation kinase assay ........................................................... 21
3. Result ................................................................................................................ 23
3.1. The size distributions of exosomes isolated from Raji cells by ultracentrifugation. ................................... 23
3.2. Multiple EBV lytic proteins are packaged in the exosomes. ................... 24
3.3. Package of BGLF4 in exosomes was kinase activity dependent. ............. 25
3.4. BGLF4 retains kinase activity in exosomes. .............................................. 26
3.5. Exosomal BGLF4 induces the cytoskeleton rearrangement of recipient cells. ............................................................................................................. 27
3.6. Exosomes isolated from chemical induced Raji cells led to less effective cell contraction. .......................................................................................... 28
4. Discussion ............................................................................................................. 29
5. Figures .................................................................................................................. 32
Fig.1. Nanoparticle tracking analysis (NTA) of exosomes released from EBV positive Raji cells. .................................... 32
Fig.2. Multiple EBV lytic proteins are packaged in the exosomes released from Raji cells during abortive lytic replication.............. 33
Fig.3. BGLF4 is packaged within exosomes secreted from transfected HeLa cells. ............................................................................................................ 34
Fig.4. BGLF4 is packaged within exosomes released from TW01 tet-on BGLF4 cells after doxycycline induction............................ 35
Fig.5. Exosomal BGLF4 and K102I in the exosomes purified from transfected HeLa cells. ............................................................................................................ 36
Fig.6. Purification of bacterially expressed GST and GST-lamin A Tail 2. ........ 37
Fig. 7. BGLF4 kinase in exosomes phosphorylate lamin A tail 2 in vitro. ............ 38
Fig. 8. BGLF4 induces cell contraction in HeLa cells. .......................................... 39
Fig. 9. GFP, GFP-BGLF4 and GFP-K102I was packaged within exosome purified by ultracentrifugation. .................................... 40
Fig. 10. Exosome derived GFP-BGLF4 is uptaken by HeLa cells and induces cell contraction. ................................................................................................. 41
Fig. 11. Exosome from non-induced and induced Raji cells labelled with green fluorescence PKH67 are uptaken by HeLa cells and induces cell contraction. ............. 42
Fig. 12. The protein levels of exosomal BGLF4 from Raji cells and transiently transfected HeLa cells. ................................ 43
Fig. 13. A hypothetical model of BGLF4 in exosomes. ....................................... 44
Reference ................................................................. 45
Ahmed, W., P.S. Philip, S. Attoub, and G. Khan. 2015. Epstein–Barr virus-infected cells release Fas ligand in exosomal fractions and induce apoptosis in recipient cells via the extrinsic pathway. Journal of General Virology. 96:3646-3659.
Alenquer, M., and M.J. Amorim. 2015. Exosome biogenesis, regulation, and function in viral infection. Viruses. 7:5066-5083.
Ariza, M.E., P. Rivailler, R. Glaser, M. Chen, and M.V. Williams. 2013. Epstein-Barr virus encoded dUTPase containing exosomes modulate innate and adaptive immune responses in human dendritic cells and peripheral blood mononuclear cells. PLoS One. 8:e69827.
Asai, R., A. Kato, K. Kato, M. Kanamori-Koyama, K. Sugimoto, T. Sairenji, Y. Nishiyama, and Y. Kawaguchi. 2006. Epstein-Barr virus protein kinase BGLF4 is a virion tegument protein that dissociates from virions in a phosphorylation-dependent process and phosphorylates the viral immediate-early protein BZLF1. Journal of virology. 80:5125-5134.
Azmi, A.S., B. Bao, and F.H. Sarkar. 2013. Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer and Metastasis Reviews. 32:623-642.
Baek, M.-C., P.M. Krosky, A. Pearson, and D.M. Coen. 2004. Phosphorylation of the RNA polymerase II carboxyl-terminal domain in human cytomegalovirus-infected cells and in vitro by the viral UL97 protein kinase. Virology. 324:184-193.
Baer, R., A. Bankier, M. Biggin, P. Deininger, P. Farrell, T. Gibson, G. Hatfull, G. Hudson, S. Satchwell, and C. Seguin. 1984. DNA sequence and expression of the B95-8 Epstein—Barr virus genome. Nature. 310:207-211.
Baietti, M.F., Z. Zhang, E. Mortier, A. Melchior, G. Degeest, A. Geeraerts, Y. Ivarsson, F. Depoortere, C. Coomans, and E. Vermeiren. 2012. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nature cell biology. 14:677-685.
Beckler, M.D., J.N. Higginbotham, J.L. Franklin, A.-J. Ham, P.J. Halvey, I.E. Imasuen, C. Whitwell, M. Li, D.C. Liebler, and R.J. Coffey. 2013. Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. Molecular & cellular proteomics. 12:343-355.
Bollard, C.M., C.M. Rooney, and H.E. Heslop. 2012. T-cell therapy in the treatment of post-transplant lymphoproliferative disease. Nature reviews Clinical oncology. 9:510-519.
Canitano, A., G. Venturi, M. Borghi, M.G. Ammendolia, and S. Fais. 2013. Exosomes released in vitro from Epstein–Barr virus (EBV)-infected cells contain EBV-encoded latent phase mRNAs. Cancer letters. 337:193-199.
Chang, C.-W. 2014. The nuclear targeting of EBV BGLF4 kinase and its regulatory effects on nuclear import. National Taiwan University Doctoral Dissertation.
Chang, C.-W., C.-P. Lee, Y.-H. Huang, P.-W. Yang, J.-T. Wang, and M.-R. Chen. 2012a. Epstein-Barr virus protein kinase BGLF4 targets the nucleus through interaction with nucleoporins. Journal of virology. 86:8072-8085.
Chang, R.S., and H.D. Golden. 1971. Transformation of human leucocytes by throat washings from infectious mononucleosis patients. Nature (London). 234:359-360.
Chang, Y.-H., C.-P. Lee, M.-T. Su, J.-T. Wang, J.-Y. Chen, S.-F. Lin, C.-H. Tsai, M.-J. Hsieh, K. Takada, and M.-R. Chen. 2012b. Epstein-Barr virus BGLF4 kinase retards cellular S-phase progression and induces chromosomal abnormality. PloS one. 7:e39217.
Chaput, N., and C. Théry. 2011. Exosomes: immune properties and potential clinical implementations. In Seminars in immunopathology. Vol. 33. Springer. 419-440.
Chee, M., G. Lawrence, and B. Barrell. 1989. Alpha-, beta-and gammaherpesviruses encode a putative phosphotransferase. Journal of General Virology. 70:1151-1160.
Chen, M.-R., S.-J. Chang, H. Huang, and J.-Y. Chen. 2000. A protein kinase activity associated with Epstein-Barr virus BGLF4 phosphorylates the viral early antigen EA-D in vitro. Journal of Virology. 74:3093-3104.
Choi, D.S., D.K. Kim, Y.K. Kim, and Y.S. Gho. 2015. Proteomics of extracellular vesicles: exosomes and ectosomes. Mass spectrometry reviews. 34:474-490.
Colombo, M., C. Moita, G. van Niel, J. Kowal, J. Vigneron, P. Benaroch, N. Manel, L.F. Moita, C. Théry, and G. Raposo. 2013. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci. 126:5553-5565.
Decaussin, G., V. Leclerc, and T. Ooka. 1995. The lytic cycle of Epstein-Barr virus in the nonproducer Raji line can be rescued by the expression of a 135-kilodalton protein encoded by the BALF2 open reading frame. Journal of virology. 69:7309-7314.
Dukers, D.F., P. Meij, M.B. Vervoort, W. Vos, R.J. Scheper, C.J. Meijer, E. Bloemena, and J.M. Middeldorp. 2000. Direct immunosuppressive effects of EBV-encoded latent membrane protein 1. The Journal of Immunology. 165:663-670.
Epstein, M., G. Henle, B. Achong, and Y. Barr. 1965. Morphological and biological studies on a virus in cultured lymphoblasts from Burkitt''s lymphoma. Journal of Experimental Medicine. 121:761-770.
Flanagan, J., J. Middeldorp, and T. Sculley. 2003. Localization of the Epstein–Barr virus protein LMP 1 to exosomes. Journal of General Virology. 84:1871-1879.
Gershburg, E., K. Hong, and J.S. Pagano. 2004a. Effects of maribavir and selected indolocarbazoles on Epstein-Barr virus protein kinase BGLF4 and on viral lytic replication. Antimicrobial agents and chemotherapy. 48:1900-1903.
Gershburg, E., M. Marschall, K. Hong, and J.S. Pagano. 2004b. Expression and localization of the Epstein-Barr virus-encoded protein kinase. Journal of virology. 78:12140-12146.
Gershburg, E., and J.S. Pagano. 2008. Conserved herpesvirus protein kinases. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics. 1784:203-212.
Gonnella, R., A. Farina, R. Santarelli, S. Raffa, R. Feederle, R. Bei, M. Granato, A. Modesti, L. Frati, and H.-J. Delecluse. 2005. Characterization and intracellular localization of the Epstein-Barr virus protein BFLF2: interactions with BFRF1 and with the nuclear lamina. Journal of virology. 79:3713-3727.
Gourzones, C., A. Gelin, I. Bombik, J. Klibi, B. Vérillaud, J. Guigay, P. Lang, S. Témam, V. Schneider, and C. Amiel. 2010. Extra-cellular release and blood diffusion of BART viral micro-RNAs produced by EBV-infected nasopharyngeal carcinoma cells. Virology journal. 7:271.
Granzow, H., B.G. Klupp, W. Fuchs, J. Veits, N. Osterrieder, and T.C. Mettenleiter. 2001. Egress of alphaherpesviruses: comparative ultrastructural study. Journal of Virology. 75:3675-3684.
Grogan, E., H. Jenson, J. Countryman, L. Heston, L. Gradoville, and G. Miller. 1987. Transfection of a rearranged viral DNA fragment, WZhet, stably converts latent Epstein-Barr viral infection to productive infection in lymphoid cells. Proceedings of the National Academy of Sciences. 84:1332-1336.
Hamirally, S., J.P. Kamil, Y.M. Ndassa-Colday, A.J. Lin, W.J. Jahng, M.-C. Baek, S. Noton, L.A. Silva, M. Simpson-Holley, and D.M. Knipe. 2009. Viral mimicry of Cdc2/cyclin-dependent kinase 1 mediates disruption of nuclear lamina during human cytomegalovirus nuclear egress. PLoS Pathog. 5:e1000275.
Henderson, E., G. Miller, J. Robinson, and L. Heston. 1977. Efficiency of transformation of lymphocytes by Epstein-Barr virus. Virology. 76:152-163.
Hood, J.L., R.S. San, and S.A. Wickline. 2011. Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer research. 71:3792-3801.
Hoshino, A., B. Costa-Silva, T.-L. Shen, G. Rodrigues, A. Hashimoto, M.T. Mark, H. Molina, S. Kohsaka, A. Di Giannatale, and S. Ceder. 2015. Tumour exosome integrins determine organotropic metastasis. Nature. 527:329-335.
Hsu, J.L., and S.L. Glaser. 2000. Epstein–Barr virus-associated malignancies: epidemiologic patterns and etiologic implications. Critical reviews in oncology/hematology. 34:27-53.
Hudewentz, J., G. Bornkamm, and H. Zur Hausen. 1980. Effect of the diterpene ester TPA on Epstein-Barr virus antigen-and DNA synthesis in producer and nonproducer cell lines. Virology. 100:175-178.
Hurley, J.H. 2008. ESCRT complexes and the biogenesis of multivesicular bodies. Current opinion in cell biology. 20:4-11.
Hurwitz, S.N., D. Nkosi, M.M. Conlon, S.B. York, X. Liu, D.C. Tremblay, and D.G. Meckes. 2017. CD63 Regulates Epstein-Barr Virus LMP1 Exosomal Packaging, Enhancement of Vesicle Production, and Noncanonical NF-κB Signaling. Journal of virology. 91:e02251-02216.
Ikeda, M., and R. Longnecker. 2007. Cholesterol is critical for Epstein-Barr virus latent membrane protein 2A trafficking and protein stability. Virology. 360:461-468.
Jacob, T., C. Van den Broeke, and H.W. Favoreel. 2011. Viral serine/threonine protein kinases. Journal of virology. 85:1158-1173.
Jiang, X., and X. Wang. 2004. Cytochrome C-mediated apoptosis. Annual review of biochemistry. 73.
Johannsen, E., M. Luftig, M.R. Chase, S. Weicksel, E. Cahir-McFarland, D. Illanes, D. Sarracino, and E. Kieff. 2004. Proteins of purified Epstein-Barr virus. Proceedings of the National Academy of Sciences of the United States of America. 101:16286-16291.
Jones, J.F., S. Shurin, C. Abramowsky, R.R. Tubbs, C.G. Sciotto, R. Wahl, J. Sands, D. Gottman, B.Z. Katz, and J. Sklar. 1988. T-cell lymphomas containing Epstein–Barr viral DNA in patients with chronic Epstein–Barr virus infections. New England Journal of Medicine. 318:733-741.
Kato, K., Y. Kawaguchi, M. Tanaka, M. Igarashi, A. Yokoyama, G. Matsuda, M. Kanamori, K. Nakajima, Y. Nishimura, and M. Shimojima. 2001. Epstein–Barr virus-encoded protein kinase BGLF4 mediates hyperphosphorylation of cellular elongation factor 1δ (EF-1δ): EF-1δ is universally modified by conserved protein kinases of herpesviruses in mammalian cells. Journal of General Virology. 82:1457-1463.
Kato, K., A. Yokoyama, Y. Tohya, H. Akashi, Y. Nishiyama, and Y. Kawaguchi. 2003. Identification of protein kinases responsible for phosphorylation of Epstein–Barr virus nuclear antigen leader protein at serine-35, which regulates its coactivator function. Journal of general virology. 84:3381-3392.
Kawaguchi, Y., K. Kato, M. Tanaka, M. Kanamori, Y. Nishiyama, and Y. Yamanashi. 2003. Conserved protein kinases encoded by herpesviruses and cellular protein kinase cdc2 target the same phosphorylation site in eukaryotic elongation factor 1δ. Journal of virology. 77:2359-2368.
Kawaguchi, Y., T. Matsumura, B. Roizman, and K. Hirai. 1999. Cellular elongation factor 1δ is modified in cells infected with representative alpha-, beta-, or gammaherpesviruses. Journal of virology. 73:4456-4460.
Kawaguchi, Y., C. Van Sant, and B. Roizman. 1998. Eukaryotic elongation factor 1δ is hyperphosphorylated by the protein kinase encoded by the UL13 gene of herpes simplex virus 1. Journal of virology. 72:1731-1736.
Keerthikumar, S., L. Gangoda, M. Liem, P. Fonseka, I. Atukorala, C. Ozcitti, A. Mechler, C.G. Adda, C.-S. Ang, and S. Mathivanan. 2015. Proteogenomic analysis reveals exosomes are more oncogenic than ectosomes. Oncotarget. 6:15375.
Keryer-Bibens, C., C. Pioche-Durieu, C. Villemant, S. Souquère, N. Nishi, M. Hirashima, J. Middeldorp, and P. Busson. 2006. Exosomes released by EBV-infected nasopharyngeal carcinoma cells convey the viral latent membrane protein 1 and the immunomodulatory protein galectin 9. BMC cancer. 6:283.
Kleijmeer, M.J., W. Stoorvogel, J.M. Griffith, O. Yoshie, and H.J. Geuze. 1998. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. Journal of Biological Chemistry. 273:20121-20127.
Klibi, J., T. Niki, A. Riedel, C. Pioche-Durieu, S. Souquere, E. Rubinstein, S. Le Moulec, J. Guigay, M. Hirashima, and F. Guemira. 2009. Blood diffusion and Th1-suppressive effects of galectin-9–containing exosomes released by Epstein-Barr virus–infected nasopharyngeal carcinoma cells. Blood. 113:1957-1966.
Kowal, J., M. Tkach, and C. Théry. 2014. Biogenesis and secretion of exosomes. Current opinion in cell biology. 29:116-125.
Kudoh, A., T. Daikoku, Y. Ishimi, Y. Kawaguchi, N. Shirata, S. Iwahori, H. Isomura, and T. Tsurumi. 2006. Phosphorylation of MCM4 at sites inactivating DNA helicase activity of the MCM4-MCM6-MCM7 complex during Epstein-Barr virus productive replication. Journal of virology. 80:10064-10072.
Laulagnier, K., C. Motta, S. Hamdi, R. Sébastien, F. Fauvelle, J.-F. Pageaux, T. Kobayashi, J.-P. Salles, B. Perret, and C. Bonnerot. 2004. Mast cell-and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochemical Journal. 380:161-171.
Lee, C.-P., J.-Y. Chen, J.-T. Wang, K. Kimura, A. Takemoto, C.-C. Lu, and M.-R. Chen. 2007. Epstein-Barr virus BGLF4 kinase induces premature chromosome condensation through activation of condensin and topoisomerase II. Journal of virology. 81:5166-5180.
Lee, C.-P., Y.-H. Huang, S.-F. Lin, Y. Chang, Y.-H. Chang, K. Takada, and M.-R. Chen. 2008. Epstein-Barr virus BGLF4 kinase induces disassembly of the nuclear lamina to facilitate virion production. Journal of virology. 82:11913-11926.
Lee, C.-P., P.-T. Liu, H.-N. Kung, M.-T. Su, H.-H. Chua, Y.-H. Chang, C.-W. Chang, C.-H. Tsai, F.-T. Liu, and M.-R. Chen. 2012. The ESCRT machinery is recruited by the viral BFRF1 protein to the nucleus-associated membrane for the maturation of Epstein-Barr Virus. PLoS pathogens. 8:e1002904.
Lee, M.-A., M.E. Diamond, and J.L. Yates. 1999. Genetic evidence that EBNA-1 is needed for efficient, stable latent infection by Epstein-Barr virus. Journal of virology. 73:2974-2982.
Li, P., M. Kaslan, S.H. Lee, J. Yao, and Z. Gao. 2017. Progress in exosome isolation techniques. Theranostics. 7:789.
Liang, B., P. Peng, S. Chen, L. Li, M. Zhang, D. Cao, J. Yang, H. Li, T. Gui, and X. Li. 2013. Characterization and proteomic analysis of ovarian cancer-derived exosomes. Journal of proteomics. 80:171-182.
Long, M.C., V. Leong, P.A. Schaffer, C.A. Spencer, and S.A. Rice. 1999. ICP22 and the UL13 protein kinase are both required for herpes simplex virus-induced modification of the large subunit of RNA polymerase II. Journal of virology. 73:5593-5604.
Longnecker, R.M., E. Kieff, and J.I. Cohen. 2013. Epstein-Barr Virus. Fields virology. 2:1898-1959.
Luka, J., B. Kallin, and G. Klein. 1979. Induction of the Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology. 94:228-231.
Marschall, M., A. Marzi, P. aus dem Siepen, R. Jochmann, M. Kalmer, S. Auerochs, P. Lischka, M. Leis, and T. Stamminger. 2005. Cellular p32 recruits cytomegalovirus kinase pUL97 to redistribute the nuclear lamina. Journal of Biological Chemistry. 280:33357-33367.
Mathivanan, S., C.J. Fahner, G.E. Reid, and R.J. Simpson. 2011. ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic acids research. 40:D1241-D1244.
Meckes, D.G. 2015. Exosomal communication goes viral. Journal of virology. 89:5200-5203.
Meckes, D.G., H.P. Gunawardena, R.M. Dekroon, P.R. Heaton, R.H. Edwards, S. Ozgur, J.D. Griffith, B. Damania, and N. Raab-Traub. 2013. Modulation of B-cell exosome proteins by gamma herpesvirus infection. Proceedings of the National Academy of Sciences. 110:E2925-E2933.
Meckes, D.G., K.H. Shair, A.R. Marquitz, C.-P. Kung, R.H. Edwards, and N. Raab-Traub. 2010. Human tumor virus utilizes exosomes for intercellular communication. Proceedings of the National Academy of Sciences. 107:20370-20375.
Miller, G., J.C. Niederman, and L.-L. Andrews. 1973. Prolonged oropharyngeal excretion of Epstein–Barr virus after infectious mononucleosis. New England Journal of Medicine. 288:229-232.
Mimi, C.Y., and J.-M. Yuan. 2002. Epidemiology of nasopharyngeal carcinoma. In Seminars in cancer biology. Vol. 12. Elsevier. 421-429.
Nanbo, A., E. Kawanishi, R. Yoshida, and H. Yoshiyama. 2013. Exosomes derived from Epstein-Barr virus-infected cells are internalized via caveola-dependent endocytosis and promote phenotypic modulation in target cells. Journal of virology. 87:10334-10347.
Old, L., E. Boyse, H. Oettgen, E. De Harven, G. Geering, B. Williamson, and P. Clifford. 1966. Precipitating antibody in human serum to an antigen present in cultured Burkitt''s lymphoma cells. Proceedings of the National Academy of Sciences. 56:1699-1704.
Ostrowski, M., N.B. Carmo, S. Krumeich, I. Fanget, G. Raposo, A. Savina, C.F. Moita, K. Schauer, A.N. Hume, and R.P. Freitas. 2010. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nature cell biology. 12:19-30.
Overton, H.A., D.J. McMillan, L.S. Klavinskis, L. Hope, A.J. Ritchie, and P. Wong-Kai-In. 1992. Herpes simplex virus type 1 gene UL13 encodes a phosphoprotein that is a component of the virion. Virology. 190:184-192.
Pan, B.-T., and R.M. Johnstone. 1983. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell. 33:967-978.
Pan, B.-T., K. Teng, C. Wu, M. Adam, and R.M. Johnstone. 1985. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. The Journal of cell biology. 101:942-948.
Park, J.E., H.S. Tan, A. Datta, R.C. Lai, H. Zhang, W. Meng, S.K. Lim, and S.K. Sze. 2010. Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Molecular & cellular proteomics. 9:1085-1099.
Pegtel, D.M., K. Cosmopoulos, D.A. Thorley-Lawson, M.A. van Eijndhoven, E.S. Hopmans, J.L. Lindenberg, T.D. de Gruijl, T. Würdinger, and J.M. Middeldorp. 2010. Functional delivery of viral miRNAs via exosomes. Proceedings of the National Academy of Sciences. 107:6328-6333.
Pope, J., M. Horne, and W. Scott. 1968. Transformation of foetal human leukocytes in vitro by filtrates of a human leukaemic cell line containing herpes‐like virus. International journal of cancer. 3:857-866.
Purves, F.C., W.O. Ogle, and B. Roizman. 1993. Processing of the herpes simplex virus regulatory protein alpha 22 mediated by the UL13 protein kinase determines the accumulation of a subset of alpha and gamma mRNAs and proteins in infected cells. Proceedings of the National Academy of Sciences. 90:6701-6705.
Purves, F.C., and B. Roizman. 1992. The UL13 gene of herpes simplex virus 1 encodes the functions for posttranslational processing associated with phosphorylation of the regulatory protein alpha 22. Proceedings of the National Academy of Sciences. 89:7310-7314.
Ragoczy, T., L. Heston, and G. Miller. 1998. The Epstein-Barr virus Rta protein activates lytic cycle genes and can disrupt latency in B lymphocytes. Journal of virology. 72:7978-7984.
Raposo, G., H.W. Nijman, W. Stoorvogel, R. Liejendekker, C.V. Harding, C.J. Melief, and H.J. Geuze. 1996. B lymphocytes secrete antigen-presenting vesicles. Journal of Experimental Medicine. 183:1161-1172.
Rickinson, A.B., and E.D. Kieff. 2007. Epstein-Barr Virus. D. M. a. P. M. Howley (ed) Fields Virology (fifth ed). 2:2656-2700.
Romaker, D., V. Schregel, K. Maurer, S. Auerochs, A. Marzi, H. Sticht, and M. Marschall. 2006. Analysis of the Structure− Activity Relationship of Four Herpesviral UL97 Subfamily Protein Kinases Reveals Partial but not Full Functional Conservation. Journal of medicinal chemistry. 49:7044-7053.
Sadeghipour, S., and R.A. Mathias. 2017. Herpesviruses hijack host exosomes for viral pathogenesis. In Seminars in Cell & Developmental Biology. Elsevier.
Savina, A., C.M. Fader, M.T. Damiani, and M.I. Colombo. 2005. Rab11 promotes docking and fusion of multivesicular bodies in a calcium‐dependent manner. Traffic. 6:131-143.
Shibata, D., and L. Weiss. 1992. Epstein-Barr virus-associated gastric adenocarcinoma. The American journal of pathology. 140:769.
Simons, M., and G. Raposo. 2009. Exosomes–vesicular carriers for intercellular communication. Current opinion in cell biology. 21:575-581.
Sixbey, J.W., J.G. Nedrud, N. Raab-Traub, R.A. Hanes, and J.S. Pagano. 1984. Epstein–Barr virus replication in oropharyngeal epithelial cells. New England Journal of Medicine. 310:1225-1230.
Spengler, M., N. Niesen, C. Grose, W. Ruyechan, and J. Hay. 2001. Interactions among structural proteins of varicella zoster virus. In Immunity to and Prevention of Herpes Zoster. Springer. 71-79.
Taylor, D.D., and C. Gercel-Taylor. 2011. Exosomes/microvesicles: mediators of cancer-associated immunosuppressive microenvironments. In Seminars in immunopathology. Vol. 33. Springer. 441-454.
Théry, C., S. Amigorena, G. Raposo, and A. Clayton. 2006. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current protocols in cell biology:3.22. 21-23.22. 29.
Théry, C., M. Ostrowski, and E. Segura. 2009. Membrane vesicles as conveyors of immune responses. Nature Reviews Immunology. 9:581-593.
Trajkovic, K., C. Hsu, S. Chiantia, L. Rajendran, D. Wenzel, F. Wieland, P. Schwille, B. Brügger, and M. Simons. 2008. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 319:1244-1247.
Valadi, H., K. Ekström, A. Bossios, M. Sjöstrand, J.J. Lee, and J.O. Lötvall. 2007. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature cell biology. 9:654-659.
Van Niel, G., G. Raposo, C. Candalh, M. Boussac, R. Hershberg, N. Cerf–Bensussan, and M. Heyman. 2001. Intestinal epithelial cells secrete exosome–like vesicles. Gastroenterology. 121:337-349.
van Zeijl, M., J. Fairhurst, E.Z. Baum, L. Sun, and T.R. Jones. 1997. The human cytomegalovirus UL97 protein is phosphorylated and a component of virions. Virology. 231:72-80.
Verweij, F.J., M.A. Van Eijndhoven, E.S. Hopmans, T. Vendrig, T. Wurdinger, E. Cahir‐McFarland, E. Kieff, D. Geerts, R. Van Der Kant, and J. Neefjes. 2011. LMP1 association with CD63 in endosomes and secretion via exosomes limits constitutive NF‐κB activation. The EMBO journal. 30:2115-2129.
Wang, J.-T., S.-L. Doong, S.-C. Teng, C.-P. Lee, C.-H. Tsai, and M.-R. Chen. 2009. Epstein-Barr virus BGLF4 kinase suppresses the interferon regulatory factor 3 signaling pathway. Journal of virology. 83:1856-1869.
Wang, J.-T., P.-W. Yang, C.-P. Lee, C.-H. Han, C.-H. Tsai, and M.-R. Chen. 2005. Detection of Epstein–Barr virus BGLF4 protein kinase in virus replication compartments and virus particles. Journal of general virology. 86:3215-3225.
Weiss, L.M., L.A. Movahed, R.A. Warnke, and J. Sklar. 1989. Detection of Epstein–Barr viral genomes in Reed–Sternberg cells of Hodgkin''s disease. New England Journal of Medicine. 320:502-506.
Williams, R.L., and S. Urbé. 2007. The emerging shape of the ESCRT machinery. Nature reviews Molecular cell biology. 8:355-368.
Wolf, D., A. Honigman, J. Lazarovits, E. Tavor, and A. Panet. 1998. Characterization of the human cytomegalovirus UL97 gene product as a virion-associated protein kinase. Archives of virology. 143:1223-1232.
Wolf, H., H.Z. HAUSEN, and V. Becker. 1973. EB viral genomes in epithelial nasopharyngeal carcinoma cells. Nature. 244:245-247.
Yang, P.-W., S.-S. Chang, C.-H. Tsai, Y.-H. Chao, and M.-R. Chen. 2008. Effect of phosphorylation on the transactivation activity of Epstein–Barr virus BMRF1, a major target of the viral BGLF4 kinase. Journal of General Virology. 89:884-895.
Young, L.S., and C.W. Dawson. 2014. Epstein-Barr virus and nasopharyngeal carcinoma. Chinese journal of cancer. 33:581.
Young, L.S., L.F. Yap, and P.G. Murray. 2016. Epstein-Barr virus: more than 50 years old and still providing surprises. Nat Rev Cancer. 16:789-802.
Yue, W., E. Gershburg, and J.S. Pagano. 2005. Hyperphosphorylation of EBNA2 by Epstein-Barr virus protein kinase suppresses transactivation of the LMP1 promoter. Journal of virology. 79:5880-5885.
Zhang, X., X. Yuan, H. Shi, L. Wu, H. Qian, and W. Xu. 2015. Exosomes in cancer: small particle, big player. Journal of hematology & oncology. 8:83.
Zur Hausen, H., H. Schulte-Holthausen, G. Klein, G. Henle, W. Henle, P. Clifford, and L. Santesson. 1970. Epstein-Barr virus in Burkitt''s lymphoma and nasopharyngeal carcinoma.[ii] EBV DNA in biopsies of Burkitt tumours and anaplastic carcinomas of the nasopharynx. Nature. 228:1056-1058.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊