跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/09 00:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳永哲
研究生(外文):Yung-Che Chen
論文名稱:股匯市連動下風險的國際連結
論文名稱(外文):The Volatility Connectedness of Global Stock and Exchange Market
指導教授:管中閔管中閔引用關係
口試日期:2017-06-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:經濟學研究所
學門:社會及行為科學學門
學類:經濟學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:40
中文關鍵詞:股票市場匯率市場波動風險測度金融危機連結向量自我回歸變異數分解
外文關鍵詞:Stock MarketExchange MarketVolatilityRisk measurementFinancial CrisisConnectednessVector AutoregressionVariance Decomposition
相關次數:
  • 被引用被引用:1
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文應用 Diebold 與 Yilmaz 提出的方法,測度了 15 個國家股市與匯市的每週價格波動連結。時間歷時為 2000-01-02 到 2016-12-03。

透過靜態分析,本論文得到以下結論:股匯市共同計算的連結相對於股市 或匯市各別計算的連結正確;韓國匯市相對而言受到日本以及美國股市影響較 多,而非其他匯市;中國股市是系統中吸收最多波動的市場。透過動態分析, 本論文得到以下結論:用來測度股匯市連結的指標與景氣循環還有金融事件相 符合;在美國 QE3 時期,股市顯著被匯市影響;在希臘危機時期,匯市顯著 被股市影響;中國股市崩盤對其他市場有顯著影響是因為中國的貨幣政策。
Applying the connectedness measurement proposed by Diebold and Yilmaz, we measure the weekly price volatility connectedness for 15 countries’ stock and exchange markets. The time horizon ranges from 2000-01-02 to 2016-12-03.
Through static analysis, we conclude that the connectedness calculated from stock and exchange markets is more convincing than the connectedness calculated from stock or exchange market only, that the Korea exchange market receive more impact from Japan and U.S. stock markets than other exchange markets, that China’s stock market is the one which absorbs the biggest volatility in the system. Through dynamic analysis, we conclude that the index for measuring the connectedness matches the business cycle and financial events, that the stock markets are significantly impacted by exchange markets during the QE3 from U.S., that the exchange markets are significantly impacted by stock markets during the Greece crisis and that the reason why China stock market has significant impact to other markets is the monetary policy from China.
目錄
口試委員會審書...........................................i
謝詞...................................................ii
中文摘要...............................................iii
英文摘要................................................iv
第一章 緒論..............................................1
第二章 計量模型與法.......................................2
2.1 模型背景............................................2
2.2 模型................................................4
第三章 資料..............................................7
第四章 靜態分析...........................................8
4.1 結果分析............................................10
4.2 單一市場與兩市場連結比較...............................16
第五章 動態分析..........................................17
5.1 股匯市擴散指標動態分析.................................18
5.2 股市擴散指標動態分析...................................27
5.3 匯市擴散指標動態分析...................................29
5.4 東亞與東南亞跨區域動態連結..............................30
5.4.1 東亞與東南亞股市跨區域動態連結.........................30
5.4.2 東亞與東南亞匯市跨區域動態連結.........................32
第六章 結語...............................................34
參考文獻..................................................36
附錄.....................................................38
參考文獻
Acemoglu, D., Ozdaglar, A., Tahbaz-Salehi, A. (2015). Systemic risk and stability in financial networks. The American Economic Review, 105(2), 564-608.

Acharya, V. V., Pedersen, L. H., Philippon, T., Richardson, M. (2017). Measuring systemic risk. The Review of Financial Studies, 30(1), 2-47.

Adrian, T., Brunnermeier, M. K. (2008). CoVaR. Staff Report No. 348. New York: Federal Reserve Bank.

Ang, A., Longstaff, F. A. (2013). Systemic sovereign credit risk: Lessons from the US and Europe. Journal of Monetary Economics, 60(5), 493-510.

Billio, M., Getmansky, M., Lo, A. W., Pelizzon, L. (2012). Econometric measures of connectedness and systemic risk in the finance and insurance sectors. Journal of Financial Economics, 104(3), 535-559.

Black, L., Correa, R., Huang, X., Zhou, H. (2016). The systemic risk of European banks during the financial and sovereign debt crises. Journal of Banking and Finance, 63, 107-125.

Bonaldi, P., Hortaçsu, A., Kastl, J. (2015). An empirical analysis of funding costs spillovers in the euro-zone with application to systemic risk. National Bureau of Economic Research, (No. w21462).

Diebold, F. X., Yilmaz, K. (2009). Measuring financial asset return and volatility spillovers, with application to global equity markets. The Economic Journal, 119(534), 158-171.

Diebold, F. X., Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of Forecasting, 28(1), 57-66.

Diebold, F. X., Yılmaz, K. (2014). On the network topology of variance decompositions: Measuring the connectedness of financial firms. Journal of Econometrics, 182(1), 119-134.

Diebold, F. X., Yilmaz, K. (2015). Financial and Macroeconomic Connectedness: A Network Approach to Measurement and Monitoring. Oxford University Press, USA.

Duncan, A. S., Kabundi, A. (2013). Domestic and foreign sources of volatility spillover to South African asset classes. Economic Modelling, 31, 566-573.

Engle, R., Kelly, B. (2012). Dynamic equicorrelation. Journal of Business and Economic Statistics, 30(2), 212-228.

Fernández Rodríguez, F., Sosvilla Rivero, S. (2016). Volatility transmission between stock and exchange-rate markets: A connectedness analysis. Bath Economics Research Papers, No. 54/16.

Glover, B., Richards-Shubik, S. (2014). Contagion in the European sovereign debt crisis. National Bureau of Economic Research, (No. w20567).

Hamilton, J. D. (1994). Time series analysis. Princeton: Princeton University Press.

Jorion, P. (1990). The exchange-rate exposure of US multinationals. Journal of Business, 331-345.

Kanas, A. (2000). Volatility spillovers between stock returns and exchange rate changes: International evidence. Journal of Business Finance Accounting, 27(34), 447-467.

Koop, G., Pesaran, M. H., Potter, S. M. (1996). Impulse response analysis in nonlinear multivariate models. Journal of Econometrics, 74(1), 119-147.

Pesaran, H. H., Shin, Y. (1998). Generalized impulse response analysis in linear multivariate models. Economics Letters, 58(1), 17-29.

Wang, Y. C., Wu, J. L., Lai, Y. H. (2013). A revisit to the dependence structure between the stock and foreign exchange markets: A dependence-switching copula approach. Journal of Banking and Finance, 37(5), 1706-1719.

Yang, S. Y., Doong, S. C. (2004). Price and volatility spillovers between stock prices and exchange rates: empirical evidence from the G-7 countries. International Journal of Business and Economics, 3(2), 139.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊