跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/01/15 03:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃亭瑜
研究生(外文):Ting-Yu Huang
論文名稱:在試管內及動物模式中鑑定能夠對抗耐甲氧西林金黃葡萄球菌和多重抗藥鮑曼不動桿菌的抗菌胜肽
論文名稱(外文):Identification of antimicrobial peptides against methicillin resistant Staphylococcus aureus and multidrug resistant Acinetobacter baumannii in vitro and in vivo
指導教授:賈景山
指導教授(外文):Jean-San Chia
口試日期:2017-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:微生物學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:69
中文關鍵詞:抗菌胜肽生物膜抗甲氧西林金黃葡萄球菌多重抗藥鮑曼氏不動桿菌小鼠肺炎模型
外文關鍵詞:AMPsbiofilmsMRSAMDRABmouse pneumonia model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於近年來抗生素的大量廣泛使用,抗藥細菌已經出現並且已經成為一個全球的健康議題。因此,目前迫切需要開發具有不同作用機制的新型抗菌藥物。最近,在生物體中發現的一些抗菌胜肽(antimicrobial peptides, AMPs)被發現會透過過破壞膜完整性或者影響細胞內重要的合成途徑,例如DNA或蛋白質的合成,進而殺死細菌。在這個研究中,我們將鑑定能有效對抗並抑制抗藥細菌的AMP,包含抗甲氧西林金黃葡萄球菌(Methicillin resistant Staphylococcus aureus, MRSA)和多重抗藥鮑曼氏不動桿菌(Multi-drug resistant Acinetobacter baumannii, MDRAB)。在已測試的AMP中,SMAP-29對許多包括MRSA和MDRAB的細菌具有廣效性的抑菌能力。其他AMP如Nigrocin和OdP1a對金黃葡萄球菌生物膜形成具有抑制能力。另外我們發現,幾乎所有的AMP都對MDRAB具有較高的抑菌能力,而MDRAB是目前在院內感染中的相當棘手的問題。這些抗菌肽不僅可以抑制細菌生長,而且可以減少生物膜形成。我們也建立了一個小鼠肺炎模型來進一步評估這些AMP在體內的效用,期望具有體內功效的AMP能夠在將來具有臨床應用的潛力。
Antibiotics-resistant bacteria have emerged due to the widespread usage of antibiotics. Thus, development of new antimicrobial agents with different action mechanisms is acute and urgent. Recently, some antimicrobial peptides (AMPs) found in organisms have shown to have bactericidal abilities by disrupting the membrane integrity or by inhibiting important pathways inside the cell such as DNA replication and protein synthesis. In this project, we will identify the AMPs exhibiting efficient antimicrobial activity against antibiotic-resistant bacteria, including methicillin- resistant Staphylococcus aureus (MRSA) and multidrug-resistant Acinetobacter baumannii (MDRAB). Among the tested AMPs, SMAP-29 and TP4 have a broad-spectrum bactericidal effect toward many kinds of bacteria, including MRSA and MDRAB. Other AMPs such as Nigrocin and OdP1a, have inhibitory effect on S. aureus biofilm formation. Interestingly, all the AMPs exhibit antimicrobial activities against MDRAB, which is a refractory issue in intensive care unit or nosocomial infection. These AMPs can not only inhibit the bacteria growth but also decrease the biofilm formation. We also established a mouse pneumonia model to evaluate the effect of these tested AMPs. The AMPs, which have the in vivo efficacy, will be anticipated to have the potential for the clinical application in the future.
口試委員會審定書 i
致謝 ii
摘要 iii
Abstract iv
Table of Contents v
List of tables viii
List of figures ix
Appendixes x
Chapter 1 Introduction 1
1.1 Staphylococcus aureus 1
1.2 Methicillin resistant Staphylococcus aureus (MRSA) 1
1.3 Acinetobacter baumannii 2
1.4 Multidrug resistant Acinetobacter baumannii (MDRAB) 2
1.5 Biofilm 4
1.6 Antimicrobial peptides (AMPs) 4
1.7 Mechanism of Antimicrobial peptides 5
Chapter 2 Purpose and aim 7
Chapter 3 Material and Method 8
3.1 Mice 8
3.2 Bacteria strains and growth conditions 8
3.3 Antimicrobial peptides 9
3.4 Preparation of broth, agar and solutions 10
3.5 Minimal inhibition concentration (MIC) and Minimal bactericidal concentration (MBC) testing 11
3.6 Biofilm bacteria killing test 12
3.7 Biofilm inhibition test 12
3.8 Biofilm quantification 13
3.9 Mouse intratracheal inoculation and sample collections 13
3.10 Bacteria count 14
3.11 Paraffin embedded sample preparation 14
3.12 Immunohistochemistry (IHC) 15
3.13 Hemolysis assay 15
3.14 MTT assay 16
Chapter 4 Result 17
4.1 The antimicrobial activities of tested AMPs 17
4.2 Effect of AMPs toward MRSA 17
4.3 The ability of AMPs to eradicate MRSA formed biofilm 18
4.4 The ability of AMPs to prevent MRSA biofilm formation 18
4.5 Effect of AMPs toward clinical MDRAB strain 19
4.6 The ability of AMPs to eradicate A. baumannii formed biofilm 19
4.7 Establishing mouse pneumonia model 19
4.8 Effect of AMPs in mouse pneumonia model 20
4.9 The toxicity and hemolytic activity of tested AMPs 21
Chapter 5 Discussion 22
Reference 27
Table 39
Figure 46
Appendix 55
1.Baron S, 1928-, Medicine. NLo: Medical Microbiology, 4 edn. Galveston, Texas: University of Texas Medical Branch at Galveston; 1996.
2.Schenck LP, Surette MG, Bowdish DM: Composition and immunological significance of the upper respiratory tract microbiota. FEBS Lett 2016, 590(21):3705-3720.
3.Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG, Jr.: Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 2015, 28(3):603-661.
4.Argudin MA, Mendoza MC, Rodicio MR: Food poisoning and Staphylococcus aureus enterotoxins. Toxins (Basel) 2010, 2(7):1751-1773.
5.Ragle BE, Karginov VA, Bubeck Wardenburg J: Prevention and treatment of Staphylococcus aureus pneumonia with a beta-cyclodextrin derivative. Antimicrob Agents Chemother 2010, 54(1):298-304.
6.Fowler VG, Jr., Miro JM, Hoen B, Cabell CH, Abrutyn E, Rubinstein E, Corey GR, Spelman D, Bradley SF, Barsic B et al: Staphylococcus aureus endocarditis: a consequence of medical progress. JAMA 2005, 293(24):3012-3021.
7.Aguilar J, Urday-Cornejo V, Donabedian S, Perri M, Tibbetts R, Zervos M: Staphylococcus aureus meningitis: case series and literature review. Medicine (Baltimore) 2010, 89(2):117-125.
8.Lew DP, Waldvogel FA: Osteomyelitis. Lancet 2004, 364(9431):369-379.
9.Holland TL, Arnold C, Fowler VG, Jr.: Clinical management of Staphylococcus aureus bacteremia: a review. JAMA 2014, 312(13):1330-1341.
10.Otto M: Staphylococcal biofilms. Curr Top Microbiol Immunol 2008, 322:207-228.
11.Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME: Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence 2011, 2(5):445-459.
12.Barber M, Rozwadowska-Dowzenko M: Infection by penicillin-resistant staphylococci. Lancet 1948, 2(6530):641-644.
13.Eriksen KR: "Celbenin"-resistant staphylococci. Ugeskr Laeger 1961, 123:384-386.
14.Chambers HF: Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin Microbiol Rev 1997, 10(4):781-791.
15.Hartman BJ, Tomasz A: Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. J Bacteriol 1984, 158(2):513-516.
16.Ghuysen JM: Molecular structures of penicillin-binding proteins and beta-lactamases. Trends Microbiol 1994, 2(10):372-380.
17.Peleg AY, Seifert H, Paterson DL: Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 2008, 21(3):538-582.
18.Seifert H, Dijkshoorn L, Gerner-Smidt P, Pelzer N, Tjernberg I, Vaneechoutte M: Distribution of Acinetobacter species on human skin: comparison of phenotypic and genotypic identification methods. J Clin Microbiol 1997, 35(11):2819-2825.
19.Gaynes R, Edwards JR, National Nosocomial Infections Surveillance S: Overview of nosocomial infections caused by gram-negative bacilli. Clin Infect Dis 2005, 41(6):848-854.
20.Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB: Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 2004, 39(3):309-317.
21.Metan G, Alp E, Aygen B, Sumerkan B: Acinetobacter baumannii meningitis in post-neurosurgical patients: clinical outcome and impact of carbapenem resistance. J Antimicrob Chemother 2007, 60(1):197-199.
22.Gaddy JA, Actis LA: Regulation of Acinetobacter baumannii biofilm formation. Future Microbiol 2009, 4(3):273-278.
23.Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B et al: Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012, 18(3):268-281.
24.ML J-G, C BB: Acinetobacter: Microbiology, Epidemiology, Infections, Management. Boca Raton, Florida: CRC Press; 1996.
25.McGowan JE, Jr.: Antimicrobial resistance in hospital organisms and its relation to antibiotic use. Rev Infect Dis 1983, 5(6):1033-1048.
26.Go ES, Urban C, Burns J, Kreiswirth B, Eisner W, Mariano N, Mosinka-Snipas K, Rahal JJ: Clinical and molecular epidemiology of acinetobacter infections sensitive only to polymyxin B and sulbactam. Lancet 1994, 344(8933):1329-1332.
27.Corbella X, Montero A, Pujol M, Dominguez MA, Ayats J, Argerich MJ, Garrigosa F, Ariza J, Gudiol F: Emergence and rapid spread of carbapenem resistance during a large and sustained hospital outbreak of multiresistant Acinetobacter baumannii. J Clin Microbiol 2000, 38(11):4086-4095.
28.Aygun G, Demirkiran O, Utku T, Mete B, Urkmez S, Yilmaz M, Yasar H, Dikmen Y, Ozturk R: Environmental contamination during a carbapenem-resistant Acinetobacter baumannii outbreak in an intensive care unit. J Hosp Infect 2002, 52(4):259-262.
29.Rice LB: Challenges in identifying new antimicrobial agents effective for treating infections with Acinetobacter baumannii and Pseudomonas aeruginosa. Clin Infect Dis 2006, 43 Suppl 2:S100-105.
30.Thomson JM, Bonomo RA: The threat of antibiotic resistance in Gram-negative pathogenic bacteria: beta-lactams in peril! Curr Opin Microbiol 2005, 8(5):518-524.
31.Bonomo RA, Szabo D: Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin Infect Dis 2006, 43 Suppl 2:S49-56.
32.Li J, Nation RL, Milne RW, Turnidge JD, Coulthard K: Evaluation of colistin as an agent against multi-resistant Gram-negative bacteria. Int J Antimicrob Agents 2005, 25(1):11-25.
33.Afzal-Shah M, Woodford N, Livermore DM: Characterization of OXA-25, OXA-26, and OXA-27, molecular class D beta-lactamases associated with carbapenem resistance in clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother 2001, 45(2):583-588.
34.Lewis K: Riddle of biofilm resistance. Antimicrob Agents Chemother 2001, 45(4):999-1007.
35.Donlan RM, Costerton JW: Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002, 15(2):167-193.
36.Donlan RM: Biofilms: microbial life on surfaces. Emerg Infect Dis 2002, 8(9):881-890.
37.Branda SS, Vik S, Friedman L, Kolter R: Biofilms: the matrix revisited. Trends Microbiol 2005, 13(1):20-26.
38.Kostakioti M, Hadjifrangiskou M, Hultgren SJ: Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med 2013, 3(4):a010306.
39.Prakash B, Veeregowda BM, Krishnappa G: Biofilms: A survival strategy of bacteria. Current Science 2003, 85:1299–1307.
40.Mah TF, O''Toole GA: Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 2001, 9(1):34-39.
41.Bjarnsholt T: The role of bacterial biofilms in chronic infections. APMIS Suppl 2013(136):1-51.
42.Bahar AA, Ren D: Antimicrobial peptides. Pharmaceuticals (Basel) 2013, 6(12):1543-1575.
43.Diamond G, Beckloff N, Weinberg A, Kisich KO: The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 2009, 15(21):2377-2392.
44.Castro MS, Fontes W: Plant defense and antimicrobial peptides. Protein Pept Lett 2005, 12(1):13-18.
45.Wang G, Li X, Zasloff M: Antimicrobial Peptides: Discovery, Design and Novel Therapeutic Strategies. Oxfordshire, UK: CABI; 2010.
46.Boix E, Nogues MV: Mammalian antimicrobial proteins and peptides: overview on the RNase A superfamily members involved in innate host defence. Mol Biosyst 2007, 3(5):317-335.
47.Hancock RE, Diamond G: The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol 2000, 8(9):402-410.
48.Li Y, Xiang Q, Zhang Q, Huang Y, Su Z: Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides 2012, 37(2):207-215.
49.Cerovsky V, Budesinsky M, Hovorka O, Cvacka J, Voburka Z, Slaninova J, Borovickova L, Fucik V, Bednarova L, Votruba I et al: Lasioglossins: three novel antimicrobial peptides from the venom of the eusocial bee Lasioglossum laticeps (Hymenoptera: Halictidae). Chembiochem 2009, 10(12):2089-2099.
50.Brumfitt W, Salton MR, Hamilton-Miller JM: Nisin, alone and combined with peptidoglycan-modulating antibiotics: activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. J Antimicrob Chemother 2002, 50(5):731-734.
51.Singh PK, Parsek MR, Greenberg EP, Welsh MJ: A component of innate immunity prevents bacterial biofilm development. Nature 2002, 417(6888):552-555.
52.Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE: Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun 2008, 76(9):4176-4182.
53.Shai Y: Mode of action of membrane active antimicrobial peptides. Biopolymers 2002, 66(4):236-248.
54.Le CF, Fang CM, Sekaran SD: Intracellular Targeting Mechanisms by Antimicrobial Peptides. Antimicrob Agents Chemother 2017, 61(4).
55.Hale JD, Hancock RE: Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther 2007, 5(6):951-959.
56.Nguyen LT, Haney EF, Vogel HJ: The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 2011, 29(9):464-472.
57.Park CB, Kim HS, Kim SC: Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 1998, 244(1):253-257.
58.Patrzykat A, Friedrich CL, Zhang L, Mendoza V, Hancock RE: Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother 2002, 46(3):605-614.
59.Sass V, Schneider T, Wilmes M, Korner C, Tossi A, Novikova N, Shamova O, Sahl HG: Human beta-defensin 3 inhibits cell wall biosynthesis in Staphylococci. Infect Immun 2010, 78(6):2793-2800.
60.Salomon RA, Farias RN: Microcin 25, a novel antimicrobial peptide produced by Escherichia coli. J Bacteriol 1992, 174(22):7428-7435.
61.Ho YH, Sung TC, Chen CS: Lactoferricin B inhibits the phosphorylation of the two-component system response regulators BasR and CreB. Mol Cell Proteomics 2012, 11(4):M111 014720.
62.Xiong YQ, Yeaman MR, Bayer AS: In vitro antibacterial activities of platelet microbicidal protein and neutrophil defensin against Staphylococcus aureus are influenced by antibiotics differing in mechanism of action. Antimicrob Agents Chemother 1999, 43(5):1111-1117.
63.Ventola CL: The antibiotic resistance crisis: part 1: causes and threats. P T 2015, 40(4):277-283.
64.Davies J, Davies D: Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 2010, 74(3):417-433.
65.Harris G, Kuo Lee R, Lam CK, Kanzaki G, Patel GB, Xu HH, Chen W: A mouse model of Acinetobacter baumannii-associated pneumonia using a clinically isolated hypervirulent strain. Antimicrob Agents Chemother 2013, 57(8):3601-3613.
66.Skerlavaj B, Benincasa M, Risso A, Zanetti M, Gennaro R: SMAP-29: a potent antibacterial and antifungal peptide from sheep leukocytes. FEBS Lett 1999, 463(1-2):58-62.
67.Peng KC, Lee SH, Hour AL, Pan CY, Lee LH, Chen JY: Five different piscidins from Nile tilapia, Oreochromis niloticus: analysis of their expressions and biological functions. PLoS One 2012, 7(11):e50263.
68.Huang HN, Chan YL, Wu CJ, Chen JY: Tilapia Piscidin 4 (TP4) Stimulates Cell Proliferation and Wound Closure in MRSA-Infected Wounds in Mice. Mar Drugs 2015, 13(5):2813-2833.
69.Gopal R, Kim YG, Lee JH, Lee SK, Chae JD, Son BK, Seo CH, Park Y: Synergistic effects and antibiofilm properties of chimeric peptides against multidrug-resistant Acinetobacter baumannii strains. Antimicrob Agents Chemother 2014, 58(3):1622-1629.
70.Goldman MJ, Anderson GM, Stolzenberg ED, Kari UP, Zasloff M, Wilson JM: Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 1997, 88(4):553-560.
71.Bowdish DM, Davidson DJ, Lau YE, Lee K, Scott MG, Hancock RE: Impact of LL-37 on anti-infective immunity. J Leukoc Biol 2005, 77(4):451-459.
72.Tencza SB, Creighton DJ, Yuan T, Vogel HJ, Montelaro RC, Mietzner TA: Lentivirus-derived antimicrobial peptides: increased potency by sequence engineering and dimerization. J Antimicrob Chemother 1999, 44(1):33-41.
73.Deslouches B, Islam K, Craigo JK, Paranjape SM, Montelaro RC, Mietzner TA: Activity of the de novo engineered antimicrobial peptide WLBU2 against Pseudomonas aeruginosa in human serum and whole blood: implications for systemic applications. Antimicrob Agents Chemother 2005, 49(8):3208-3216.
74.Steinberg DA, Hurst MA, Fujii CA, Kung AH, Ho JF, Cheng FC, Loury DJ, Fiddes JC: Protegrin-1: a broad-spectrum, rapidly microbicidal peptide with in vivo activity. Antimicrob Agents Chemother 1997, 41(8):1738-1742.
75.Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF, Lehrer RI: Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest 1985, 76(4):1427-1435.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top