跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 23:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳秉錕
研究生(外文):Bing-Kun Wu
論文名稱:探討未折疊蛋白質反應誘發之自噬作用參與埃及斑蚊體內登革病毒之複製
論文名稱(外文):Study of the unfolded protein response-mediated autophagy in dengue virus replication in Aedes aegypti
指導教授:蕭信宏蕭信宏引用關係
口試日期:2017-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:微生物學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:58
中文關鍵詞:埃及斑蚊登革病毒未摺疊蛋白質反應自噬作用病毒複製
外文關鍵詞:Aedes aegyptidengue virusunfolded protein responseautophagyviral replication
相關次數:
  • 被引用被引用:0
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
蚊子是許多傳染病的主要病媒,舉凡瘧疾、絲蟲病、日本腦炎、登革熱、屈躬病,乃至近年爆發的茲卡病毒,都是經由不同種類的病媒蚊感染人類。其中,登革熱是一種具威脅性、不容小覷的傳染病,其主要病媒為埃及斑蚊與白線斑蚊。近年來,台灣的登革熱病例猛然攀升,根據疾管署的統計資料,2015年全國本土病例高達四萬三千多人。然而,目前尚未有可用的疫苗及藥物問世,對於登革熱病患只能採取支持性療法。因此,控制登革熱較實際可行的方法便是病媒的控制。過去在哺乳類的研究發現,當登革病毒感染宿主細胞時,病毒會在內質網進行複製與包裹,此時大量產生的病毒蛋白質可以藉由內質網的未摺疊蛋白質反應 (unfolded protein response, UPR) 以維持病毒蛋白質之穩定。此外,登革病毒的感染也會活化細胞中的自噬作用 (autophagy)。先前在哺乳類的研究中指出,未摺疊蛋白質反應與自噬作用皆有助於登革病毒的複製。不過,上述現象在埃及斑蚊中的研究則付之闕如。故本研究想進一步探討登革病毒感染埃及斑蚊後,未摺疊蛋白質反應與自噬作用對於病毒在病媒蚊體內複製的影響。我們初步以q-PCR偵測吸血後埃及斑蚊之未摺疊蛋白質反應相關基因表現。結果發現其表現量明顯提升。若以RNAi抑制埃及斑蚊未摺疊蛋白質反應相關基因後再感染登革病毒,其病毒之基因及蛋白質表現量皆明顯下降。另外,Western blot的結果顯示當埃及斑蚊吸血感染登革病毒,中腸在吸血後早期的自噬作用比正常吸血組明顯增多。在免疫螢光染色實驗中,則發現自噬作用相關蛋白與登革病毒產生共位現象。這些結果顯示埃及斑蚊之未摺疊蛋白質反應與自噬作用可能參與登革病毒的複製。往後我們將深入瞭解抑制登革病毒在埃及斑蚊體內複製的機制,這些結果對於未來制訂防治登革熱之策略將有重大助益。
The mosquito is the main vector of several important arthropod-borne diseases, such as dengue fever, Zika fever, Chikungunya fever and malaria. Among these infectious diseases, dengue fever caused great concern in Taiwan in recent years. According to the record from Taiwan CDC, there are more than 43 thousand infected cases in 2015. Until now, there is no effective dengue vaccine or drug available. Therefore, vector control becomes a potential alternative strategy for dengue control. In previous studies, dengue virus (DENV) was demonstrated to be replicated on the ER membrane of the mammalian cells. Unfolded protein response (UPR) was then activated in response to ER stress. Several reports indicated that dengue virus infection was associated with activation of autophagy in mammalian cells. However, the activation of UPR and autophagy by dengue virus in the mosquito remain largely unknown. In our preliminary results, we showed that UPR associated genes were highly expressed in blood-feeding mosquitoes. Silencing of UPR-associated genes with reverse genetic approach resulted in the inhibition of DENV genome and protein expression. Interestingly, activation of autophagy was exhibited in the midgut of DENV-infected mosquitoes. Also we found colocolization of DENV and autophagy-associated protein. Our results suggest that UPR and autophagy may participate in the regulation of DENV replication in mosquito. We will further investigate the detailed mechanisms underlying the regulation of viral replication in the mosquito. Results from this study may pave the way for the development of novel disease control strategies.
口試委員會審定書 i
序言 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 ix
第一章 緒論 1
1.1. 病媒蚊傳播疾病 (Mosquito-borne disease) 1
1.1.1. 瘧疾 3
1.1.2. 茲卡病毒感染症 4
1.1.3. 登革熱 4
1.2. 埃及斑蚊生活史 6
1.3. 未摺疊蛋白質反應 (unfolded protein response, UPR) 6
1.4. 自噬作用 (autophagy) 8
1.5. 未摺疊蛋白質反應與自噬作用在內質網壓力下的交互作用 9
1.6. 實驗動機與假說 10
第二章 實驗材料與方法 11
2.1. 實驗步驟與流程 11
2.1.1. 埃及斑蚊之飼養與繼代 11
2.1.2. 病毒製備 11
2.1.3. 病毒注射 (Virus injection) 12
2.1.4. 埃及斑蚊之餵血 12
2.1.5. 雙股RNA (double-stranded RNA, dsRNA) 製備 12
2.1.6. RNAi-mediated silencing 與 knock-down efficiency test 14
2.1.7. RNA萃取 (RNA extraction) 14
2.1.8. 反轉錄作用 (reverse transcription, RT) 14
2.1.9. 聚合酶連鎖反應 (polymerase chain reaction, PCR) 15
2.1.10. 即時定量聚合酶連鎖反應 (real-time PCR, Quantitative PCR, q-PCR) 15
2.1.11. 埃及斑蚊唾液 (saliva) 之收取 15
2.1.12. Cell-based ELISA 16
2.1.13. Transmission assay 17
2.1.14. 溶斑試驗 (Plaque assay) 17
2.1.15. 西方點墨法 (Western blot) 17
2.1.16. Lysotracker staining 18
2.1.17. 免疫螢光染色法 (Immunofluorescence assay, IFA) 18
2.2. 實驗試劑之配置 19
第三章 結果 22
3.1. 埃及斑蚊感染登革病毒之RNA表現情形 22
3.2. UPR相關基因對於登革病毒在埃及斑蚊體內複製之影響 22
3.3. UPR及autophagy對於登革病毒在吸血後埃及斑蚊體內複製之影響 23
3.4. UPR相關基因對於埃及斑蚊唾液內登革病毒感染力之影響 24
3.5. Autophagy相關基因對於埃及斑蚊唾液內登革病毒感染力之影響 25
3.6. UPR相關蛋白在埃及斑蚊吸血感染登革病毒後不同組織之表現情形 25
3.7. Autophagy相關蛋白在埃及斑蚊吸血感染登革病毒後不同組織之表現情形 26
3.8. 埃及斑蚊於吸血後其中腸內autophagy之表現情形 26
3.9. 探討登革病毒於埃及斑蚊中腸內與自噬體之共位情形 27
3.10. UPR對於埃及斑蚊吸血後其autophagy在中腸表現之影響 27
3.11. 登革病毒對於埃及斑蚊體內JNK磷酸化之影響 28
第四章 討論 29
4.1. UPR與autophagy在埃及斑蚊吸血後之表現 29
4.2. UPR參與登革病毒於埃及斑蚊體內之複製 30
4.3. Autophagy參與登革病毒於埃及斑蚊體內之複製 31
4.4. UPR及autophagy於埃及斑蚊吸血後之交互關係 32
附圖 34
附表 50
參考文獻 54
Anders, R. F., Adda, C. G., Foley, M., & Norton, R. S. (2010). Recombinant protein vaccines against the asexual blood stages of Plasmodium falciparum. Hum Vaccin, 6(1), 39-53.
Antinori, S., Galimberti, L., Milazzo, L., & Corbellino, M. (2013). Plasmodium knowlesi: The emerging zoonotic malaria parasite. Acta Tropica, 125(2), 191-201.
Bale, J. F., Jr. (2012). Emerging viral infections. Semin Pediatr Neurol, 19(3), 152-157. doi: 10.1016/j.spen.2012.02.001
Basseri, S., & Austin, R. C. (2012). Endoplasmic reticulum stress and lipid metabolism: mechanisms and therapeutic potential. Biochem Res Int, 2012, 841362. doi: 10.1155/2012/841362
Blázquez, A. B., Escribano-Romero, E., Merino-Ramos, T., Saiz, J. C., & Martín-Acebes, M. A. (2014). Stress responses in flavivirus-infected cells: activation of unfolded protein response and autophagy. Front Microbiol, 5(1), 266. doi: 10.3389/fmicb.2014.00266
Caragata, E. P., Dutra, H. L., & Moreira, L.A. (2016). Exploiting intimate relationships: controlling mosquito-transmitted disease with Wolbachia. Trends Parasitol, 32(3), 207-218. doi: 10.1016/j.pt.2015.10.011
Carvalho, D. O., Costa-da-Silva, A. L., Lees, R. S., & Capurro, M. L. (2014). Two step male release strategy using transgenic mosquito lines to control transmission of vector-borne diseases. Acta Trop, 132 Suppl, S170-177. doi: 10.1016/j.actatropica.2013.09.023
Christophers, S. R. (1960). Aëdes aegypti (L.) the Yellow Fever Mosquito: its Life History, Bionomics and Structure. New York: Cambridge University Press.
Cowman, A. F., Berry, D., & Baum, J. (2012). The cellular and molecular basis for malaria parasite invasion of the human red blood cell. J Cell Biol, 198(6), 961-971. doi: 10.1083/jcb.201206112
Cox, J., Mota, J., Sukupolvi-Petty, S., Diamond, M. S., & Rico-Hesse, R. (2012). Mosquito bite delivery of dengue virus enhances immunogenicity and pathogenesis in humanized mice. J Virol, 86(14), 7637-7649. doi: 10.1128/JVI.00534-12
Deegan, S., Saveljeva, S., Gorman, A. M., & Samali, A. (2013). Stress-induced self-cannibalism: on the regulation of autophagy by endoplasmic reticulum stress. Cell Mol Life Sci., 70(14), 2425-2441. doi: 10.1007/s00018-012-1173-4
Fairhurst, R. M., & Taylor, S. M. (2014). Malaria parasites and red cell variants: when a house is not a home. Curr Opin Hematol, 21(3), 193-200. doi: 10.1097/MOH.0000000000000039
Foy, B. D., Kobylinski, K. C., Foy, J. L. C., Blitvich, B. J., Travassos da Rosa, A., Haddow, A. D., Lanciotti, R. S., & Tesh, R. B. (2011). Probable non-vector-borne transmission of Zika virus, Colorado, USA. Emerg Infect Dis, 17(5), 880-882. doi: 10.3201/eid1705.101939
Fradin, M. S. (1998). Mosquitoes and mosquito repellents: a clinician''s guide. Ann Intern Med, 128(11), 931-940.
Geng, J., & Klionsky, D. J. (2008). The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep, 9(9), 859-864. doi: 10.1038/embor.2008.163
Githeko, A. K., Lindsay, S. W., Confalonieri, U. E., & Patz, J. A. (2000). Climate change and vector-borne diseases: a regional analysis. Bull World Health Organ, 78(9), 1136-1147.
Glick, D., Barth, S., & Macleod, K. F. (2010). Autophagy: cellular and molecular mechanisms. J Pathol, 221(1), 3-12. doi: 10.1002/path.2697
Goldberg, D. E., Siliciano, R. F., & Jacobs, W. R., Jr. (2012). Outwitting evolution: fighting drug-resistant TB, malaria, and HIV. Cell, 148(6), 1271-1283.
Halstead, S. B. (2008). Dengue virus-mosquito interactions. Annu Rev Entomol, 53, 273-291. doi: 10.1146/annurev.ento.53.103106.093326
Halstead, S. B., & Thomas, S. J. (2011). New Japanese encephalitis vaccines: alternatives to production in mouse brain. Expert Rev Vaccines, 10(3), 355-364. doi: 10.1586/erv.11.7
He, D., Gao, D., Lou, Y., Zhao, S., & Ruan, S. (2017). A comparison study of Zika virus outbreaks in French Polynesia, Colombia and the State of Bahia in Brazil. Sci Rep, 7(1), 273. doi: 10.1038/s41598-017-00253-1
Heaton, N. S., & Randall, G. (2011). Dengue virus and autophagy. Viruses, 3(8), 1332-1341. doi: 10.3390/v3081332
Heinz, F. X., & Stiasny, K. (2012). Flaviviruses and flavivirus vaccines. Vaccine, 30(29), 4301-4306. doi: 10.1016/j.vaccine.2011.09.114
Hoffmann, A. A., Montgomery, B. L., Popovici, J., Iturbe-Ormaetxe, I., Johnson, P. H., Muzzi, F., Greenfield, M., Durkan, M., Leong, Y. S., Dong, Y., Cook, H., Axford, J., Callahan, A. G., Kenny, N., Omodei, C., McGraw, E. A., Ryan, P. A., Ritchie, S. A., Turelli, M., & O’Neill, S. L. (2011). Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature, 476(7361), 454-457. doi: 10.1038/nature10356
Jaffar-Bandjee, M. C., Ramful, D., Gauzere, B. A., Hoarau, J. J., Krejbich-Trotot, P., Robin, S., Ribera, A., Selambarom, J., & Gasque, P. (2010). Emergence and clinical insights into the pathology of Chikungunya virus infection. Expert Rev Anti Infect Ther, 8(9), 987-996. doi: 10.1586/eri.10.92
Janssens, S., Pulendran, B., & Lambrecht, B. N. (2014). Emerging functions of the unfolded protein response in immunity. Nat Immunol, 15(10), 910-919. doi: 10.1038/ni2991
Jheng, J. R., Ho, J. Y., & Horng, J. T. (2014). ER stress, autophagy, and RNA viruses. Front Microbiol, 5(1), 388. doi: 10.3389/fmicb.2014.00388
Kimata, Y., Ishiwata-Kimata, Y., Ito, T., Hirata, A., Suzuki, T., Oikawa, D., Takeuchi, M., & Kohno, K. (2007). Two regulatory steps of ER-stress sensor Ire1 involving its cluster formation and interaction with unfolded proteins. J Cell Biol, 179(1), 75-86. doi: 10.1083/jcb.200704166
Krauer, F., Riesen, M., Reveiz, L., Oladapo, O. T., Martínez-Vega, R., Porgo, T. V., Haefliger, A., Broutet, N. J., Low, N., & WHO Zika Causality Working Group. (2017). Zika virus infection as a cause of congenital brain abnormalities and Guillain–Barré syndrome: systematic review. PLoS Med, 14(1), e1002203. doi: 10.1371/journal.pmed.1002203
Kuwata, R., Nga, P. T., Yen, N. T., Hoshino, K., Isawa, H., Higa, Y., Hoang, N. V., Trang, B. M., Loan do, P., Phong, T.V., Sasaki, T., Tsuda, Y., Kobayashi, M., Sawabe, K., & Takagi, M. (2013). Surveillance of Japanese encephalitis virus infection in mosquitoes in Vietnam from 2006 to 2008. Am J Trop Med Hyg, 88(4), 681-688. doi: 10.4269/ajtmh.12-0407
Laughlin, C. A., Morens, D. M., Cassetti, M. C., Costero-Saint Denis, A., San Martin, J. L., Whitehead, S. S., & Fauci, A. S. (2012). Dengue research opportunities in the Americas. J Infect Dis, 206(7), 1121-1127.
Lee, Y. R., Lei, H. Y., Liu, M. T., Wang, J. R., Chen, S. H., Jiang-Shieh, Y. F., Lin, Y. S., Yeh, T. M., Liu, C. C., & Liu, H. S. (2008). Autophagic machinery activated by dengue virus enhances virus replication. Virology, 374(2), 240-248. doi: 10.1016/j.virol.2008.02.016
Lee, Y. R., Hu, H. Y., Kuo, S. H., Lei, H. Y., Lin, Y. S., Yeh, T. M., Liu, C. C., & Liu, H. S. (2013). Dengue virus infection induces autophagy: an in vivo study. J Biomed Sci, 20(1), 65. doi: 10.1186/1423-0127-20-65
McArthur, C. C., Meredith, J. M., & Eggleston, P. (2014). Transgenic Anopheles gambiae expressing an antimalarial peptide suffer no significant fitness cost. PLoS One, 9(2), e88625. doi: 10.1371/journal.pone.0088625
Mizushima, N. (2007). Autophagy: process and function. Genes Dev, 21(22), 2861-2873. doi: 10.1101/gad.1599207

Mizushima, N., & Komatsu, M. (2011). Autophagy: renovation of cells and tissues. Cell, 147(4), 728-741. doi: 10.1016/j.cell.2011.10.026
Noisakran, S., & Perng, G. C. (2008). Alternate hypothesis on the pathogenesis of dengue hemorrhagic fever (DHF)/dengue shock syndrome (DSS) in dengue virus infection. Exp Biol Med (Maywood), 233(4), 401-408.
Peña, J., & Harris, E. (2011). Dengue virus modulates the unfolded protein response in a time-dependent manner. J Biol Chem, 286(16), 14226-14236. doi: 10.1074/jbc.M111.222703
Ranjit, S., & Kissoon, N. (2011). Dengue hemorrhagic fever and shock syndromes. Pediatr Crit Care Med, 12(1), 90-100. doi: 10.1097/PCC.0b013e3181e911a7
Richards, A. L., & Jackson, W. T. (2013). How positive-strand RNA viruses benefit from autophagosome maturation. J Virol, 87(18), 9966-9972. doi: 10.1128/JVI.00460-13
Shen, X., Zhang, K., & Kaufman, R. J. (2004). The unfolded protein response—a stress signaling pathway of the endoplasmic reticulum. J Chem Neuroanat, 28(1-2), 79-92. doi: 10.1016/j.jchemneu.2004.02.006
Sim, S., & Dimopoulos, G. (2010). Dengue virus inhibits immune responses in Aedes aegypti cells. PLoS One, 5(5), e10678. doi: 10.1371/journal.pone.0010678
Söderhäll, K. (2010). Invertebrate Immunity. Landes Bioscience and Springer Science+Business Media.
Tolle, M. A. (2009). Mosquito-borne diseases. Curr Probl Pediatr Adolesc Health Care, 39(4), 97-140. doi: 10.1016/j.cppeds.2009.01.001
Umareddy, I., Pluquet, O., Wang, Q. Y., Vasudevan, S. G., Chevet, E., & Gu, F. (2007). Dengue virus serotype infection specifies the activation of the unfolded protein response. Virol J, 4, 91. doi: 10.1186/1743-422X-4-91
Unni, S. K., Ruzek, D., Chhatbar, C., Mishra, R., Johri, M. K., & Singh, S. K. (2011). Japanese encephalitis virus: from genome to infectome. Microbes Infect, 13(4), 312-321. doi: 10.1016/j.micinf.2011.01.002
Whitten, M. M., Shiao, S. H., & Levashina, E. A. (2006). Mosquito midguts and malaria: cell biology, compartmentalization and immunology. Parasite Immunol, 28(4), 121-130. doi: 10.1111/j.1365-3024.2006.00804.x
Ye, Y. H., Carrasco, A. M., Frentiu, F. D., Chenoweth, S. F., Beebe, N. W., van den Hurk, A. F., Simmons, C. P., O’Neill, S. L., & McGraw, E. A. (2015). Wolbachia reduces the transmission potential of dengue-infected Aedes aegypti. PLoS Negl Trop Dis, 9(6), e0003894. doi: 10.1371/journal.pntd.0003894
Yu, C. Y., Hsu, Y. W., Liao, C. L., & Lin, Y. L. (2006). Flavivirus infection activates the XBP1 pathway of the unfolded protein response to cope with endoplasmic reticulum stress. J Virol, 80(23), 11868-11880. doi: 10.1128/JVI.00879-06
Zeldenryk, L., Gordon, S., Gray, M., Speare, R., & Melrose, W. (2012). Disability measurement for lymphatic filariasis: a review of generic tools used within morbidity management programs. PLoS Negl Trop Dis, 6(9), e1768. doi: 10.1371/journal.pntd.0001768
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊